Z - Transforms

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 5

Recall,
$$\Phi(s) = L[\phi(t)] = \int_0^\infty \phi(t)e^{-st}dt$$

Recall,
$$\Phi(s) = L[\phi(t)] = \int_0^\infty \phi(t)e^{-st}dt$$

Now let $z = e^s$ & $t \to n$ (discrete)

Recall,
$$\Phi(s) = L[\phi(t)] = \int_0^\infty \phi(t)e^{-st}dt$$

Now let $z = e^s$ & $t \to n$ (discrete) then, $z^{-n} = e^{-sn}$ similar to e^{-st}

Recall,
$$\Phi(s) = L[\phi(t)] = \int_0^\infty \phi(t)e^{-st}dt$$

Now let $z = e^s$ & $t \to n$ (discrete) then, $z^{-n} = e^{-sn}$ similar to e^{-st}

We can then define,
$$X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$$

Recall,
$$\Phi(s) = L[\phi(t)] = \int_0^\infty \phi(t)e^{-st}dt$$

Now let $z = e^s$ & $t \to n$ (discrete) then, $z^{-n} = e^{-sn}$ similar to e^{-st}

We can then define,
$$X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$$

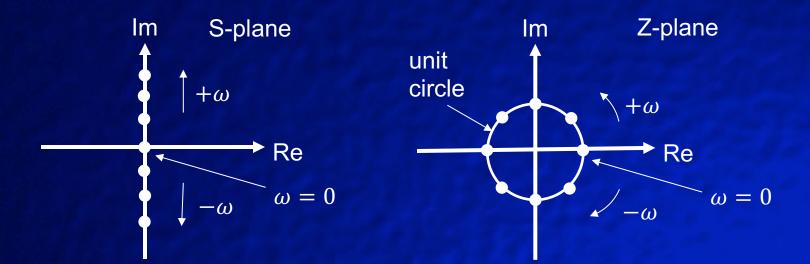
This is the Z transform, the discrete analog of the Laplace transform.

As with the FT, some versions of the ZT may be one-sided $n = (0, \infty)$ and some conventions may use +n instead of -n in the exponent.

Note that $z = e^s = e^{\sigma + i\omega} = e^{\sigma}e^{i\omega} = e^{\sigma}[\cos(\omega) + i\sin(\omega)]$ amp. phase

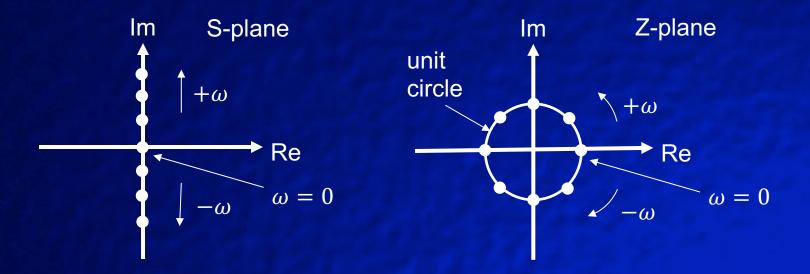
Note that $z = e^{s} = e^{\sigma+i\omega} = e^{\sigma}e^{i\omega} = \frac{e^{\sigma}[\cos(\omega) + i\sin(\omega)]}{amp}$.

If $\sigma = 0$, amplitude = 1 which tells us the FT lies on the z-plane unit circle.



Note that $z = e^{s} = e^{\sigma + i\omega} = e^{\sigma}e^{i\omega} = e^{\sigma}[\cos(\omega) + i\sin(\omega)]$ amp. phase

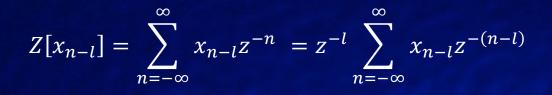
If $\sigma = 0$, amplitude = 1 which tells us the FT lies on the z-plane unit circle.



 ω in the z-plane is, in practice, the ω in the FT normalized to a circle $(0,2\pi)$ or $(-\pi,\pi)$. Some authors thus use Ω instead of ω to distinguish the two. It is normalized by the sample rate so that one revolution around the circle in the z-plane represents the periodicity we saw in the DFT.

 $Z[x_{n-l}] = \sum_{n=-\infty}^{\infty} x_{n-l} z^{-n}$

 ∞ $Z[x_{n-l}] = \sum_{n=-\infty}^{\infty} x_{n-l} z^{-n} = z^{-l} \sum_{n=-\infty}^{\infty} x_{n-l} z^{-(n-l)}$



 $= z^{-l} \sum_{m=-\infty}^{\infty} x_m z^{-m}$

$$Z[x_{n-l}] = \sum_{n=-\infty}^{\infty} x_{n-l} z^{-n} = z^{-l} \sum_{n=-\infty}^{\infty} x_{n-l} z^{-(n-l)}$$

$$= z^{-l} \sum_{m=-\infty}^{\infty} x_m z^{-m} = z^{-l} X(z)$$

shift"

$$Z[x_{n-l}] = \sum_{n=-\infty}^{\infty} x_{n-l} z^{-n} = z^{-l} \sum_{n=-\infty}^{\infty} x_{n-l} z^{-(n-l)}$$

$$= z^{-l} \sum_{m=-\infty}^{\infty} x_m z^{-m} = z^{-l} X(z)$$

The inverse Z transform is found using the residue theorem or tables.

$$x_n = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$$

Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$

Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$

$$=\sum_{k=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x_{k}y_{n-k}z^{-n}$$

Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$

$$=\sum_{k=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x_{k}y_{n-k}z^{-n} = \sum_{k=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x_{k}y_{n-k}z^{-k}z^{-(n-k)}$$

Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

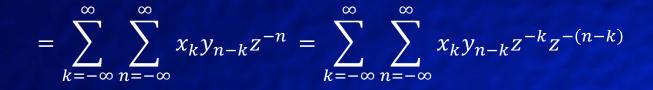
$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$

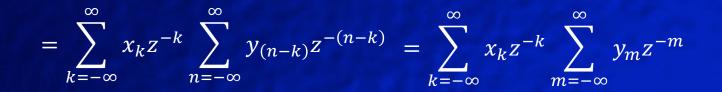
$$=\sum_{k=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x_{k}y_{n-k}z^{-n} = \sum_{k=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}x_{k}y_{n-k}z^{-k}z^{-(n-k)}$$



Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

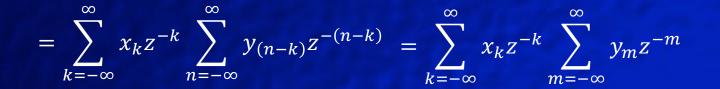
$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$





Let
$$w_n = x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k}$$

$$W(z) = \sum_{n=-\infty}^{\infty} w_n z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x_k y_{n-k} z^{-n}$$



= X(z)Y(z)

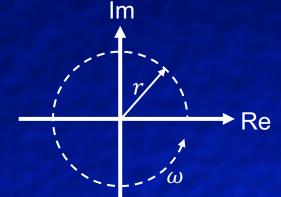
Convolution

Multiplication

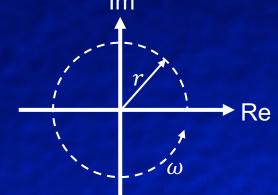
$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n}$$

$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n} = \sum_{n=-\infty}^{\infty} \phi_n (re^{i\omega})^{-n} \qquad r = e^{\sigma}$$

$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n} = \sum_{n=-\infty}^{\infty} \phi_n (re^{i\omega})^{-n} \qquad r = e^{\sigma}$$
$$= \sum_{n=-\infty}^{\infty} \phi_n r^{-n} e^{-i\omega n}$$



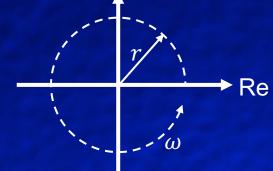
$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n} = \sum_{n=-\infty}^{\infty} \phi_n (re^{i\omega})^{-n} \qquad r = e^{\sigma}$$
$$= \sum_{n=-\infty}^{\infty} \phi_n r^{-n} e^{-i\omega n}$$



Where does $\Phi(z)$ exist?

That is, where is $|\Phi(z)| < \infty$?

$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n} = \sum_{n=-\infty}^{\infty} \phi_n (re^{i\omega})^{-n} \qquad r = e^{\sigma}$$
$$= \sum_{n=-\infty}^{\infty} \phi_n r^{-n} e^{-i\omega n}$$



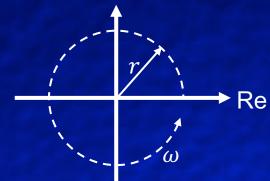
Where does $\Phi(z)$ exist?

That is, where is $|\Phi(z)| < \infty$?

 $e^{-i\omega n}$ is always $< \infty$ so we require

$$\sum_{n=-\infty}^{\infty} |\phi_n r^{-n}| < \infty$$

$$\Phi(z) = Z[\phi_n] = \sum_{n=-\infty}^{\infty} \phi_n z^{-n} = \sum_{n=-\infty}^{\infty} \phi_n (re^{i\omega})^{-n} \qquad r = e^{\sigma}$$
$$= \sum_{n=-\infty}^{\infty} \phi_n r^{-n} e^{-i\omega n}$$



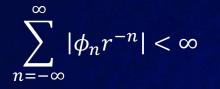
Where does $\Phi(z)$ exist?

That is, where is $|\Phi(z)| < \infty$?

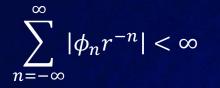
 $e^{-i\omega n}$ is always $< \infty$ so we require

$$\sum_{n=-\infty}^{\infty} |\phi_n r^{-n}| < \infty$$

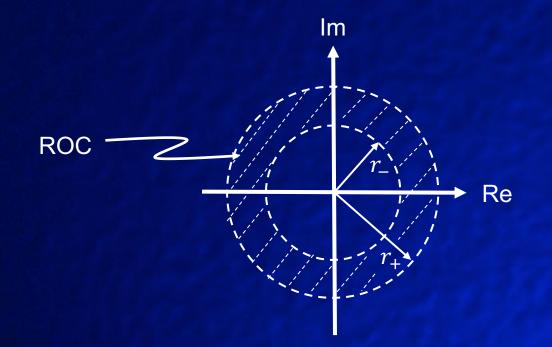
Depending on ϕ_n this is not true for any *r*.



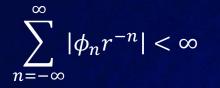
In general, there is a range of r where the sum converges. This is called the Region of Convergence (ROC).



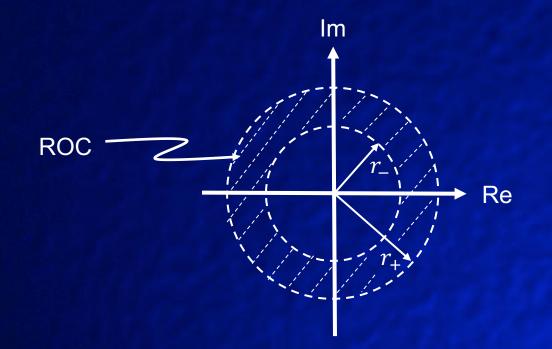
In general, there is a range of r where the sum converges. This is called the Region of Convergence (ROC).



Though the ROC could instead be outside r_+ or inside r_-



In general, there is a range of r where the sum converges. This is called the Region of Convergence (ROC).



Though the ROC could instead be outside r_+ or inside r_-

And of course if r = 1 is within the ROC, then the DFT exists too.

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

 $S_n - rS_n = S_n(1 - r)$

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

 $S_n - rS_n = S_n(1 - r)$ = (1 + r + r² + ... + rⁿ) - (r + r² + r³ + ... + rⁿ⁺¹)

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

 $S_n - rS_n = S_n(1 - r)$ = (1 + r + r² + ... + rⁿ) - (r + r² + r³ + ... + rⁿ⁺¹)

 $S_n(1-r) = 1 - r^{n+1}$

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

$$S_n - rS_n = S_n(1 - r)$$

= $(1 + r + r^2 + \dots + r^n) - (r + r^2 + r^3 + \dots + r^{n+1})$

$$S_n(1-r) = 1 - r^{n+1}$$

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$

We'll use a geometric series as an example of finding a Z transform. Let S_n be a series unrelated to $s = \sigma + i\omega$.

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

 $S_n - rS_n = S_n(1 - r)$ = $(1 + r + r^2 + \dots + r^n) - (r + r^2 + r^3 + \dots + r^{n+1})$

$$S_n(1-r) = 1 - r^{n+1}$$

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$
 For $-1 < r < 1$ $\lim_{n \to \infty} S_n = \frac{1 - 0}{1 - r} = \frac{1}{1 - r}$

We'll use a geometric series as an example of finding a Z transform. Let S_n be a series unrelated to $s = \sigma + i\omega$.

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

 $S_n - rS_n = S_n(1 - r)$ = (1 + r + r² + ... + rⁿ) - (r + r² + r³ + ... + rⁿ⁺¹)

$$S_n(1-r) = 1 - r^{n+1}$$

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$
 For $-1 < r < 1$ $\lim_{n \to \infty} S_n = \frac{1 - 0}{1 - r} = \frac{1}{1 - r}$

If
$$r = cz^{-1}$$
 $S_{n \to \infty} = \frac{1}{1 - \frac{c}{z}} = \frac{z}{z - c}$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < \frac{1}{1 - \frac{c}{z}}$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{Z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{Z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^{n} r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$

How many zeros and where are they?

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$ 1 zero @ z=0

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

1 zero @ z=0

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

A geometric series where $r = \frac{c}{z}$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$

How many poles and where are they?

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$ 1 zero @ z=01 pole @ z=1

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$ 1 zero @ z=01 pole @ z=1Where is the ROC?

Now let
$$x_n = \begin{cases} c^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$Z[x_n] = \sum_{n=0}^{\infty} c^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{c}{z}\right)^n$$

From before,
$$S_n = \sum_{k=0}^n r^k = \frac{1}{1 - \frac{c}{z}}$$
 $|r| < 1$

$$\therefore X(z) = \frac{1}{1 - cz^{-1}} = \frac{z}{z - c} \qquad \left|\frac{c}{z}\right| < 1, \qquad |z| > |c|$$

If c = 1, then x_n is a step function and $X(z) = Z[H_n] = \frac{z}{z-1}$

1 zero @ z=0 1 pole @ z=1 ROC outside circle that intersects pole

Recall the Z transform $z = e^s$ $X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

Recall the Z transform
$$z = e^s$$
 $X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

Let
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

where h_n is a step function.

Recall the Z transform
$$z = e^s$$
 $X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

Let
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

where h_n is a step function.

$$X(z) = \sum_{n=-\infty}^{\infty} \left[\left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \right] z^{-n}$$

Recall the Z transform
$$z = e^{z}$$
 $X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

Let
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

where h_n is a step function.

 \sim

$$X(z) = \sum_{n=-\infty}^{\infty} \left[\left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \right] z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} + \sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n z^{-n}$$

Recall the Z transform
$$z = e^{z}$$
 $X(z) = Z[x_n] = \sum_{n=-\infty}^{\infty} x_n z^{-n}$

Let
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

where h_n is a step function.

 \sim

$$X(z) = \sum_{n=-\infty}^{\infty} \left[\left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \right] z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} + \sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n z^{-n}$$

$$=\sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n + \sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n$$

Recall
$$\lim_{n \to \infty} S_n = \sum_{k=0}^n r^k = \frac{1}{1-r}$$
 $|r| < 2$

$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

Recall
$$\lim_{n \to \infty} S_n = \sum_{k=0}^n r^k = \frac{1}{1-r}$$
 $|r| < 1$

$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n + \sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - \left(-\frac{1}{3}z^{-1}\right)}$$

Recall
$$\lim_{n \to \infty} S_n = \sum_{k=0}^n r^k = \frac{1}{1-r}$$
 $|r| < 1$

$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n + \sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - \left(-\frac{1}{3}z^{-1}\right)}$$

$$=\frac{z}{z-\frac{1}{2}}+\frac{z}{z+\frac{1}{3}}=\frac{z\left(z+\frac{1}{3}\right)+z\left(z-\frac{1}{2}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)}=\frac{2z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)}$$

Recall
$$\lim_{n \to \infty} S_n = \sum_{k=0}^n r^k = \frac{1}{1-r}$$
 $|r| < 2$

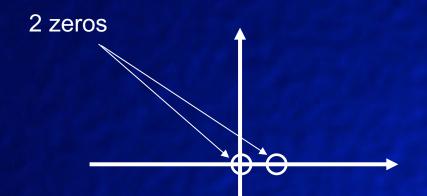
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n + \sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - \left(-\frac{1}{3}z^{-1}\right)}$$
$$= \frac{z}{z - \frac{1}{2}} + \frac{z}{z + \frac{1}{3}} = \frac{z\left(z + \frac{1}{3}\right) + z\left(z - \frac{1}{2}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)}$$
$$\left|\frac{1}{2}z^{-1}\right| < 1, \left|-\frac{1}{3}z^{-1}\right| < 1 \quad \longrightarrow \quad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$

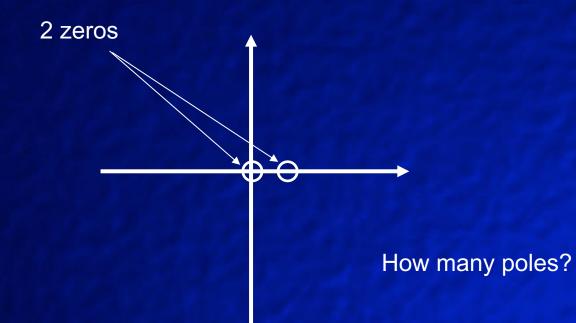
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$

How many zeros?

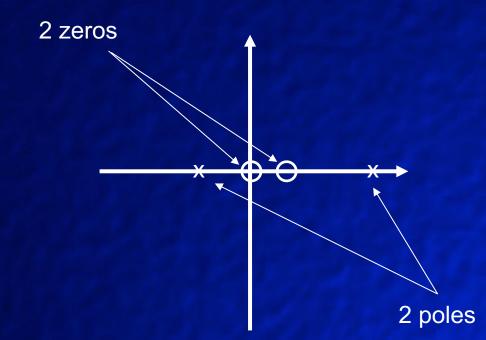
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$



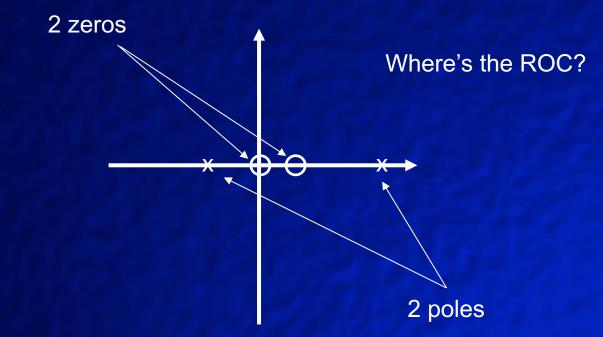
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$



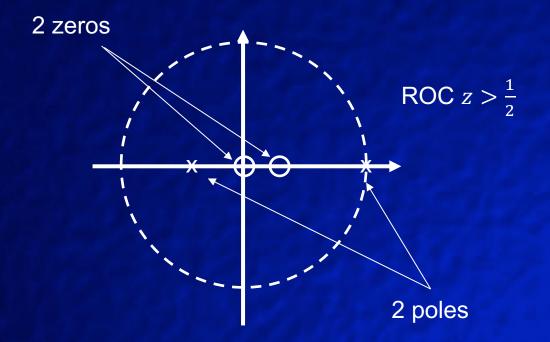
$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$



$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$

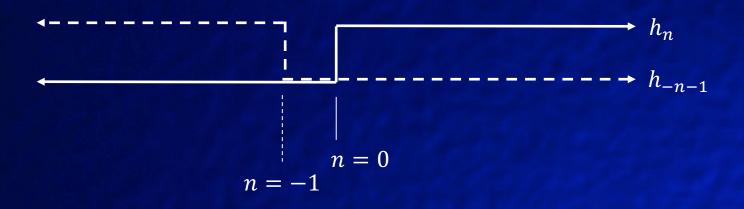


$$x_n = \left(\frac{1}{2}\right)^n h_n + \left(-\frac{1}{3}\right)^n h_n \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad |z| > \frac{1}{2}, |z| > \frac{1}{3}$$



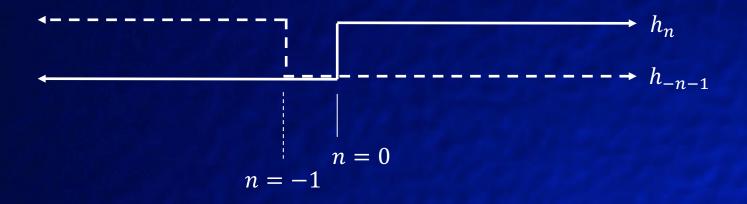
Now let
$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1}$$
 h_n is again a step function.

Now let
$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1}$$
 h_n is again a step function.



$$X(z) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{3}\right)^n h_n z^{-n} + \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n h_{-n-1} z^{-n}$$

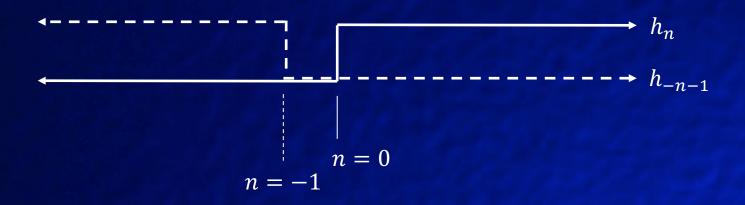
Now let
$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1}$$
 h_n is again a step function.



$$X(z) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{3}\right)^n h_n z^{-n} + \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n h_{-n-1} z^{-n}$$

$$=\sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n + \sum_{n=-\infty}^{0} \left(\frac{1}{2}z^{-1}\right)^n$$

Now let
$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1}$$
 h_n is again a step function.



$$X(z) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{3}\right)^n h_n z^{-n} + \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n h_{-n-1} z^{-n}$$

$$=\sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n + \sum_{n=-\infty}^{0} \left(\frac{1}{2}z^{-1}\right)^n$$

We can sum from $-\infty$ to 0 instead of -1 because summing to 0 just adds 0 in this case.

$$S_n = \sum_{n=0}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| < 1, n \to \infty$$

$$S_n = \sum_{n=0}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| < 1, n \to \infty$$

C

It works for a negative exponent too.

$$S_n = \sum_{n=-\infty}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| > 1, n \to -\infty$$

$$S_n = \sum_{n=0}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| < 1, n \to \infty$$

It works for a negative exponent too.

$$S_n = \sum_{n=-\infty}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| > 1, n \to -\infty$$

$$|r|>1, n
ightarrow -\infty$$

$$x_{n} = \left(-\frac{1}{3}\right)^{n} h_{n} + \left(\frac{1}{2}\right)^{n} h_{-n-1}$$

$$\therefore X(z) = \frac{1}{1 - \left(-\frac{1}{3}z^{-1}\right)} + \frac{1}{1 - \left(\frac{1}{2}z^{-1}\right)} \qquad \left|-\frac{1}{3}z^{-1}\right| < 1 \qquad \left|\frac{1}{2}z^{-1}\right| > 1$$

$$S_n = \sum_{n=0}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| < 1, n \to \infty$$

It works for a negative exponent too.

$$S_n = \sum_{n=-\infty}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| > 1, n \to -\infty$$

→ 1,
$$n \rightarrow -\infty$$

$$x_{n} = \left(-\frac{1}{3}\right)^{n} h_{n} + \left(\frac{1}{2}\right)^{n} h_{-n-1}$$

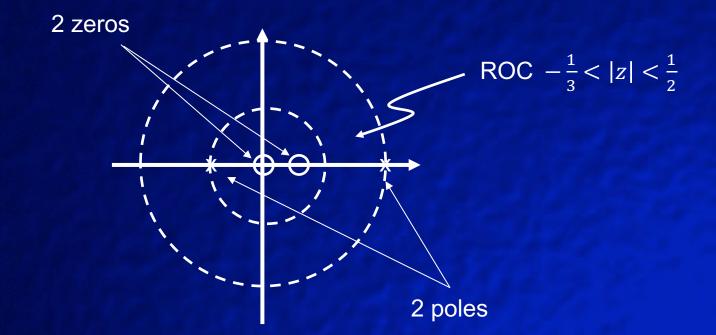
$$\therefore X(z) = \frac{1}{1 - \left(-\frac{1}{3}z^{-1}\right)} + \frac{1}{1 - \left(\frac{1}{2}z^{-1}\right)} \qquad \left|-\frac{1}{3}z^{-1}\right| < 1 \qquad \left|\frac{1}{2}z^{-1}\right| > 1$$
$$= \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad -\frac{1}{3} < |z| < \frac{1}{2}$$
THE UNIVERSITY OF MEMORIAL

72

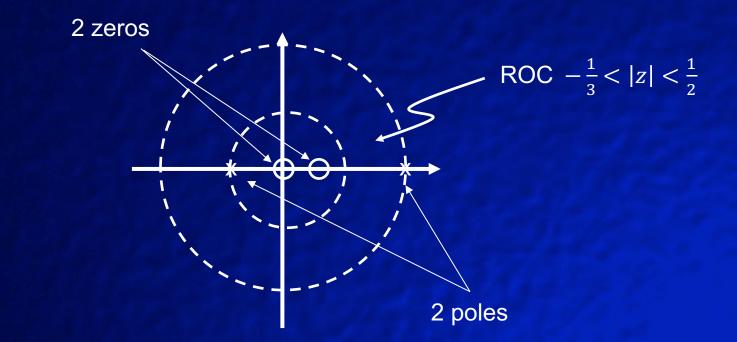
Center for Earthquake Research

and Information

$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1} \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad -\frac{1}{3} < |z| < \frac{1}{2}$$



$$x_n = \left(-\frac{1}{3}\right)^n h_n + \left(\frac{1}{2}\right)^n h_{-n-1} \qquad X(z) = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)} \qquad -\frac{1}{3} < |z| < \frac{1}{2}$$



We have a different x_n with the same X(z) but with a different ROC. That tells us that X(z) alone may be non-unique unless we include the ROC.

5.3.2 – Properties of ROC

- A ring or disk in the z-plane centered at the origin.
- The Fourier Transform of x(n) is converge absolutely iff the *ROC includes the unit circle*.
- The ROC cannot include any poles
- *Finite Duration Sequences:* The ROC is the entire z-plane except possibly z=0 or $z=\infty$.
- Right sided sequences (causal seq.): The ROC extends outward from the outermost finite pole in X(z) to $z=\infty$.
- Left sided sequences: The ROC extends inward from the innermost nonzero pole in X(z) to z=0.
- *Two-sided sequence: The ROC is a ring bounded by two circles passing through two pole with no poles inside the ring*

Source: slidesharecdn.com

TABLE 10.2SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. δ[<i>n</i>]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. δ[<i>n</i> – <i>m</i>]	<i>z</i> ^{-<i>m</i>}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	z > lpha
6. $-\alpha^{n}u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin\omega_0]z^{-1}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n]u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

Source: chegg.com (though this table is reproduced in multiple texts and websites)

u is the unit step function

