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Now let 𝑧 = 𝑒$ & 𝑡 → 𝑛 (discrete)
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"

𝑥&𝑧#&



6

Recall, Φ 𝑠 = 𝐿 𝜙 𝑡 = '
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡

Now let 𝑧 = 𝑒$ & 𝑡 → 𝑛 (discrete) then, 𝑧#& = 𝑒#$& similar to 𝑒#$%

We can then define, 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&

This is the Z transform, the discrete analog of the Laplace transform.

As with the FT,  some versions of the ZT may be one-sided 𝑛 = (0,∞) and some 
conventions may use +𝑛 instead  of −𝑛 in the exponent.  
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𝑧 = 𝑒$ = 𝑒()*+ = 𝑒(𝑒*+Note that = 𝑒( cos 𝜔 + 𝑖 sin 𝜔

amp. phase
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S-plane Z-plane

+𝜔

−𝜔 𝜔 = 0

+𝜔

−𝜔 𝜔 = 0

unit 
circle

𝑧 = 𝑒$ = 𝑒()*+ = 𝑒(𝑒*+Note that = 𝑒( cos 𝜔 + 𝑖 sin 𝜔

amp. phase

If 𝜎 = 0, amplitude = 1 which tells us the FT lies on the z-plane unit circle.
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unit 
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𝑧 = 𝑒$ = 𝑒()*+ = 𝑒(𝑒*+Note that = 𝑒( cos 𝜔 + 𝑖 sin 𝜔

amp. phase

If 𝜎 = 0, amplitude = 1 which tells us the FT lies on the z-plane unit circle.

𝜔 in the z-plane is, in practice, the 𝜔 in the FT normalized to a circle (0,2𝜋) or (−𝜋, 𝜋).   
Some authors thus use Ω instead of 𝜔 to distinguish the two.  It is normalized by the 
sample rate so that one revolution around the circle in the z-plane represents the 
periodicity we saw in the DFT.
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𝑍 𝑥&#, = 2
&'#"

"

𝑥&#,𝑧#& = 𝑧#, 2
&'#"

"

𝑥&#,𝑧# &#,

= 𝑧#, 2
-'#"

"

𝑥-𝑧#- = 𝑧#,𝑋(𝑧)

time shift “phase shift”

The inverse Z transform is found using the residue theorem or tables.

𝑥& =
1
2𝜋𝑖

D𝑋(𝑧)𝑧&#.𝑑𝑧
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Let 𝑤& = 𝑥& ∗ 𝑦& = 2
/'#"

"

𝑥/𝑦&#/
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Convolution Multiplication
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If 𝑟 = 1 (𝜎 in 𝑠 = 𝜎 + 𝑖𝜔 is 0) then the 
Z transform reduces to the DFT.

Im

Re
𝑟

𝜔
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Φ 𝑧 = 𝑍 𝜙& = 2
&'#"

"

𝜙&𝑧#& = 2
&'#"

"

𝜙& 𝑟𝑒*+ #&
𝑟 = 𝑒(

= 2
&'#"

"

𝜙&𝑟#&𝑒#*+&
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Where does Φ(𝑧) exist? That is, where is Φ(𝑧) < ∞?
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Φ 𝑧 = 𝑍 𝜙& = 2
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If 𝑟 = 1 (𝜎 in 𝑠 = 𝜎 + 𝑖𝜔 is 0) then the 
Z transform reduces to the DFT.

Im

Re
𝑟

𝜔

Where does Φ(𝑧) exist? That is, where is Φ(𝑧) < ∞?

𝑒#*+& is always < ∞ so we require 2
&'#"

"

𝜙&𝑟#& < ∞

Depending on 𝜙& this is not true for any 𝑟.
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2
&'#"

"

𝜙&𝑟#& < ∞
In general, there is a range of 𝑟 where the sum 
converges.  This is called the Region of Convergence 
(ROC).
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2
&'#"

"

𝜙&𝑟#& < ∞
In general, there is a range of 𝑟 where the sum 
converges.  This is called the Region of Convergence 
(ROC).

Im

Re
𝑟#

𝑟)

ROC

Though the ROC could instead be outside 𝑟) or inside 𝑟#
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2
&'#"

"

𝜙&𝑟#& < ∞
In general, there is a range of 𝑟 where the sum 
converges.  This is called the Region of Convergence 
(ROC).

Im

Re
𝑟#

𝑟)

ROC

Though the ROC could instead be outside 𝑟) or inside 𝑟#

And of course if 𝑟 = 1 is within the ROC, then the DFT exists too.
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.
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𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&

𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& − 𝑟𝑆& = 𝑆& 1 − 𝑟

= 1 + 𝑟 + 𝑟0 +⋯+ 𝑟& − 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&

𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& − 𝑟𝑆& = 𝑆& 1 − 𝑟

= 1 + 𝑟 + 𝑟0 +⋯+ 𝑟& − 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& 1 − 𝑟 = 1 − 𝑟&).
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&

𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& − 𝑟𝑆& = 𝑆& 1 − 𝑟

= 1 + 𝑟 + 𝑟0 +⋯+ 𝑟& − 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& 1 − 𝑟 = 1 − 𝑟&).

𝑆& =
1 − 𝑟&).

1 − 𝑟
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&

𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& − 𝑟𝑆& = 𝑆& 1 − 𝑟

= 1 + 𝑟 + 𝑟0 +⋯+ 𝑟& − 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& 1 − 𝑟 = 1 − 𝑟&).

𝑆& =
1 − 𝑟&).

1 − 𝑟
For −1 < 𝑟 < 1 lim

&→"
𝑆& =

1 − 0
1 − 𝑟 =

1
1 − 𝑟
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We’ll use a geometric series as an example of finding a Z transform. Let 𝑆& be a 
series unrelated to 𝑠 = 𝜎 + 𝑖𝜔.

𝑆& = 2
/'!

&

𝑟/ = 1 + 𝑟 + 𝑟0 +⋯+ 𝑟&

𝑟𝑆& = 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& − 𝑟𝑆& = 𝑆& 1 − 𝑟

= 1 + 𝑟 + 𝑟0 +⋯+ 𝑟& − 𝑟 + 𝑟0 + 𝑟1 +⋯+ 𝑟&).

𝑆& 1 − 𝑟 = 1 − 𝑟&).

𝑆& =
1 − 𝑟&).

1 − 𝑟
For −1 < 𝑟 < 1 lim

&→"
𝑆& =

1 − 0
1 − 𝑟 =

1
1 − 𝑟

If 𝑟 = 𝑐𝑧#. 𝑆&→" =
1

1 − 𝑐𝑧
=

𝑧
𝑧 − 𝑐
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐



43
Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1



44
Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

How many zeros and 
where are they?
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

1 zero @ z=0
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

1 zero @ z=0
How many poles and where 
are they?
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

x

1 zero @ z=0
1 pole @ z=1
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

x

1 zero @ z=0
1 pole @ z=1

Where is the ROC?
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Now let 𝑥& = Q𝑐

&, 𝑛 ≥ 0
0, 𝑛 < 0

𝑍 𝑥& = 2
&'!

"

𝑐&𝑧#& = 2
&'!

"
𝑐
𝑧

&
A geometric series where 𝑟 =

𝑐
𝑧

∴ 𝑋 𝑧 =
1

1 − 𝑐𝑧#. =
𝑧

𝑧 − 𝑐

From before, 𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑐𝑧
𝑟 < 1

𝑐
𝑧 < 1, 𝑧 > 𝑐

If 𝑐 = 1, then 𝑥& is a step function and 𝑋 𝑧 = 𝑍 𝐻& =
𝑧

𝑧 − 1

x

1 zero @ z=0
1 pole @ z=1

ROC outside circle that 
intersects pole
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Recall the Z transform 𝑧 = 𝑒$ 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&



51

Recall the Z transform 𝑧 = 𝑒$ 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&

Let 𝑥& =
1
2

&
ℎ& + −

1
3

&
ℎ&

Examples from Discrete-Time Signal Processing, Alan Oppenheim and Ronald 
Schaffer, Prentice Hall, 1989.

where ℎ& is a step function. 
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Recall the Z transform 𝑧 = 𝑒$ 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&

Let 𝑥& =
1
2

&
ℎ& + −

1
3

&
ℎ&

Examples from Discrete-Time Signal Processing, Alan Oppenheim and Ronald 
Schaffer, Prentice Hall, 1989.

where ℎ& is a step function. 

𝑋 𝑧 = 2
&'#"

"
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑧#&
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Recall the Z transform 𝑧 = 𝑒3 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&

Let 𝑥& =
1
2

&
ℎ& + −

1
3

&
ℎ&

Examples from Discrete-Time Signal Processing, Alan Oppenheim and Ronald 
Schaffer, Prentice Hall, 1989.

where ℎ& is a step function. 

𝑋 𝑧 = 2
&'#"

"
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑧#& = 2
&'!

"
1
2

&

𝑧#& +2
&'!

"

−
1
3

&

𝑧#&
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Recall the Z transform 𝑧 = 𝑒3 𝑋 𝑧 = 𝑍 𝑥& = 2
&'#"

"

𝑥&𝑧#&

Let 𝑥& =
1
2

&
ℎ& + −

1
3

&
ℎ&

Examples from Discrete-Time Signal Processing, Alan Oppenheim and Ronald 
Schaffer, Prentice Hall, 1989.

where ℎ& is a step function. 

𝑋 𝑧 = 2
&'#"

"
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑧#& = 2
&'!

"
1
2

&

𝑧#& +2
&'!

"

−
1
3

&

𝑧#&

= 2
&'!

"
1
2 𝑧

#.
&

+2
&'!

"

−
1
3 𝑧

#.
&
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Recall lim
&→"

𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑟 𝑟 < 1

𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ&
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Recall lim
&→"

𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑟 𝑟 < 1

𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ&

𝑋 𝑧 = 2
&'!

"
1
2
𝑧#.

&
+2

&'!

"

−
1
3
𝑧#.

&
=

1

1 − 12 𝑧
#.
+

1

1 − −13 𝑧
#.
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Recall lim
&→"

𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑟 𝑟 < 1

𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ&

𝑋 𝑧 = 2
&'!

"
1
2
𝑧#.

&
+2

&'!

"

−
1
3
𝑧#.

&
=

1

1 − 12 𝑧
#.
+

1

1 − −13 𝑧
#.

=
𝑧

𝑧 − 12
+

𝑧

𝑧 + 13
=
𝑧 𝑧 + 13 + 𝑧 𝑧 − 12

𝑧 − 12 𝑧 + 13
=

2𝑧 𝑧 − 1
12

𝑧 − 12 𝑧 + 13
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Recall lim
&→"

𝑆& = 2
/'!

&

𝑟/ =
1

1 − 𝑟 𝑟 < 1

𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ&

𝑋 𝑧 = 2
&'!

"
1
2
𝑧#.

&
+2

&'!

"

−
1
3
𝑧#.

&
=

1

1 − 12 𝑧
#.
+

1

1 − −13 𝑧
#.

=
𝑧

𝑧 − 12
+

𝑧

𝑧 + 13
=
𝑧 𝑧 + 13 + 𝑧 𝑧 − 12

𝑧 − 12 𝑧 + 13
=

2𝑧 𝑧 − 1
12

𝑧 − 12 𝑧 + 13

1
2 𝑧

#. < 1, −
1
3 𝑧

#. < 1 𝑧 >
1
2 , 𝑧 >

1
3
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

How many zeros?
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

2 zeros
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

2 zeros

How many poles?
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

x x

2 zeros

2 poles
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

x x

2 zeros

2 poles

Where’s the ROC?
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𝑥& =
1
2

&

ℎ& + −
1
3

&

ℎ& 𝑋(𝑧) =
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

𝑧 >
1
2 , 𝑧 >

1
3

x x

2 zeros

2 poles

ROC 𝑧 > .
0
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Now let 𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

ℎ&

ℎ#&#.

𝑛 = 0
𝑛 = −1

ℎ& is again a step function.
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Now let 𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

ℎ&

ℎ#&#.

𝑛 = 0
𝑛 = −1

ℎ& is again a step function.

𝑋 𝑧 = 2
&'#"

"

−
1
3

&

ℎ&𝑧#& + 2
&'#"

"
1
2

&

ℎ#&#.𝑧#&
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Now let 𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

ℎ&

ℎ#&#.

𝑛 = 0
𝑛 = −1

ℎ& is again a step function.

𝑋 𝑧 = 2
&'#"

"

−
1
3

&

ℎ&𝑧#& + 2
&'#"

"
1
2

&

ℎ#&#.𝑧#&

= 2
&'!

"

−
1
3 𝑧

#.
&
+ 2

&'#"

!
1
2 𝑧

#.
&
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Now let 𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

ℎ&

ℎ#&#.

𝑛 = 0
𝑛 = −1

ℎ& is again a step function.

𝑋 𝑧 = 2
&'#"

"

−
1
3

&

ℎ&𝑧#& + 2
&'#"

"
1
2

&

ℎ#&#.𝑧#&

= 2
&'!

"

−
1
3 𝑧

#.
&
+ 2

&'#"

!
1
2 𝑧

#.
& We can sum from −∞ to 0 

instead of -1 because summing 
to 0 just adds 0 in this case.
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We saw the geometric series with a positive exponent,

𝑆& = 2
&'!

"

𝑟/ =
1

1 − 𝑟 , 𝑟 < 1, 𝑛 → ∞
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We saw the geometric series with a positive exponent,

𝑆& = 2
&'!

"

𝑟/ =
1

1 − 𝑟 , 𝑟 < 1, 𝑛 → ∞
It works for a negative 
exponent too.

𝑆& = 2
&'#"

!

𝑟/ =
1

1 − 𝑟 , 𝑟 > 1, 𝑛 → −∞
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We saw the geometric series with a positive exponent,

𝑆& = 2
&'!

"

𝑟/ =
1

1 − 𝑟 , 𝑟 < 1, 𝑛 → ∞
It works for a negative 
exponent too.

𝑆& = 2
&'#"

!

𝑟/ =
1

1 − 𝑟 , 𝑟 > 1, 𝑛 → −∞

∴ 𝑋 𝑧 =
1

1 − −13 𝑧
#.

+
1

1 − 1
2 𝑧

#.

𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

−
1
3
𝑧#. < 1

1
2
𝑧#. > 1
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We saw the geometric series with a positive exponent,

𝑆& = 2
&'!

"

𝑟/ =
1

1 − 𝑟 , 𝑟 < 1, 𝑛 → ∞
It works for a negative 
exponent too.

𝑆& = 2
&'#"

!

𝑟/ =
1

1 − 𝑟 , 𝑟 > 1, 𝑛 → −∞

∴ 𝑋 𝑧 =
1

1 − −13 𝑧
#.

+
1

1 − 1
2 𝑧

#.

𝑥& = −
1
3

&

ℎ& +
1
2

&

ℎ#&#.

−
1
3
𝑧#. < 1

1
2
𝑧#. > 1

=
2𝑧 𝑧 − 1

12
𝑧 − 12 𝑧 + 13

−
1
3 < 𝑧 <

1
2
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𝑥& = −
1
3

&
ℎ& +

1
2

&
ℎ#&#. 𝑋(𝑧) =

2𝑧 𝑧 − 1
12

𝑧 − 12 𝑧 + 13

−
1
3 < 𝑧 <

1
2

x x

2 zeros

2 poles

ROC − .
1
< 𝑧 < .

0
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𝑥& = −
1
3

&
ℎ& +

1
2

&
ℎ#&#. 𝑋(𝑧) =

2𝑧 𝑧 − 1
12

𝑧 − 12 𝑧 + 13

−
1
3 < 𝑧 <

1
2

x x

2 zeros

2 poles

ROC − .
1
< 𝑧 < .

0

We have a different 𝑥& with the same 𝑋(𝑧) but with a different ROC. That tells 
us that 𝑋(𝑧) alone may be non-unique unless we include the ROC.
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Source: slidesharecdn.com
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Source: chegg.com
(though this table is 
reproduced in multiple texts 
and websites)

u is the unit step function


