Laplace Transforms

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 5.
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The Laplace Transform is a linear integral transform useful for solving systems of
differential equations.
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The Laplace Transform is a linear integral transform useful for solving systems of
differential equations.

s = o + iw = complex frequency w = 2nf = angular frequency
o) = LB = | poede
0]

Convergence can be an issue depending on ¢(t).

We will use the one-sided Laplace Transform. Some fields use the two sided

Laplace Transform which poses more convergence issues.
MEMPHIS




If s =i2nf, o =0

Llg(0)] = jo b(t)e~Stde = j H(O)(0)e 2 de
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If s =i2nf, o =0

Llg(0)] = jo b(t)e~Stde = j H(O)(0)e 2 de

=F[H(t)p(t)] — TheFTifgp(t)=0fort <0

They have similar properties,
Lla(t) + b(t)] = Lla(®)] + L[b(¢)]

Lla(®)b(t)] = L[a(t)] * L[b(t)]
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If s =i2nf, o =0

Llg(0)] = jo b(t)e~Stde = j H(O)(0)e 2 de

=F[H(t)p(t)] — TheFTifgp(t)=0fort <0

They have similar properties,
Lla(t) + b(t)] = Lla(®)] + L[b(¢)]
Lla(®)b(t)] = L[a(t)] * L[b(¢)]

Lla(t) * b(t)] = A(s)B(s)
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o(s) = Llp(1)] = jo " p(De=tde L [%w)] E j - [%qb(t)] e—stdt
0

MEMPHIS



12
b(s) = L{p(D)] = jo "ot L [%qs(t)] d j - [%qb(t)] e-st s
0

b
b b
Recall integration by parts, J f'(x)gx)dx = f(x)g(x)/ —J f(x)g' (x)dx

a
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b(s) = L{p(D)] = jo "ot L [%qs(t)] d j - [%qb(t)] e-st s
0

b
b b
Recall integration by parts, J f'(x)gx)dx = f(x)g(x)/ —J f(x)g' (x)dx

a

[} [aroco]eae= "’(t)e_“(]o‘ [ s@sear
0
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b(s) = L{p(D)] = jo "ot L [%qs(t)] d j - [%qb(t)] e-st s
0

b
b b
Recall integration by parts, J f'(x)gx)dx = f(x)g(x)/ —J f(x)g' (x)dx

a

[} [aroco]eae= "’(t)e_“(]o‘ [ s@sear
0

= p(o)e* — p(0)e? + sJood)(t)e"Stdt
0
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b(s) = L{p(D)] = jo "ot L [%qs(t)] d j - [%qb(t)] e-st s
0

b
b b
Recall integration by parts, J f'(x)gx)dx = f(x)g(x)/ —J f(x)g' (x)dx

a

[} [aroco]eae= "5(”8_“70‘ [ s@sear
0

= p(o)e* — p(0)e? + SJood)(t)e"Stdt
0

If we assume ¢ () < o =0—¢(0) + sd(s)
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b(s) = L{p(D)] = jo "ot L [%qs(t)] d j - [%qb(t)] e-st s
0

b
b b
Recall integration by parts, J f'(x)gx)dx = f(x)g(x)/ —J f(x)g' (x)dx

a

[} [aroco]eae= "5(”8_“70‘ [ s@sear
0

= p(o)e* — p(0)e? + SJood)(t)e"Stdt
0

If we assume ¢ () < o =0—¢(0) + sd(s)

d
L[ 6®)] = sLip@)] - )
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)

L[$(®)] = sL[p(®)] — ¢(0) = s{sL[p(t)] — $(0)} — ¢(0)
= s2L[¢()] — s¢(0) — ¢(0)

Ll@®)] = sL[d®)] — $(0) = s{s2L[p(t)] — s$(0) — $(0)} — $(0)

MEMPHIS



23
Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)

L[$(®)] = sL[p(®)] — ¢(0) = s{sL[p(t)] — $(0)} — ¢(0)
= s2L[¢()] — s¢(0) — ¢(0)

Ll@®)] = sL[d®)] — $(0) = s{s2L[p(t)] — s$(0) — $(0)} — $(0)

= s3L[$(6)] — 52¢(0) — s¢$(0) — ¢(0)

time derivative

Lp™ ()] = s"d(s) — ) s"pU=D(0)
2,
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)

L[$(®)] = sL[p(®)] — ¢(0) = s{sL[p(t)] — $(0)} — ¢(0)
= s2L[¢()] — s¢(0) — ¢(0)

Ll@®)] = sL[d®)] — $(0) = s{s2L[p(t)] — s$(0) — $(0)} — $(0)

= s3L[$(6)] — 52¢(0) — s¢$(0) — ¢(0)

» time derivative

L) = s70(s) = smigU~ <O/
=1

Assume ¢(0) = $(0) = ¢(0) = - = p™ D (0) =0
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Switching to dot notation... Ll¢@®)] = sLp®)] — ¢(0)

L[$(®)] = sL[p(®)] — ¢(0) = s{sL[p(t)] — $(0)} — ¢(0)
= s2L[¢()] — s¢(0) — ¢(0)

Ll@®)] = sL[d®)] — $(0) = s{s2L[p(t)] — s$(0) — $(0)} — $(0)

= s3L[p()] — s2p(0) — s$(0) — $(0)

» tlme derivative

o= Zenits LN

Assume ¢(0) = ¢(0) = $(0) = - = ¢ (0) = 0 Llp™ ()] = s™d(s)
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Now recall our generic differential equation,

dny dn—ly dn—Zy dly
anﬁ+an1dn1+an2dnz+ +a1F+a0y
d™x d™tx GLLA dlx
= D ® qem ST 1W + by_» dim-2 g S blﬁ + box
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Now recall our generic differential equation,

dny dn—ly dn—Zy dly
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Now recall our generic differential equation,

dny dn—ly dn—Zy dly
anﬁ+an1dn1+an2dnz+ +a1F+a0y
d™x d™tx GLLA dlx
= D ® qem ST 1W + by_» dim-2 g S blﬁ + box

Laplace transform both sides to find,

(a,s" +a,_1s" 1+ +a;s+ay)Y(s) = (bys™+ byy_1s™ L+ -+ bys + by )X(s)

UORE Z}”Ob-sf

X(S) e Oaksk
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Now recall our generic differential equation,

dny dn—ly dn—Zy dly
anﬁ+an1dn1+an2dnz+ +a1F+a0y
d™x d™tx GLLA dlx
= D ® qem ST 1W + by_» dim-2 g S blﬁ + box

Laplace transform both sides to find,

(a,s" +a,_1s" 1+ +a;s+ay)Y(s) = (bys™+ byy_1s™ L+ -+ bys + by )X(s)

Y(s) Z}-” objs’ The transfer function of our system of
X(s) = ) n_ sk ) equations in terms of poles and zeros
located on the s-plane
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S=0+4+ iw

2

The s-plane

>
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(0.0)
& |
Let ¢(t) —ai| CD(S) — J e_Stdt — _Ee_St/
0]
0
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e = i) — Jwe-stdt : __e_st/
0]

MEMPHIS



34
o0 1 e
Let ¢(t) —l CD(S) = J e Stdt = —Ee_St/ -
0]
0

co (0'0)

Now let ¢(t) = e~ d(s) =j e e Stdt :j e~(@+s)tqgy
0 0
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o0 1 e
Let ¢(t) —l CD(S) = J e Stdt = —Ee_St/ -
0]
0

co (0'0)

Now let ¢(t) = e~ d(s) =j e e Stdt :j e~(@+s)tqgy
0 0

2
Fots g
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Let p(6) = 1 cb(s>=j°°e-stdt:-le—st/ -0-(-3)-1
0

(00} oo

Now let ¢(t) = e~ d(s) =j e e Stdt :j e~(@+s)tqgy
0 0

1
Fots g

Forward transforms are relatively easy. Not so the inverse.
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y+ico

For t > 0, the inverse Laplace transform is ¢(6) = L7 [®()] =5~ | ®(s)e™ds
y—ico
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y+ico

For t > 0, the inverse Laplace transform is ¢(6) = L7 [®()] =5~ | ®(s)e™ds
y—ico

Where y is chosen to be sufficiently large such that the integral converges, — to the
right of all of the poles.
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y+ico

For t > 0, the inverse Laplace transform is ¢(6) = L7 [®()] =5~ | ®(s)e™ds
y—ico

Where y is chosen to be sufficiently large such that the integral converges, — to the
right of all of the poles.

Im(s)

A This is the line integral from

y—iwtoy +iw

)

I

I
ly
: » Re(s)
|

I

I

|

\ 4
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Line Integrals (e.g. see Mary Boas, Mathematical Methods in the Physical Sciences
(page 257ff, in my ancient edition).

After Boas, Figure 8.1

Work done on an object by a force F which undergoes an infinitesimal
displacement d7 is

[l
T
Q.
=30,

dWw
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Suppose an object moves along the path from Ato B and F varies along the path.
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Suppose an object moves along the path from Ato B and F varies along the path.

Then along curve, there is only 1 independent variable that is a function of
position in the 3-d space.

dt = dx% + dyy + dzz
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Suppose an object moves along the path from Ato B and F varies along the path.

Then along curve, there is only 1 independent variable that is a function of
position in the 3-d space.

dt = dx® + dy9 + dz?

The integral of dW then becomes and ordinary integral of 1 variable, r, along the

line from A to B. This is the line integral.
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(0,0)

After Boas Figure 8.2

Line integral example.

44
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After Boas Figure 8.2
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Line integral example.

Let F = xy2 —y%9 A= (0,0),B = (2,1)
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Line integral example.

Let F = xy2 —y%9 A= (0,0),B = (2,1)

r=xXx+yy dr = dxx + dyy
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After Boas Figure 8.2

Ly

Line integral example.

Let F = xy2 —y%9 A= (0,0),B = (2,1)

r=xXx+yy dr = dxx + dyy

TN

- d7 = xydx — y?dy
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i] After Boas Figure 8.2 Line integral example.
Let F = xyx — y29y A=(00),B =(21)
(2,1)
T=RE _'; L
el 2 § 7= x2+yP d7 = dx% + dy9
(0,0) | | -
F . d7 = xydx — y?dy
B B . . ,
W = f ol = j xydx — y2dy If the path from A to B is a straight line
4 4 (recall y = mx + b)
1 dy = L d
Y o e
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After Boas Figure 8.2
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Line integral example.

Let F = xy2 —y%9 A= (0,0),B = (2,1)

r=xXx+yy dr = dxx + dyy

TN

- d7 = xydx — y?dy

If the path from A to B is a straight line
(recall y = mx + b)

d —1d
Ve
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i] After Boas Figure 8.2 Line integral example.
Let F = xy2 —y%9 A= (0,0),B = (2,1)
(2,1)

TS _'; ®

| i - A A - A ~
L | r=xX+yjy dr = dxX + dyy

© O). | | > X
F-d? = xydx — y2dy

W = fB e = jBxydx — y2dy If the path from A to B is a straight line
4 4 (recall y = mx + b)




> <

After Boas Figure 8.2

Al
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Line integral example.

Let F = xy2 —y%9 A= (0,0),B = (2,1)

r=xX+yy dr = dxX + dyy

TN

- d7 = xydx — y?dy

If the path from A to B is a straight line
(recall y = mx + b)

d —1d
Ve

We could have just as easily
set x = 2y and integrated over

y from O to 1.
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Now let’s find the work needed to move the
object from A to B along the L-shaped path.

52
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Now let’s find the work needed to move the
object from A to B along the L-shaped path.

That requires to integrals. First keeping x = 0
along the vertical path from (0,0) to (0,1). Then,
keeping y=1, horizontally from (0,1) to (2,1).
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>

Now let’s find the work needed to move the
object from A to B along the L-shaped path.

(2,1) That requires to integrals. First keeping x =0
along the vertical path from (0,0) to (0,1). Then,
keeping y=1, horizontally from (0,1) to (2,1).

2

1
e = j (xydx — y*dy) + j (xydx — y*dy)
y=0 x=0
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>

Now let’s find the work needed to move the
object from A to B along the L-shaped path.

(2,1) That requires to integrals. First keeping x =0
along the vertical path from (0,0) to (0,1). Then,
keeping y=1, horizontally from (0,1) to (2,1).

1 0 2 1 1 0
e — jyzo(f(;q& — y2dy) + Lzo(x/fdx _iz(%,)
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>

Now let’s find the work needed to move the
object from A to B along the L-shaped path.

(2,1) That requires to integrals. First keeping x =0
: along the vertical path from (0,0) to (0,1). Then,
keeping y=1, horizontally from (0,1) to (2,1).

@W

0

= Jy: (;yq& y4dy) +jx (x/fdx )

1 2
=f —yzdy+j xdx
0 0
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>

Now let’s find the work needed to move the
object from A to B along the L-shaped path.

(2,1) That requires to integrals. First keeping x =0
——— A e - @
: along the vertical path from (0,0) to (0,1). Then,
Il | | - keeping y=1, horizontally from (0,1) to (2,1).
(0,0) S F AN
1 0 2 1 1 0
W = j (]g/cg& — y2dy) + j (x/fdx _iz‘?j’)
y=0 x=0
2 1
1 2 x2 y3
= —yzdy+j xdx =— ——/
[ [t
0 0
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Now let’s find the work needed to move the
object from A to B along the L-shaped path.

along the vertical path from (0,0) to (0,1). Then,
keeping y=1, horizontally from (0,1) to (2,1).

al N oo (21) That requires to integrals. First keeping x = 0
!
|
R e
1 0 2fg—— 1 0
"o j (f(;/c;& —y?dy) + j (X/;dx —/72(%')
y=0 x=0
2 1
1 2 x2 y3 5
= —y2 = — B —r
fo ydy+J0xdx 2/ 3/ 3¢1
0 0

The work done in this case depends on the path.
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Im(s)
A
Yy + i
t
|
|
|
|
|
|
|
'y
|
; > Re(s)
|
|
|
|
|
|
|
|
|
 }
y — loo

1
¢(t) = L7D(s)] = 5=

2Tl

y+ico

y—ioo

d(s)estds

59
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Im(s)
4 1 y+ico
Y + ioo ¢(t) = L7 (s)] = el d(s)es‘ds
il A
I
|
: If the integral of ®(s)eSt over the
, semicircular arc is 0, then we can replace
: the line integral with a contour integral.
1
Y
: > Re(s)
|
[
|
I
1
1
|
I
\&
Yy = oo
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Im(s)
4 1 Y+ico

Yy + i ¢(t) = L7 (s)] = i | d(s)es‘ds
y—ico

3

If the integral of ®(s)eSt over the
semicircular arc is 0, then we can replace
the line integral with a contour integral.

> Re(s) 1
Ay st
P(t) = Zm,%cb(s)e ds
And we can take advantage of the residue
theorem from complex analysis.
\&
Yy = oo
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We use contour integration because if a function f(z) contains a finite number
of poles, and if the closed contour contains all of those poles, then the contour
integration can be replaced by the sum of the residues of the poles.
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We use contour integration because if a function f(z) contains a finite number
of poles, and if the closed contour contains all of those poles, then the contour
integration can be replaced by the sum of the residues of the poles.

# poles

jgf(z)dz = 2mi Z residue(a)

a=0
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We use contour integration because if a function f(z) contains a finite number
of poles, and if the closed contour contains all of those poles, then the contour
integration can be replaced by the sum of the residues of the poles.

# poles
jg f(z)dz = 2mi Z residue(a)
a=0
1 dm—l
Where residue(a) = lim (z—a)™f(2)

(m —1)!zoadzm1

as z approaches the pole

MEMPHIS



65

We use contour integration because if a function f(z) contains a finite number
of poles, and if the closed contour contains all of those poles, then the contour
integration can be replaced by the sum of the residues of the poles.

# poles
jg f(z)dz = 2mi Z residue(a)
a=0
1 dm—l
Where residue(a) = lim (z—a)™f(2)

(m —1)!zoadzm1

as z approaches the pole

The residue of the pole with order m where the location of the pole is a z = a.
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We use contour integration because if a function f(z) contains a finite number
of poles, and if the closed contour contains all of those poles, then the contour
integration can be replaced by the sum of the residues of the poles.

# poles
jg f(z)dz = 2mi Z residue(a)
a=0
1 dm—l
Where residue(a) = lim (z—a)™f(2)

(m —1)!zoadzm1

as z approaches the pole

The residue of the pole with order m where the location of the pole is a z = a.

Any contour that surrounds the same set of poles has the same value for the
contour integral. And we can then use the residue theorem to help solve L™2.
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s)
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s) ——==®(s) =
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s) ——==®(s) =

®(s) is the transfer function for the system described by our differential equation.
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s) ——==®(s) =

®(s) is the transfer function for the system described by our differential equation.

It has one pole at s = — %
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s) ——==®(s) =

®(s) is the transfer function for the system described by our differential equation.

It has one pole at s = —%. Ifwelety =0
(1) =[S
P S o T
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For example, let x(t) = 2y'(t) + y(t) Llx] = L[2y + y]

X(s)=(2s+1)Y(s) ——==®(s) =

®(s) is the transfer function for the system described by our differential equation.

It has one pole atsz—%. Ifwelety =0
Im
- |
- S, = ——
1 i 1 g //p £
;) & L LEF
P) = i R T i
\ I
\\\:

contour path
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We need to prove that the line integral over
the semi-circular arc containing the pole, s,,, is
0. We can then replace the line integral from
— {oo to ico with the contour integral and that

can be found with sum of the residues of
d(s)est.

contour path
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We need to prove that the line integral over
the semi-circular arc containing the pole, s,,, is
0. We can then replace the line integral from
— {oo to ico with the contour integral and that

can be found with sum of the residues of
d(s)est.

contour path

Let s = re'? and take the limit as r — oo. ds = rie?de
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We need to prove that the line integral over
the semi-circular arc containing the pole, s,,, is
0. We can then replace the line integral from
— {oo to ico with the contour integral and that

can be found with sum of the residues of
d(s)est.

contour path

Let s = re'? and take the limit as r — oo. ds = rie?de

The line integral over the semi-circular arc is then,

3m/2 1 7% _
limj 7 elre )t(rielede)
T ) 1+ 2ret
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31/2 1 . _ 3rt/2 rei@
lim f 5 elre )t(rie‘HdH) - f lim —{ erte’ dg
Bl 1 et il el aE
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31/2 1 : _ 3rt/2 I rei@ |
limf ” elre e)t(rie‘HdH) =f limi el ete” dg
Bl 1 et A R TR g

plf etf 1
Observe that, }L‘E‘o 1+ 2rel9 " 1!1—>r£lo 3

= i0
r+2€
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31/2 1 : _ 3rt/2 I rei@ |
lim f _ (e e)t(rie‘HdH) — f limi el ete” dg
row J, 1+ 2ret? nj2 Tl + 2rett

/ Phase term of amplitude 1.
oi0

li = il =———— = =
Observe that, r1_>r£10 1+ 2re‘9 7‘1—>oo 1 + 2610 2
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31/2 1 . _ 3rt/2 rei@ I %

lim f 5 e(re )t(rie‘HdH) - f lim = deTte do

roo ), 14 2re! o e U 2T |
== =

ret? el
Observe that, 1M 1+ 2rel® LT

= i0
r+2€

1
2

Recall, s = rel? = eglotio)
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31/2 1 . _ 3rt/2 rei@ I %
lim f 5 e(re )t(rie‘HdH) - f lim = deTte do
roo ), 14 2re! o e U 2T |

ret® etf 1
lim o = I
Observe that, 557 1 27eif HOOF Wois B2

; : . 6 ) ‘ .
Recall, s = re!? = e@+19) gp that, lim e = lim 5 = lim e(+@)t

T —C0 T — 00 T — 00
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31/2 1 . _ 3rt/2 rei@ I %
lim f 5 e(re )t(rie‘HdH) - f lim = deTte do
roo ), 14 2re! o e U 2T |

ret® etf 1
lim o = I
Observe that, 557 1 27eif HOOF Wois B2

; : . 6 ) ‘ .
Recall, s = re!? = e@+19) gp that, lim e = lim 5 = lim e(+@)t

T —C0 T — 00 T — 00

="]im e2lele"
T—00 == =—

\

amp Phase
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31/2 1 . _ 3rt/2 rei@ I %
lim f 5 e(re )t(rie‘HdH) - f lim = deTte do
roo ), 14 2re! o e U 2T |

rei@ ei@

Observe that, lim - L 2reif lim

= i0
r+2€

1
2

; : . 6 ) ‘ .
Recall, s = re!? = e@+19) gp that, lim e = lim 5 = lim e(+@)t

T —C0 T — 00 T — 00

lim eateiwt
F=>E0 — ——

\

amp Phase

3 : - o ¥
For§<9 <7n,a<0 s~ lim e%te' QU= alO )

T — 00
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31/2 1 : _ 3rt/2 rei@ 1]
limf _(re e)t(rie‘HdH) =f limi jerte’ .d9

ol 1+ 2ret? /2 r-eq1 4 2retdn I

/ Phase term of amplitude 1.
oi0

Observe that, }Lr?o 1+ 2re‘9 " 1ll—>r£10 1

= jF e p

; : . 6 ) ‘ .
Recall, s = re!? = e@+19) gp that, lim e = lim 5 = lim e(+@)t

T —C0 T — 00 T — 00

lim eateiwt
F=>E0 — ——

\

amp Phase

3 : o ¥
For% <0< 7“,0 <0 - lim e%el®t = g=®plt — (

T — 00
1/2
31/2 . re/
Finally, L A m e L i
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31/2 1 : _ 3rt/2 rei@ 1]
limf _(re e)t(rie‘HdH) =f limi jerte’ .d9

ol 1+ 2ret? /2 r-eq1 4 2retdn I

/ Phase term of amplitude 1.
oi0

Observe that, }Lr?o 1+ 2re‘9 " 1ll—>r£10 1

= jF e p

; : . 6 ) ‘ .
Recall, s = re!? = e@+19) gp that, lim e = lim 5 = lim e(+@)t

T —C0 T — 00 T — 00

lim eateiwt
F=>E0 — ——

\

amp Phase

3 : o ¥
For% <0< 7“,0 <0 - lim e%el®t = g=®plt — (

T — 00
[ Line integral around the semi-
| f3”/2 e re/ circular arc is 0 so it's okay to use
Finally, R reif contour integration to find L™1.
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = mil_r)rclZ s

(z—a)™f(2)

as z approaches the pole
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = mil_r)rclZ s

(z—a)™f(2)

as z approaches the pole

1 1
Onepoleata=—=,z=s,m=1,and f(z) = —e"t.
2 1+2s
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

dm—l

(z—a)"f(2)

residue(a) = milrg s

as z approaches the pole

A S el g S

One pole at a = 2,z—s,m—1,andf(z)—1+ZSe :
- ( 1) 1 / d° ( 4_1>1 W
FOMENT 2/ T @ s o S T
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = milrg s

(z—a)™f(2)

as z approaches the pole

A S el L AT

One pole at a = 2,z—s,m—1,andf(z)—1+25e :

5 1 1 / d° N
o ”e<_2) @)L e ﬁ(”i) Tt e

= sont N D) PR
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = milrg s

(z—a)™f(2)

as z approaches the pole

By X9 . = SR
One pole at a = 2,z—s,m—1,andf(z)—1+25e :
5 1 1 1 d° N
“”l”e(_z) (1—])gﬁmb2£§<s+i>:1+253 O
1 1 1
= lim (S+—) est = lim —eSt s+1: st 1
s—-1/, 2/ 1+ 2s s—»-1/,2 2 2
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = milrg s

(z—a)™f(2)

as z approaches the pole

By X9 . = SR
One pole at a = 2,z—s,m—1,andf(z)—1+25e :
5 1 1 / d° N
o ”e<_2) @)L e ﬁ(”i) Tt e
1 1 1
= lim (S+—) est = lim —eSt s+1:25+1
s—-1/, 2/ 15°E92s s—»-1/,2 2 2
_1 %
T2 MEMPHIS
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Because we can use contour integration to find the inverse Laplace transform, and
because our contour contains all the poles (just one in our case), then we can use
the residue theorem to find the sum of the residues at the poles.

1 dm—l
residue(a) = milrg s

(z—a)™f(2)

as z approaches the pole

By X9 . = SR
One pole at a = 2,z—s,m—1,andf(z)—1+25e :
5 1 1 / d° N
o ”e<_2) @)L e ﬁ(”i) Tt e
1 1 1
= lim (S+—) est = lim —eSt s+1:25+1
s—-1/, 2/ 1+ 2s s—»-1/,2 2 2
1
:le_ft

28 2 S iEEe MEMPHIS
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Whew! Inverse Laplace Transforms can be difficult to determine analytically.

It is therefore common to use tables.

http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/Laplace Table.pdf

MEMPHIS
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.

Think of what might happen to a spinning top after throwing a lump of putty (or firing
a spitball) when it sticks to the top.
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.

Think of what might happen to a spinning top after throwing a lump of putty (or firing
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it's previous spin access due
to the change in mass distribution.
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.

Think of what might happen to a spinning top after throwing a lump of putty (or firing
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it's previous spin access due
to the change in mass distribution.

Changes in earth mass distribution are a result of earthquakes, oceanic and
atmospheric pressure cells, glaciation, etc.
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.

Think of what might happen to a spinning top after throwing a lump of putty (or firing
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it's previous spin access due
to the change in mass distribution.

Changes in earth mass distribution are a result of earthquakes, oceanic and
atmospheric pressure cells, glaciation, etc.

Gross, 2000 (GRL 27, p. 2329-2332) estimates about 2/3 of the effect is due to

oceanic pressure cells (similar to atmospheric cells).
MEMPHIS




100

The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in
mass distribution.

Think of what might happen to a spinning top after throwing a lump of putty (or firing
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it's previous spin access due
to the change in mass distribution.

Changes in earth mass distribution are a result of earthquakes, oceanic and
atmospheric pressure cells, glaciation, etc.

Gross, 2000 (GRL 27, p. 2329-2332) estimates about 2/3 of the effect is due to
oceanic pressure cells (similar to atmospheric cells).

One arcsecond is about 27m. The 2004 Sumatra earthquake caused the rotation pole

to move about 2.5 cm.
MEMPHIS




[IERS/EN/Science/EarthRotation/PolarMotion.html

Polhody over 2001-2006 and mean pole since 1900
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https://www.iers.org/IERS/EN/Science/EarthRotation/PolarMotion.html
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Angular momentum, L = ¥Xp

> |

)
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Angular momentum, L = ¥Xp

> |

> )

)

If we change 7, then to conserve angular momentum, L, the momentum of
the rotating mass, p = mv, must also change.
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Angular momentum, L = ¥Xp

> T~

> )

)

If we change 7, then to conserve angular momentum, L, the momentum of
the rotating mass, p = mv, must also change.

Consider a spinning figure skater. If she pulls in her arms closer to her body, she
spins faster because she changed her mass distribution (reduced 7 for the mass of
her hands and arms). This makes her spin faster to conserve angular momentum
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For a rotating rigid body, angular momentum L = 1@ where [ is rotational inertia (the
mass distribution) and w is angular frequency (e.g. rotations per time).
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For a rotating rigid body, angular momentum L = 1@ where [ is rotational inertia (the
mass distribution) and w is angular frequency (e.g. rotations per time).

= Zm-r-z
ri "1
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For a rotating rigid body, angular momentum L = 1@ where [ is rotational inertia (the
mass distribution) and w is angular frequency (e.g. rotations per time).

= Zm-r-z
ri "1

Changes in I = changes in w with nutation depending on the distribution of the

changes in I.
MEMPHIS
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3
"B

Temporary Axis of Rotation

(previous moment of intertia) After Aster and

....... Borchers Figure
......... / YO 5.10

M

O
‘e,
[
Yy

> Re (1)

"Principal Axis of Rotation
(moment of inertia)
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3
"B

Temporary Axis of Rotation

(previous moment of intertia) After Aster and

....... Borchers Figure
......... / YO 5.10

M

O
‘e,
[
Yy

> Re (1)

"Principal Axis of Rotation
(moment of inertia)

The equilibrium state is at (0,0), the principal axis of rotation.
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3
"B

Temporary Axis of Rotation

(previous moment of intertia) After Aster and

....... Borchers Figure
......... / y(®) 5.10

M

O
‘e,
[
Yy

> Re (1)

"Principal Axis of Rotation
(moment of inertia)

The equilibrium state is at (0,0), the principal axis of rotation.

If we change I, the moment of inertia, with some mass movement then the new
principal axis of rotation becomes separated from the previous axis by x.
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3
"B

Temporary Axis of Rotation

(previous moment of intertia) After Aster and

Borchers Figure
y(t) 5.10

..
-
-
-~
L4
.
.
.
L4
.
.
‘e
.

M

O
‘e,
[
Yy

> Re (1)

"Principal Axis of Rotation
(moment of inertia)

The equilibrium state is at (0,0), the principal axis of rotation.

If we change I, the moment of inertia, with some mass movement then the new
principal axis of rotation becomes separated from the previous axis by x.

The system will then nutate (or wobble) about the new principal axis of rotation
and the nutation will decay as y(t), until the temporary axis and principal axis are

aligned.
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We can think of x as the input and y as the output, then ¢ is the impulse response of
the system.
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We can think of x as the input and y as the output, then ¢ is the impulse response of
the system.

Then for any given change in I, we can convolve x with ¢, to find the expected
nutation (or Chandler Wobble), y.
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We can think of x as the input and y as the output, then ¢ is the impulse response of
the system.

Then for any given change in I, we can convolve x with ¢, to find the expected
nutation (or Chandler Wobble), y.

The governing differential equations for such a system are (Aster and Borchers 5.35
and 5.306):
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We can think of x as the input and y as the output, then ¢ is the impulse response of
the system.

Then for any given change in I, we can convolve x with ¢, to find the expected
nutation (or Chandler Wobble), y.

The governing differential equations for such a system are (Aster and Borchers 5.35
and 5.306):

Where coordinate 2 is the imaginary axis and 1 is the real axis on the previous figure.
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We can think of x as the input and y as the output, then ¢ is the impulse response of
the system.

Then for any given change in I, we can convolve x with ¢, to find the expected
nutation (or Chandler Wobble), y.

The governing differential equations for such a system are (Aster and Borchers 5.35
and 5.306):
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C = polar moment of inertia
A = equatorial moment of inertia

(1 = spin rate

117
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C = polar moment of inertia

C—-A
W Q A = equatorial moment of inertia
() = spin rate
For and ideal rigid body earth, Q = 305 days Note this is the spin rate

The observed rate is, 0 = 430 days Chigenticton
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C = polar moment of inertia

W, = TQ A = equatorial moment of inertia
(1 = spin rate
For and ideal rigid body earth, Q = 305 days Note this is the spin rate

The observed rate is, Q = 430 days Chigenticton

For convenience, we can combine our two axis system (1,2) of equations into a
system of complex equations by setting,

X =xq +1ix, y=vy; +1y,
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V2
xl—__+ 1
a)C
V1
x2:_+ 2
a)C

=—(y; —y2) +ty1 tiy;
a)C

121
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2 e g
xl——y—2+ t x—x1+lx2—( wc+y1>+ (wc+y2)
a)C
. “ A o
x2=%+y2 G 1T Y2l T T y=Y1 1ty
Cc

A p 1Y A
=——@q—f)+y=——@y+wﬂ+y
l W
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a)C
; 1
S T B W 7 .
x2=%+y2 wc(lY1 y2) +y1 + iy, y =y + 1y,
Cc

A p 1Y A
=——@q—f)+y=——@y+wﬂ+y
l W
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' y =y + iy,
+ lyz
72) + V1
2 = i(i)'ﬁ — ¥2)
. i . : (V1 +iy) +y
L T , h)+y:ZZ
X = W, : L(yl 1 T
a)C
a)C
—y(0)
/] =sLly] —y
Recall, L[y] = s
LA
Lix] =L o
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- i el Ja A
xl——y—2+ t x—x1+lx2—( wc+y1>+ (wc+y2)
Wc
. “A s sl |
x2=&+y2 G 1T Y2l T T y=Y1 1ty
a)C
B 5’2) L b o
=—|(y =) +y =— (@ +iyy) +
a%:(yl ) Cuc(yl Uy )ty
£
_wc-|—y
iy .
nbd &), . + y] Recall, L[y] = sL[y] — y(0)
c

X(s) = LSY(S) —y(0) + Y(s)

c
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- i el Ja A
xl——y—2+ t x—x1+lx2—( wc+y1>+ (wc+y2)
Wc
. “A s sl |
x2=&+y2 G 1T Y2l T T y=Y1 1ty
a)C
B 5’2) L b o
=—|(y =) +y =— (@ +iyy) +
wc(yl ) wc(yl Uy )ty
£
_wc-|—y
iy .
nbd &), . + y] Recall, L[y] = sL[y] — y(0)
c

Assume 0

X(s) = wisY(S) - y/O) +Y(s)=Y(s) (wL + 1)

c
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- V2 (V1
; b= () ri(Te,)
xl__w_2_|_ 3 X =X 11X w, Y1 o, Y2
(o
; 1= gl ; : .
x2=&+y2 :w_c(lY1_J’2)+J’1+WZ y =y + iy,
a)C
L /. 5’2) L o ) 4
=—|y—=)+y =— @ +iyy) +
a%:(yl ) Cuc(yl iy,) +y
&1
= 2 -|—y
Ly .
nbd &), . + y] Recall, L[y] = sL[y] — y(0)
(o
Assume 0
i LS w,. + 1S
X(s) =—sY(s) — y/O) +Y(s)=Y(s) (— L 1) = Y(S)( & )
Wc W¢ ap
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: V2 ) .(5’1 )
= == +i(—+
xl__i’)_z_l_ t x=x1+ix, ( wc+y1 . Vo
(o
; 1 (s APt
— — L e ;
x2=&+y2 o, LY Yo =raha il y =y, +iy,
a)C
L o Y Iy &
=—(y1—f2)+y=—(y1+lyz)+y
W, I W,
&1
_wc-|—y
Ly .
nbd &), w—+y] Recall, L[y] = sL[y] — y(0)
(o
Assume 0
i IS w. + IS
X(s) = -s¥(s) y/ )+ =v6) (- +1) = 1@ (<
Y(S):q)(s): W,
() Dol MEMPHIS
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- V2 ) .(5’1 )
= = — +il—+
xl__i’)_z_l_ t x=x1+ix, ( wc+y1 . Vo
(o
: 1 (i3 Wil e
— — l - i
X, =&+y2 o, LY Yo =raha il y =y, +iy,
a)C
L o Y iy .
=—(y1——.2)+y =— O tiy) +y
W, l W,
&1
_wc-|—y
Ly .
nbd &), w—+y] Recall, L[y] = sL[y] — y(0)
(o
Assume 0
[ IS w. + IS
X(s) = Y () y/ ) +¥(s)= V(o) (E AT RO
Y
ﬁ:CIJ(S) = wc, How many poles?
&) g MEMPHIS
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@z d(s) = We

= : Set s, =0, w,=—is,, Sy, =1lw
X(s) we + IS O ¢ PEXE i
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Y(s)
X(s)

Wc

d(s) =

= . Setw, +is, =0, w.=—is,, Sp = 1w
a)c+lS c D ) (o} D p

One pole at s, = +ia, Is there a problem with this transfer function?
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Y(s)
X(s)

Wc

d(s) =

= . Setw, +is, =0, w.=—is,, Sp = 1w
a)c_l_lS C 1% H C D 1%

. . s
One pole at s, = +ia, Is there a problem with this transfer function”

On which half of the s-plane is it located?
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Aster Pole Zero Notes.

S-plane (more on complex

o frequency later).

®—>

\/\/'

Stable 2-pole system ® ®
s S Unstabls 2-pole system

\ @ ® O—o //> o J\/\

- /
Stable 2-pole system \ J Unstable 2-pole system
(non-oscillating) o @ (non-oscillating)

\i : —

MEMPHIS

2-pole oscillator
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http://www.ceri.memphis.edu/people/mwithers/CERI7106/aster/GEOP505/Docs/pandz.pdf
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Y(s)
X(s)

Wc

d(s) =

= . Setw, +is, =0, w.=—is,, Sp = 1w
a)c_l_lS C 1% H C D 1%

. . s
One pole at s, = +iaw, Is there a problem with this transfer function”

On which half of the s-plane is it located?

Does not decay.
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O
X(s)

Wc

d(s) =

= . Setw, +is, =0, w.=—is,, Sp = 1w
we + is 8 Sl e 28

. . s
One pole at s, = +iaw, Is there a problem with this transfer function”

On which half of the s-plane is it located?

Does not decay.

27T(1+ i) 7T(2+'1)
r¥p. : - . w, = — — L =
Dissipation is theorized to be @ T 20T Q.

Q. = Quality factor (bells have high Q) T, = characteristic period !/
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140) W,

o S s

. . s
One pole at s, = +iaw, Is there a problem with this transfer function”

On which half of the s-plane is it located?

Does not decay.

BT (1 4 i ) T (2 - 1 )
Dissipation is theorized to be @®c 20, T, Q.

Q. = Quality factor (bells have high Q) T, = characteristic period !/

I | Ty il
Now Sp = lw, = (2 + l—> —(21 = —)
Qc
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Y(s) We

o S s

. . s
One pole at s, = +iaw, Is there a problem with this transfer function”

On which half of the s-plane is it located?

Does not decay.

BT (1 4 i ) T (2 - 1 )
Dissipation is theorized to be @®c 20, T, Q.

Q. = Quality factor (bells have high Q) T, = characteristic period !/

N m<2+ 1) n(z, 1)
oW Sp = lw, = &= e
£ i QC TC QC

Re(s,) < 0,Im(s,) >0 === Decay, stable.
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,

d(t) = L7 Hd(s)] = ' f il eStds

2w ) s —iw,
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,

¢(t) = LHD(s)] = .1 j£ _ic.oc estds

2w ) s —iw,

—lw
:L‘ll — ] —iw,L™ [

S — lw, S la)J
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,

¢(t) = LHD(s)] = .1 j£ _ic.oc estds

2w ) s —iw,
—lw
= |75 [ — ] —ilw.L"~ [ ] let a = —iw,
S — lw, s — lw,
ol - —at
= alL [ ] = ae From tables
s+a
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,

¢(t) = LHD(s)] = .1 j£ _ic.oc estds

2w ) s —iw,

—lw
= |75 [ — ] —ilw.L"~ [ ] let a = —iw,

S — lw, s — lw,

ol - —at

= alL = ae From tables

s+a
= ek
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w —lw
d(s) = ‘= — Isolate s to facilitate L1
W, +1Is S— 1w,

¢(t) = LHD(s)] = .1 j£ _ic.oc estds

12w ) s — iw,

—lw
= |75 [ — ] —ilw.L"~ [ ] let a = —iw,

S — lw, s — lw,

ol - —at

= alL = ae From tables

s+a
= —iwe'¥t

This is the impulse response of our system so that for a given input, x, we can

find the predicted output, y(t) = ¢(t) * x(t).
MEMPHIS

Run matlab program chandler.m




So why doesn’t q(t) = —iw.e®<t look more like what we see in the data?

Polhody over 2001-2006 and mean pole since 1300
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So why doesn’t q(t) = —iw.e®<t look more like what we see in the data?

Multiple successive inputs from numerous different sources are superimposed.

Polhody over 2001-2006 and mean pole since 1300
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