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See Aster and Borchers, Time Series Analysis, chapter 5.
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The Laplace Transform is a linear integral transform useful for solving systems of 
differential equations.
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The Laplace Transform is a linear integral transform useful for solving systems of 
differential equations.

𝑠 = 𝜎 + 𝑖𝜔 = complex frequency 𝜔 = 2𝜋𝑓 = angular frequency

Φ 𝑠 = 𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡

Convergence can be an issue depending on 𝜙(𝑡).

We will use the one-sided Laplace Transform.  Some fields use the two sided 
Laplace Transform which poses more convergence issues.
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If 𝑠 = 𝑖2𝜋𝑓, 𝜎 = 0

𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 = 0

#"

"
𝐻 𝑡 𝜙(𝑡)𝑒#&'()%𝑑𝑡
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If 𝑠 = 𝑖2𝜋𝑓, 𝜎 = 0

𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 = 0

#"

"
𝐻 𝑡 𝜙(𝑡)𝑒#&'()%𝑑𝑡

= 𝐹 𝐻 𝑡 𝜙(𝑡) → The FT if 𝜙 𝑡 = 0 for 𝑡 < 0
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If 𝑠 = 𝑖2𝜋𝑓, 𝜎 = 0

𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 = 0

#"

"
𝐻 𝑡 𝜙(𝑡)𝑒#&'()%𝑑𝑡

= 𝐹 𝐻 𝑡 𝜙(𝑡) → The FT if 𝜙 𝑡 = 0 for 𝑡 < 0

They have similar properties,

𝐿 𝑎 𝑡 + 𝑏 𝑡 = 𝐿 𝑎 𝑡 + 𝐿[𝑏 𝑡 ]
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If 𝑠 = 𝑖2𝜋𝑓, 𝜎 = 0

𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 = 0

#"

"
𝐻 𝑡 𝜙(𝑡)𝑒#&'()%𝑑𝑡

= 𝐹 𝐻 𝑡 𝜙(𝑡) → The FT if 𝜙 𝑡 = 0 for 𝑡 < 0

They have similar properties,

𝐿 𝑎 𝑡 + 𝑏 𝑡 = 𝐿 𝑎 𝑡 + 𝐿[𝑏 𝑡 ]

𝐿 𝑎 𝑡 𝑏 𝑡 = 𝐿[𝑎 𝑡 ] ∗ 𝐿[𝑏 𝑡 ]
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If 𝑠 = 𝑖2𝜋𝑓, 𝜎 = 0

𝐿 𝜙(𝑡) = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 = 0

#"

"
𝐻 𝑡 𝜙(𝑡)𝑒#&'()%𝑑𝑡

= 𝐹 𝐻 𝑡 𝜙(𝑡) → The FT if 𝜙 𝑡 = 0 for 𝑡 < 0

They have similar properties,

𝐿 𝑎 𝑡 + 𝑏 𝑡 = 𝐿 𝑎 𝑡 + 𝐿[𝑏 𝑡 ]

𝐿 𝑎 𝑡 𝑏 𝑡 = 𝐿[𝑎 𝑡 ] ∗ 𝐿[𝑏 𝑡 ]

𝐿 𝑎 𝑡 ∗ 𝑏 𝑡 = 𝐴 𝑠 𝐵(𝑠)
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡

Recall integration by parts, 0
*

+
𝑓, 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔(𝑥)

𝑎

𝑏
−0

*

+
𝑓 𝑥 𝑔, 𝑥 𝑑𝑥
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡

Recall integration by parts, 0
*

+
𝑓, 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔(𝑥)

𝑎

𝑏
−0

*

+
𝑓 𝑥 𝑔, 𝑥 𝑑𝑥

0
!

" 𝑑
𝑑𝑡 𝜙(𝑡) 𝑒

#$%𝑑𝑡 = 𝜙(𝑡)𝑒#$%

0

∞
−0

!

"
𝜙(𝑡)(−𝑠)𝑒#$%𝑑𝑡
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!
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𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡

Recall integration by parts, 0
*

+
𝑓, 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔(𝑥)

𝑎

𝑏
−0

*

+
𝑓 𝑥 𝑔, 𝑥 𝑑𝑥

0
!

" 𝑑
𝑑𝑡 𝜙(𝑡) 𝑒

#$%𝑑𝑡 = 𝜙(𝑡)𝑒#$%

0

∞
−0

!

"
𝜙(𝑡)(−𝑠)𝑒#$%𝑑𝑡

= 𝜙 ∞ 𝑒#" − 𝜙 0 𝑒! + 𝑠0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡

Recall integration by parts, 0
*

+
𝑓, 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔(𝑥)

𝑎

𝑏
−0

*

+
𝑓 𝑥 𝑔, 𝑥 𝑑𝑥

0
!

" 𝑑
𝑑𝑡 𝜙(𝑡) 𝑒

#$%𝑑𝑡 = 𝜙(𝑡)𝑒#$%

0

∞
−0

!

"
𝜙(𝑡)(−𝑠)𝑒#$%𝑑𝑡

= 𝜙 ∞ 𝑒#" − 𝜙 0 𝑒! + 𝑠0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡

If we assume 𝜙 ∞ < ∞ = 0 − 𝜙 0 + 𝑠Φ(𝑠)
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Φ 𝑠 = 𝐿 𝜙 𝑡 = 0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡 𝐿

𝑑
𝑑𝑡
𝜙(𝑡) = 0

!

" 𝑑
𝑑𝑡
𝜙(𝑡) 𝑒#$%𝑑𝑡

Recall integration by parts, 0
*

+
𝑓, 𝑥 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔(𝑥)

𝑎

𝑏
−0

*

+
𝑓 𝑥 𝑔, 𝑥 𝑑𝑥

0
!

" 𝑑
𝑑𝑡 𝜙(𝑡) 𝑒

#$%𝑑𝑡 = 𝜙(𝑡)𝑒#$%

0

∞
−0

!

"
𝜙(𝑡)(−𝑠)𝑒#$%𝑑𝑡

= 𝜙 ∞ 𝑒#" − 𝜙 0 𝑒! + 𝑠0
!

"
𝜙(𝑡)𝑒#$%𝑑𝑡

If we assume 𝜙 ∞ < ∞ = 0 − 𝜙 0 + 𝑠Φ(𝑠)

𝐿
𝑑
𝑑𝑡 𝜙(𝑡) = sL 𝜙 𝑡 − 𝜙(0)
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0)
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)

𝐿 H𝜙(𝑡) = 𝑠𝐿 𝜙̈(𝑡) − 𝜙̈(0) = 𝑠 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0) − 𝜙̈(0)



23

Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)

𝐿 H𝜙(𝑡) = 𝑠𝐿 𝜙̈(𝑡) − 𝜙̈(0) = 𝑠 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0) − 𝜙̈(0)

= 𝑠-𝐿 𝜙 𝑡 − 𝑠'𝜙 0 − 𝑠𝜙̇ 0 − 𝜙̈(0)
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)

𝐿 H𝜙(𝑡) = 𝑠𝐿 𝜙̈(𝑡) − 𝜙̈(0) = 𝑠 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0) − 𝜙̈(0)

= 𝑠-𝐿 𝜙 𝑡 − 𝑠'𝜙 0 − 𝑠𝜙̇ 0 − 𝜙̈(0)

𝐿 𝜙 . 𝑡 = 𝑠.Φ 𝑠 −I
/01

.

𝑠.#/𝜙 /#1 (0)

time derivative
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)

𝐿 H𝜙(𝑡) = 𝑠𝐿 𝜙̈(𝑡) − 𝜙̈(0) = 𝑠 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0) − 𝜙̈(0)

= 𝑠-𝐿 𝜙 𝑡 − 𝑠'𝜙 0 − 𝑠𝜙̇ 0 − 𝜙̈(0)

𝐿 𝜙 . 𝑡 = 𝑠.Φ 𝑠 −I
/01

.

𝑠.#/𝜙 /#1 (0)

Assume 𝜙 0 = 𝜙̇ 0 = 𝜙̈ 0 = ⋯ = 𝜙 .#1 0 = 0

time derivative
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Switching to dot notation… 𝐿 𝜙̇(𝑡) = 𝑠𝐿 𝜙 𝑡 − 𝜙(0)

𝐿 𝜙̈(𝑡) = 𝑠𝐿 𝜙̇(𝑡) − 𝜙̇(0) = 𝑠 𝑠𝐿 𝜙 𝑡 − 𝜙(0) − 𝜙̇(0)

= 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0)

𝐿 H𝜙(𝑡) = 𝑠𝐿 𝜙̈(𝑡) − 𝜙̈(0) = 𝑠 𝑠'𝐿 𝜙 𝑡 − 𝑠𝜙 0 − 𝜙̇(0) − 𝜙̈(0)

= 𝑠-𝐿 𝜙 𝑡 − 𝑠'𝜙 0 − 𝑠𝜙̇ 0 − 𝜙̈(0)

𝐿 𝜙 . 𝑡 = 𝑠.Φ 𝑠 −I
/01

.

𝑠.#/𝜙 /#1 (0)

Assume 𝜙 0 = 𝜙̇ 0 = 𝜙̈ 0 = ⋯ = 𝜙 .#1 0 = 0 𝐿 𝜙 . 𝑡 = 𝑠.Φ 𝑠

time derivative
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𝑎.
𝑑.𝑦
𝑑𝑡. + 𝑎.#1

𝑑.#1𝑦
𝑑𝑡.#1 + 𝑎.#'

𝑑.#'𝑦
𝑑𝑡.#' +⋯+ 𝑎1

𝑑1𝑦
𝑑𝑡1 + 𝑎!𝑦

= 𝑏2
𝑑2𝑥
𝑑𝑡2 + 𝑏2#1

𝑑2#1𝑥
𝑑𝑡2#1 + 𝑏2#'

𝑑2#'𝑥
𝑑𝑡2#' +⋯+ 𝑏1

𝑑1𝑥
𝑑𝑡1 + 𝑏!𝑥

Now recall our generic differential equation,



28

𝑎.
𝑑.𝑦
𝑑𝑡. + 𝑎.#1

𝑑.#1𝑦
𝑑𝑡.#1 + 𝑎.#'

𝑑.#'𝑦
𝑑𝑡.#' +⋯+ 𝑎1

𝑑1𝑦
𝑑𝑡1 + 𝑎!𝑦

= 𝑏2
𝑑2𝑥
𝑑𝑡2 + 𝑏2#1

𝑑2#1𝑥
𝑑𝑡2#1 + 𝑏2#'

𝑑2#'𝑥
𝑑𝑡2#' +⋯+ 𝑏1

𝑑1𝑥
𝑑𝑡1 + 𝑏!𝑥

Now recall our generic differential equation,

Laplace transform both sides to find,

𝑎.𝑠. + 𝑎.#1𝑠.#1 +⋯+ 𝑎1𝑠 + 𝑎! 𝑌 𝑠 = 𝑏2𝑠2 + 𝑏2#1𝑠2#1 +⋯+ 𝑏1𝑠 + 𝑏$ 𝑋(𝑠)
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𝑎.
𝑑.𝑦
𝑑𝑡. + 𝑎.#1

𝑑.#1𝑦
𝑑𝑡.#1 + 𝑎.#'

𝑑.#'𝑦
𝑑𝑡.#' +⋯+ 𝑎1

𝑑1𝑦
𝑑𝑡1 + 𝑎!𝑦

= 𝑏2
𝑑2𝑥
𝑑𝑡2 + 𝑏2#1

𝑑2#1𝑥
𝑑𝑡2#1 + 𝑏2#'

𝑑2#'𝑥
𝑑𝑡2#' +⋯+ 𝑏1

𝑑1𝑥
𝑑𝑡1 + 𝑏!𝑥

Now recall our generic differential equation,

Laplace transform both sides to find,

𝑎.𝑠. + 𝑎.#1𝑠.#1 +⋯+ 𝑎1𝑠 + 𝑎! 𝑌 𝑠 = 𝑏2𝑠2 + 𝑏2#1𝑠2#1 +⋯+ 𝑏1𝑠 + 𝑏$ 𝑋(𝑠)

𝑌(𝑠)
𝑋(𝑠) = Φ 𝑠 =

∑/0!2 𝑏/𝑠/

∑30!. 𝑎3𝑠3
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𝑎.
𝑑.𝑦
𝑑𝑡. + 𝑎.#1

𝑑.#1𝑦
𝑑𝑡.#1 + 𝑎.#'

𝑑.#'𝑦
𝑑𝑡.#' +⋯+ 𝑎1

𝑑1𝑦
𝑑𝑡1 + 𝑎!𝑦

= 𝑏2
𝑑2𝑥
𝑑𝑡2 + 𝑏2#1

𝑑2#1𝑥
𝑑𝑡2#1 + 𝑏2#'

𝑑2#'𝑥
𝑑𝑡2#' +⋯+ 𝑏1

𝑑1𝑥
𝑑𝑡1 + 𝑏!𝑥

Now recall our generic differential equation,

Laplace transform both sides to find,

𝑎.𝑠. + 𝑎.#1𝑠.#1 +⋯+ 𝑎1𝑠 + 𝑎! 𝑌 𝑠 = 𝑏2𝑠2 + 𝑏2#1𝑠2#1 +⋯+ 𝑏1𝑠 + 𝑏$ 𝑋(𝑠)

𝑌(𝑠)
𝑋(𝑠) = Φ 𝑠 =

∑/0!2 𝑏/𝑠/

∑30!. 𝑎3𝑠3
The transfer function of our system of 
equations in terms of poles and zeros 
located on the s-plane
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𝜎

𝜔
𝑠 = 𝜎 + 𝑖𝜔

The s-plane

𝑠4

𝑠4
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Let 𝜙 𝑡 = 1 Φ 𝑠 = 0
!

"
𝑒#$%𝑑𝑡 = −

1
𝑠 𝑒

#$%

0

∞
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Let 𝜙 𝑡 = 1 Φ 𝑠 = 0
!

"
𝑒#$%𝑑𝑡 = −

1
𝑠 𝑒

#$%

0

∞
= 0 − −

1
𝑠 =

1
𝑠
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Let 𝜙 𝑡 = 1 Φ 𝑠 = 0
!

"
𝑒#$%𝑑𝑡 = −

1
𝑠 𝑒

#$%

0

∞
= 0 − −

1
𝑠 =

1
𝑠

Now let 𝜙 𝑡 = 𝑒#*% Φ 𝑠 = 0
!

"
𝑒#*%𝑒#$%𝑑𝑡 = 0

!

"
𝑒# *5$ %𝑑𝑡
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Let 𝜙 𝑡 = 1 Φ 𝑠 = 0
!

"
𝑒#$%𝑑𝑡 = −

1
𝑠 𝑒

#$%

0

∞
= 0 − −

1
𝑠 =

1
𝑠

Now let 𝜙 𝑡 = 𝑒#*% Φ 𝑠 = 0
!

"
𝑒#*%𝑒#$%𝑑𝑡 = 0

!

"
𝑒# *5$ %𝑑𝑡

=
1

𝑠 + 𝑎
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Let 𝜙 𝑡 = 1 Φ 𝑠 = 0
!

"
𝑒#$%𝑑𝑡 = −

1
𝑠 𝑒

#$%

0

∞
= 0 − −

1
𝑠 =

1
𝑠

Now let 𝜙 𝑡 = 𝑒#*% Φ 𝑠 = 0
!

"
𝑒#*%𝑒#$%𝑑𝑡 = 0

!

"
𝑒# *5$ %𝑑𝑡

=
1

𝑠 + 𝑎

Forward transforms are relatively easy.  Not so the inverse.
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For 𝑡 > 0, the inverse Laplace transform is 𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠
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For 𝑡 > 0, the inverse Laplace transform is 𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠

Where 𝛾 is chosen to be sufficiently large such that the integral converges,  →  to the 
right of all of the poles.
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For 𝑡 > 0, the inverse Laplace transform is 𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠

Where 𝛾 is chosen to be sufficiently large such that the integral converges,  →  to the 
right of all of the poles.

This is the line integral from 
𝛾 − 𝑖𝜔 to 𝛾 + 𝑖𝜔

γ

𝐼𝑚(𝑠)

𝑅𝑒(𝑠)
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Line Integrals (e.g. see Mary Boas, Mathematical Methods in the Physical Sciences 
(page 257ff, in my ancient edition).

A B

𝑑𝑟

𝐹⃗

Work done on an object by a force 𝐹⃗ which undergoes an infinitesimal 
displacement 𝑑𝑟 is 

𝑑𝑊 = 𝐹⃗ Y 𝑑𝑟

After Boas, Figure 8.1
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A B

𝑑𝑟

𝐹⃗

Suppose an object moves along the path from A to B and 𝐹⃗ varies along the path.
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A B

𝑑𝑟

𝐹⃗

Suppose an object moves along the path from A to B and 𝐹⃗ varies along the path.

Then along curve, there is only 1 independent variable that is a function of 
position in the 3-d space.

𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦 + 𝑑𝑧𝑧̂
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A B

𝑑𝑟

𝐹⃗

Suppose an object moves along the path from A to B and 𝐹⃗ varies along the path.

Then along curve, there is only 1 independent variable that is a function of 
position in the 3-d space.

𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦 + 𝑑𝑧𝑧̂

The integral of 𝑑𝑊 then becomes and ordinary integral of 1 variable, 𝑟, along the 
line from A to B.  This is the line integral.
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Line integral example.
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦

𝐹⃗ Y 𝑑𝑟 = 𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

𝑊 = 0
7

8
𝐹⃗ Y 𝑑𝑟 = 0

7

8
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦

𝐹⃗ Y 𝑑𝑟 = 𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

𝑊 = 0
7

8
𝐹⃗ Y 𝑑𝑟 = 0

7

8
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦 If the path from A to B is a straight line 

(recall 𝑦 = 𝑚𝑥 + 𝑏)

𝑦 =
1
2 𝑥

𝑑𝑦 =
1
2𝑑𝑥
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦

𝐹⃗ Y 𝑑𝑟 = 𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

𝑊 = 0
7

8
𝐹⃗ Y 𝑑𝑟 = 0

7

8
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦 If the path from A to B is a straight line 

(recall 𝑦 = 𝑚𝑥 + 𝑏)

𝑦 =
1
2 𝑥

𝑑𝑦 =
1
2𝑑𝑥= 0

90!

'
𝑥 Y
1
2 𝑥 𝑑𝑥 −

1
2 𝑥

' 1
2𝑑𝑥
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦

𝐹⃗ Y 𝑑𝑟 = 𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

𝑊 = 0
7

8
𝐹⃗ Y 𝑑𝑟 = 0

7

8
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦 If the path from A to B is a straight line 

(recall 𝑦 = 𝑚𝑥 + 𝑏)

𝑦 =
1
2 𝑥

𝑑𝑦 =
1
2𝑑𝑥= 0

90!

'
𝑥 Y
1
2 𝑥 𝑑𝑥 −

1
2 𝑥

' 1
2𝑑𝑥

= 0
!

' 1
2 𝑥

' −
1
8𝑥

' 𝑑𝑥 = 0
!

' 3
8 𝑥

'𝑑𝑥 = 1
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After Boas Figure 8.2𝑦

𝑥

(2,1)

(0,0)

Let 𝐹⃗ = 𝑥𝑦Z𝑥 − 𝑦' Z𝑦

Line integral example.

𝐴 = 0,0 , 𝐵 = (2,1)

𝑟 = 𝑥 Z𝑥 + 𝑦 Z𝑦 𝑑𝑟 = 𝑑𝑥 Z𝑥 + 𝑑𝑦 Z𝑦

𝐹⃗ Y 𝑑𝑟 = 𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

𝑊 = 0
7

8
𝐹⃗ Y 𝑑𝑟 = 0

7

8
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦 If the path from A to B is a straight line 

(recall 𝑦 = 𝑚𝑥 + 𝑏)

𝑦 =
1
2 𝑥

𝑑𝑦 =
1
2𝑑𝑥= 0

90!

'
𝑥 Y
1
2 𝑥 𝑑𝑥 −

1
2 𝑥

' 1
2𝑑𝑥

= 0
!

' 1
2 𝑥

' −
1
8𝑥

' 𝑑𝑥 = 0
!

' 3
8 𝑥

'𝑑𝑥 = 1
We could have just as easily 
set 𝑥 = 2𝑦 and integrated over 
y from 0 to 1.
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 

𝑊 = 0
:0!

1
(𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦) + 0

90!

'
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 

𝑊 = 0
:0!

1
(𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦) + 0

90!

'
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

0 00 1 1
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 

𝑊 = 0
:0!

1
(𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦) + 0

90!

'
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

0 00 1 1

= 0
!

1
−𝑦'𝑑𝑦 + 0

!

'
𝑥𝑑𝑥
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 

𝑊 = 0
:0!

1
(𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦) + 0

90!

'
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

0 00 1 1

= 0
!

1
−𝑦'𝑑𝑦 + 0

!

'
𝑥𝑑𝑥 =

𝑥'

2 −
𝑦-

3
00

12
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𝑥

(2,1)

(0,0)

Now let’s find the work needed to move the 
object from A to B along the L-shaped path.

𝑦

That requires to integrals.  First keeping x = 0 
along the vertical path from (0,0) to (0,1). Then, 
keeping y=1, horizontally from (0,1) to (2,1). 

𝑊 = 0
:0!

1
(𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦) + 0

90!

'
𝑥𝑦𝑑𝑥 − 𝑦'𝑑𝑦

0 00 1 1

= 0
!

1
−𝑦'𝑑𝑦 + 0

!

'
𝑥𝑑𝑥 =

𝑥'

2 −
𝑦-

3
00

12

=
5
3 ≠ 1

The work done in this case depends on the path.
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γ

𝐼𝑚(𝑠)

𝑅𝑒(𝑠)

𝛾 − 𝑖∞

𝛾 + 𝑖∞ 𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠
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γ

𝐼𝑚(𝑠)

𝑅𝑒(𝑠)

𝛾 − 𝑖∞

𝛾 + 𝑖∞

If the integral of Φ 𝑠 𝑒$% over the 
semicircular arc is 0, then we can replace 
the line integral with a contour integral.

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠
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γ

𝐼𝑚(𝑠)

𝑅𝑒(𝑠)

𝛾 − 𝑖∞

𝛾 + 𝑖∞

If the integral of Φ 𝑠 𝑒$% over the 
semicircular arc is 0, then we can replace 
the line integral with a contour integral.

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
2𝜋𝑖 06#&"

65&"
Φ(𝑠)𝑒$%𝑑𝑠

𝜙 𝑡 =
1
2𝜋𝑖 aΦ(𝑠)𝑒

$%𝑑𝑠

And we can take advantage of the residue 
theorem from complex analysis.
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We use contour integration because if a function 𝑓(𝑧) contains a finite number 
of poles, and if the closed contour contains all of those poles, then the contour 
integration can be replaced by the sum of the residues of the poles. 
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We use contour integration because if a function 𝑓(𝑧) contains a finite number 
of poles, and if the closed contour contains all of those poles, then the contour 
integration can be replaced by the sum of the residues of the poles. 

a𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 I
;0!

	#	4>?@$

𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝛼)
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We use contour integration because if a function 𝑓(𝑧) contains a finite number 
of poles, and if the closed contour contains all of those poles, then the contour 
integration can be replaced by the sum of the residues of the poles. 

a𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 I
;0!

	#	4>?@$

𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝛼)

Where 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 ! limA→;
𝑑2#1

𝑑𝑧2#1 𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole
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We use contour integration because if a function 𝑓(𝑧) contains a finite number 
of poles, and if the closed contour contains all of those poles, then the contour 
integration can be replaced by the sum of the residues of the poles. 

a𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 I
;0!

	#	4>?@$

𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝛼)

Where 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 ! limA→;
𝑑2#1

𝑑𝑧2#1 𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

The residue of the pole with order m where the location of the pole is a 𝑧 = 𝛼.
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We use contour integration because if a function 𝑓(𝑧) contains a finite number 
of poles, and if the closed contour contains all of those poles, then the contour 
integration can be replaced by the sum of the residues of the poles. 

a𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 I
;0!

	#	4>?@$

𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝛼)

Where 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 ! limA→;
𝑑2#1

𝑑𝑧2#1 𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

The residue of the pole with order m where the location of the pole is a 𝑧 = 𝛼.

Any contour that surrounds the same set of poles has the same value for the 
contour integral.  And we can then use the residue theorem to help solve 𝐿#1.
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
1

2𝑠 + 1
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
1

2𝑠 + 1

Φ(𝑠) is the transfer function for the system described by our differential equation.
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
1

2𝑠 + 1

Φ(𝑠) is the transfer function for the system described by our differential equation.

It has one pole at 𝑠 = − 1
'
.
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
1

2𝑠 + 1

Φ(𝑠) is the transfer function for the system described by our differential equation.

It has one pole at 𝑠 = − 1
'
. If we let 𝛾 = 0

𝜙 𝑡 =
1
2𝜋𝑖 0#&"

&" 1
2𝑠 + 1 𝑒

$%𝑑𝑠
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For example, let 𝑥 𝑡 = 2𝑦, 𝑡 + 𝑦(𝑡) 𝐿 𝑥 = 𝐿 2𝑦̇ + 𝑦

𝑋 𝑠 = 2𝑠 + 1 𝑌(𝑠)
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
1

2𝑠 + 1

Φ(𝑠) is the transfer function for the system described by our differential equation.

It has one pole at 𝑠 = − 1
'
. If we let 𝛾 = 0

𝜙 𝑡 =
1
2𝜋𝑖 0#&"

&" 1
2𝑠 + 1 𝑒

$%𝑑𝑠

Im

Re

𝑠4 = −
1
2

contour path
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Im

Re

𝑠4 = −
1
2

contour path

We need to prove that the line integral over 
the semi-circular arc containing the pole, 𝑠4, is 
0. We can then replace the line integral from 
− 𝑖∞ to 𝑖∞ with the contour integral and that 
can be found with sum of the residues of 
Φ(𝑠)𝑒$%.
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Im

Re

𝑠4 = −
1
2

contour path

We need to prove that the line integral over 
the semi-circular arc containing the pole, 𝑠4, is 
0. We can then replace the line integral from 
− 𝑖∞ to 𝑖∞ with the contour integral and that 
can be found with sum of the residues of 
Φ(𝑠)𝑒$%.

Let 𝑠 = 𝑟𝑒&C and take the limit as 𝑟 → ∞. 𝑑𝑠 = 𝑟𝑖𝑒&C𝑑𝜃
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Im

Re

𝑠4 = −
1
2

contour path

We need to prove that the line integral over 
the semi-circular arc containing the pole, 𝑠4, is 
0. We can then replace the line integral from 
− 𝑖∞ to 𝑖∞ with the contour integral and that 
can be found with sum of the residues of 
Φ(𝑠)𝑒$%.

Let 𝑠 = 𝑟𝑒&C and take the limit as 𝑟 → ∞. 𝑑𝑠 = 𝑟𝑖𝑒&C𝑑𝜃

The line integral over the semi-circular arc is then,

lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

Phase term of amplitude 1.
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

so that, lim
D→"

𝑒D%@!" = lim
D→"

𝑒$% = lim
D→"

𝑒 F5&G %Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

so that, lim
D→"

𝑒D%@!" = lim
D→"

𝑒$% = lim
D→"

𝑒 F5&G %Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G

= lim
D→"

𝑒F%𝑒&G%

amp Phase
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

so that, lim
D→"

𝑒D%@!" = lim
D→"

𝑒$% = lim
D→"

𝑒 F5&G %Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G

= lim
D→"

𝑒F%𝑒&G%

amp Phase

For (
'
< 𝜃 < -(

'
, 𝜎 < 0	 ∴ lim

D→"
𝑒F%𝑒&G% = 𝑒#"𝑒&G% = 0
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

Phase term of amplitude 1.

so that, lim
D→"

𝑒D%@!" = lim
D→"

𝑒$% = lim
D→"

𝑒 F5&G %Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G

= lim
D→"

𝑒F%𝑒&G%

amp Phase

For (
'
< 𝜃 < -(

'
, 𝜎 < 0	 ∴ lim

D→"
𝑒F%𝑒&G% = 𝑒#"𝑒&G% = 0

Finally, 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃 = 0

1/2 0
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lim
D→"

0
(/'

-(/' 1
1 + 2𝑟𝑒&C

𝑒 D@!" % 𝑟𝑖𝑒&C𝑑𝜃 = 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃

lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
= lim

D→"

𝑒&C
1
𝑟 + 2𝑒

&C
=
1
2Observe that,

Phase term of amplitude 1.

so that, lim
D→"

𝑒D%@!" = lim
D→"

𝑒$% = lim
D→"

𝑒 F5&G %Recall, 𝑠 = 𝑟𝑒&C = 𝑒 F5&G

= lim
D→"

𝑒F%𝑒&G%

amp Phase

For (
'
< 𝜃 < -(

'
, 𝜎 < 0	 ∴ lim

D→"
𝑒F%𝑒&G% = 𝑒#"𝑒&G% = 0

Finally, 0
(/'

-(/'
lim
D→"

𝑟𝑒&C

1 + 2𝑟𝑒&C
𝑖𝑒D%@!" 𝑑𝜃 = 0

1/2 0 Line integral around the semi-
circular arc is 0 so it’s okay to use 
contour integration to find 𝐿#1.



86

Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 −
1
2 =

1
1 − 1 ! lim

$→# H1 '

𝑑!

𝑑𝑠! 𝑠 +
1
2

1 1
1 + 2𝑠 𝑒

$%
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 −
1
2 =

1
1 − 1 ! lim

$→# H1 '

𝑑!

𝑑𝑠! 𝑠 +
1
2

1 1
1 + 2𝑠 𝑒

$% 0! = 1

= lim
$→# H1 '

𝑠 +
1
2

1
1 + 2𝑠 𝑒

$%
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 −
1
2 =

1
1 − 1 ! lim

$→# H1 '

𝑑!

𝑑𝑠! 𝑠 +
1
2

1 1
1 + 2𝑠 𝑒

$% 0! = 1

= lim
$→# H1 '

𝑠 +
1
2

1
1 + 2𝑠 𝑒

$% = lim
$→# H1 '

1
2 𝑒

$% 𝑠 +
1
2 =

2𝑠 + 1
2
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 −
1
2 =

1
1 − 1 ! lim

$→# H1 '

𝑑!

𝑑𝑠! 𝑠 +
1
2

1 1
1 + 2𝑠 𝑒

$% 0! = 1

= lim
$→# H1 '

𝑠 +
1
2

1
1 + 2𝑠 𝑒

$% = lim
$→# H1 '

1
2 𝑒

$% 𝑠 +
1
2 =

2𝑠 + 1
2

=
1
2 𝑒

#1'%
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Because we can use contour integration to find the inverse Laplace transform, and 
because our contour contains all the poles (just one in our case), then we can use 
the residue theorem to find the sum of the residues at the poles.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝛼 =
1

𝑚 − 1 !
lim
A→;

𝑑2#1

𝑑𝑧2#1
𝑧 − 𝛼 2𝑓(𝑧)

as z approaches the pole

One pole at 𝛼 = − 1
'
, 𝑧 = 𝑠,𝑚 = 1, and 𝑓 𝑧 = 1

15'$
𝑒$%.

𝑟𝑒𝑠𝑖𝑑𝑢𝑒 −
1
2 =

1
1 − 1 ! lim

$→# H1 '

𝑑!

𝑑𝑠! 𝑠 +
1
2

1 1
1 + 2𝑠 𝑒

$% 0! = 1

= lim
$→# H1 '

𝑠 +
1
2

1
1 + 2𝑠 𝑒

$% = lim
$→# H1 '

1
2 𝑒

$% 𝑠 +
1
2 =

2𝑠 + 1
2

=
1
2 𝑒

#1'% = 𝐿#1 Φ(𝑠)
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Whew!  Inverse Laplace Transforms can be difficult to determine analytically.

It is therefore common to use tables.

http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/Laplace_Table.pdf

http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/Laplace_Table.pdf
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in 
mass distribution. 
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in 
mass distribution. 

Think of what might happen to a spinning top after throwing a lump of putty (or firing 
a spitball) when it sticks to the top.
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The Chandler wobble is the free nutation of the earth rotational axis due to changes in 
mass distribution. 

Think of what might happen to a spinning top after throwing a lump of putty (or firing 
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it’s previous spin access due 
to the change in mass distribution.
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Changes in earth mass distribution are a result of earthquakes, oceanic and 
atmospheric pressure cells, glaciation, etc.
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in 
mass distribution. 

Think of what might happen to a spinning top after throwing a lump of putty (or firing 
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it’s previous spin access due 
to the change in mass distribution.

Changes in earth mass distribution are a result of earthquakes, oceanic and 
atmospheric pressure cells, glaciation, etc.

Gross, 2000 (GRL 27, p. 2329-2332) estimates about 2/3 of the effect is due to 
oceanic pressure cells (similar to atmospheric cells).
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The Chandler Wobble.

The Chandler wobble is the free nutation of the earth rotational axis due to changes in 
mass distribution. 

Think of what might happen to a spinning top after throwing a lump of putty (or firing 
a spitball) when it sticks to the top.

The top will continue to spin but will also nutate about it’s previous spin access due 
to the change in mass distribution.

Changes in earth mass distribution are a result of earthquakes, oceanic and 
atmospheric pressure cells, glaciation, etc.

Gross, 2000 (GRL 27, p. 2329-2332) estimates about 2/3 of the effect is due to 
oceanic pressure cells (similar to atmospheric cells).

One arcsecond is about 27m.  The 2004 Sumatra earthquake caused the rotation pole 
to move about 2.5 cm.
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https://www.iers.org/IERS/EN/Science/EarthRotation/PolarMotion.html

https://www.iers.org/IERS/EN/Science/EarthRotation/PolarMotion.html
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Angular momentum, 𝐿 = 𝑟×𝑝⃗

𝐿

𝑟

𝑝⃗
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Angular momentum, 𝐿 = 𝑟×𝑝⃗

𝐿

𝑟

𝑝⃗

If we change 𝑟, then to conserve angular momentum, 𝐿, the momentum of 
the rotating mass, 𝑝⃗ = 𝑚𝑣⃗, must also change.
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Angular momentum, 𝐿 = 𝑟×𝑝⃗

𝐿

𝑟

𝑝⃗

If we change 𝑟, then to conserve angular momentum, 𝐿, the momentum of 
the rotating mass, 𝑝⃗ = 𝑚𝑣⃗, must also change.

Consider a spinning figure skater.  If she pulls in her arms closer to her body, she 
spins faster because she changed her mass distribution (reduced 𝑟 for the mass of 
her hands and arms).  This makes her spin faster to conserve angular momentum 
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For a rotating rigid body, angular momentum 𝐿 = 𝐼𝜔 where 𝐼 is rotational inertia (the 
mass distribution) and  𝜔 is angular frequency (e.g. rotations per time).

𝐿

𝜔
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For a rotating rigid body, angular momentum 𝐿 = 𝐼𝜔 where 𝐼 is rotational inertia (the 
mass distribution) and  𝜔 is angular frequency (e.g. rotations per time).

𝑚&

𝑟&

𝐿

𝜔

𝐼 =I𝑚&𝑟&'
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For a rotating rigid body, angular momentum 𝐿 = 𝐼𝜔 where 𝐼 is rotational inertia (the 
mass distribution) and  𝜔 is angular frequency (e.g. rotations per time).

𝑚&

𝑟&

𝐿

𝜔

𝐼 =I𝑚&𝑟&'

Changes in 𝐼 = changes in 𝜔 with nutation depending on the distribution of the 
changes in 𝐼.
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After Aster and 
Borchers Figure 
5.10𝑦(𝑡)

𝑥

Im (2)

Re (1)

Principal Axis of Rotation 
(moment of inertia)

Temporary Axis of Rotation 
(previous moment of intertia)
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After Aster and 
Borchers Figure 
5.10𝑦(𝑡)

𝑥

Im (2)

Re (1)

Principal Axis of Rotation 
(moment of inertia)

Temporary Axis of Rotation 
(previous moment of intertia)

The equilibrium state is at (0,0), the principal axis of rotation.
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After Aster and 
Borchers Figure 
5.10𝑦(𝑡)

𝑥

Im (2)

Re (1)

Principal Axis of Rotation 
(moment of inertia)

Temporary Axis of Rotation 
(previous moment of intertia)

The equilibrium state is at (0,0), the principal axis of rotation.

If we change 𝐼, the moment of inertia, with some mass movement then the new 
principal axis of rotation becomes separated from the previous axis by 𝑥.
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After Aster and 
Borchers Figure 
5.10𝑦(𝑡)

𝑥

Im (2)

Re (1)

Principal Axis of Rotation 
(moment of inertia)

Temporary Axis of Rotation 
(previous moment of intertia)

The equilibrium state is at (0,0), the principal axis of rotation.

If we change 𝐼, the moment of inertia, with some mass movement then the new 
principal axis of rotation becomes separated from the previous axis by 𝑥.

The system will then nutate (or wobble) about the new principal axis of rotation 
and the nutation will decay as 𝑦(𝑡), until the temporary axis and principal axis are 
aligned.
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We can think of 𝑥 as the input and 𝑦 as the output, then 𝜙 is the impulse response of 
the system.
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We can think of 𝑥 as the input and 𝑦 as the output, then 𝜙 is the impulse response of 
the system.

Then for any given change in 𝐼, we can convolve 𝑥 with 𝜙, to find the expected 
nutation (or Chandler Wobble), 𝑦.
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We can think of 𝑥 as the input and 𝑦 as the output, then 𝜙 is the impulse response of 
the system.

Then for any given change in 𝐼, we can convolve 𝑥 with 𝜙, to find the expected 
nutation (or Chandler Wobble), 𝑦.

The governing differential equations for such a system are (Aster and Borchers 5.35 
and 5.36):

𝑦̇1
𝜔I

+ 𝑦' = 𝑥' −
𝑦̇'
𝜔I

+ 𝑦1 = 𝑥1
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We can think of 𝑥 as the input and 𝑦 as the output, then 𝜙 is the impulse response of 
the system.

Then for any given change in 𝐼, we can convolve 𝑥 with 𝜙, to find the expected 
nutation (or Chandler Wobble), 𝑦.

The governing differential equations for such a system are (Aster and Borchers 5.35 
and 5.36):

𝑦̇1
𝜔I

+ 𝑦' = 𝑥' −
𝑦̇'
𝜔I

+ 𝑦1 = 𝑥1

Where coordinate 2 is the imaginary axis and 1 is the real axis on the previous figure.
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We can think of 𝑥 as the input and 𝑦 as the output, then 𝜙 is the impulse response of 
the system.

Then for any given change in 𝐼, we can convolve 𝑥 with 𝜙, to find the expected 
nutation (or Chandler Wobble), 𝑦.

The governing differential equations for such a system are (Aster and Borchers 5.35 
and 5.36):

𝑦̇1
𝜔I

+ 𝑦' = 𝑥' −
𝑦̇'
𝜔I

+ 𝑦1 = 𝑥1

Where coordinate 2 is the imaginary axis and 1 is the real axis on the previous figure.

𝜔I is the characteristic frequency which, for a rigid body, is: 𝜔I =
𝐶 − 𝐴
𝐶

Ω
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𝜔I =
𝐶 − 𝐴
𝐶

Ω

𝐶 = polar moment of inertia

Ω = spin rate

𝐴 = equatorial moment of inertia
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𝜔I =
𝐶 − 𝐴
𝐶

Ω

𝐶 = polar moment of inertia

Ω = spin rate

𝐴 = equatorial moment of inertia

For and ideal rigid body earth, Ω = 305	𝑑𝑎𝑦𝑠

The observed rate is, Ω ≅ 430	𝑑𝑎𝑦𝑠

Note this is the spin rate 
of the nutation.
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𝜔I =
𝐶 − 𝐴
𝐶

Ω

𝐶 = polar moment of inertia

Ω = spin rate

𝐴 = equatorial moment of inertia

For and ideal rigid body earth, Ω = 305	𝑑𝑎𝑦𝑠

The observed rate is, Ω ≅ 430	𝑑𝑎𝑦𝑠

Note this is the spin rate 
of the nutation.

For convenience, we can combine our two axis system (1,2) of equations into a 
system of complex equations by setting,

𝑥 = 𝑥1 + 𝑖𝑥' 𝑦 = 𝑦1 + 𝑖𝑦'
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦 Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦

𝑋 𝑠 =
𝑖
𝜔I
𝑠𝑌 𝑠 − 𝑦 0 + 𝑌(𝑠)

Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦

𝑋 𝑠 =
𝑖
𝜔I
𝑠𝑌 𝑠 − 𝑦 0 + 𝑌(𝑠)

Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)

= 𝑌(𝑠)
𝑖
𝜔I

+ 1

Assume 0
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦

𝑋 𝑠 =
𝑖
𝜔I
𝑠𝑌 𝑠 − 𝑦 0 + 𝑌(𝑠)

Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)

= 𝑌(𝑠)
𝑖𝑠
𝜔I

+ 1

Assume 0

= 𝑌(𝑠)
𝜔I + 𝑖𝑠
𝜔I
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦

𝑋 𝑠 =
𝑖
𝜔I
𝑠𝑌 𝑠 − 𝑦 0 + 𝑌(𝑠)

Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)

= 𝑌(𝑠)
𝑖𝑠
𝜔I

+ 1

Assume 0

= 𝑌(𝑠)
𝜔I + 𝑖𝑠
𝜔I

𝑌(𝑠)
𝑋(𝑠) = Φ 𝑠 =

𝜔I
𝜔I + 𝑖𝑠
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𝑥' =
𝑦̇1
𝜔I

+ 𝑦'

𝑥1 = −
𝑦̇'
𝜔I

+ 𝑦1
𝑥 = 𝑥1 + 𝑖𝑥' = −

𝑦̇'
𝜔I

+ 𝑦1 + 𝑖
𝑦̇1
𝜔I

+ 𝑦'

𝑦 = 𝑦1 + 𝑖𝑦'=
1
𝜔I

𝑖𝑦̇1 − 𝑦̇' + 𝑦1 + 𝑖𝑦'

=
𝑖
𝜔I

𝑦̇1 −
𝑦̇'
𝑖

+ 𝑦 =
𝑖
𝜔I

𝑦̇1 + 𝑖𝑦̇' + 𝑦

=
𝑖𝑦̇
𝜔I

+ 𝑦

𝐿 𝑥 = 𝐿
𝑖𝑦̇
𝜔I

+ 𝑦

𝑋 𝑠 =
𝑖
𝜔I
𝑠𝑌 𝑠 − 𝑦 0 + 𝑌(𝑠)

Recall, 𝐿 𝑦̇ = 𝑠𝐿 𝑦 − 𝑦(0)

= 𝑌(𝑠)
𝑖𝑠
𝜔I

+ 1

Assume 0

= 𝑌(𝑠)
𝜔I + 𝑖𝑠
𝜔I

𝑌(𝑠)
𝑋(𝑠) = Φ 𝑠 =

𝜔I
𝜔I + 𝑖𝑠

How many poles?
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?



133
𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?

On which half of the s-plane is it located?



134

Aster Pole Zero Notes.

𝑖ω

σ

Stable 2-pole system

Stable 2-pole system 
(non-oscillating)

Unstable 2-pole system

Unstable 2-pole system 
(non-oscillating)

2-pole oscillator

S-plane (more on complex 
frequency later).

http://www.ceri.memphis.edu/people/mwithers/CERI7106/aster/GEOP505/Docs/pandz.pdf
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?

On which half of the s-plane is it located?

Does not decay.
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?

On which half of the s-plane is it located?

Does not decay.

Dissipation is theorized to be 𝜔I =
2𝜋
𝑇I

1 +
𝑖
2𝑄I

=
𝜋
𝑇I

2 + 𝑖
1
𝑄I

𝑄I = Quality factor (bells have high Q) 𝑇I = characteristic period ⁄1 J
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?

On which half of the s-plane is it located?

Does not decay.

Dissipation is theorized to be 𝜔I =
2𝜋
𝑇I

1 +
𝑖
2𝑄I

=
𝜋
𝑇I

2 + 𝑖
1
𝑄I

𝑄I = Quality factor (bells have high Q) 𝑇I = characteristic period ⁄1 J

Now 𝑠4 = 𝑖𝜔I =
𝑖𝜋
𝑇I

2 + 𝑖
1
𝑄I

=
𝜋
𝑇I

2𝑖 −
1
𝑄I
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𝑌(𝑠)
𝑋(𝑠)

= Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
Set 𝜔I + 𝑖𝑠4 = 0, 𝜔I = −𝑖𝑠4, 𝑠4 = 𝑖𝜔I

One pole at 𝑠4 = +𝑖𝜔I
Is there a problem with this transfer function?

On which half of the s-plane is it located?

Does not decay.

Dissipation is theorized to be 𝜔I =
2𝜋
𝑇I

1 +
𝑖
2𝑄I

=
𝜋
𝑇I

2 + 𝑖
1
𝑄I

𝑄I = Quality factor (bells have high Q) 𝑇I = characteristic period ⁄1 J

Now 𝑠4 = 𝑖𝜔I =
𝑖𝜋
𝑇I

2 + 𝑖
1
𝑄I

=
𝜋
𝑇I

2𝑖 −
1
𝑄I

𝑅𝑒 𝑠4 < 0, 𝐼𝑚 𝑠4 > 0 Decay, stable.
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
𝑖2𝜋a

−𝑖𝜔I
𝑠 − 𝑖𝜔I

𝑒$%𝑑𝑠
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
𝑖2𝜋a

−𝑖𝜔I
𝑠 − 𝑖𝜔I

𝑒$%𝑑𝑠

= 𝐿#1
−𝑖𝜔I
𝑠 − 𝑖𝜔I

= −𝑖𝜔I𝐿#1
1

𝑠 − 𝑖𝜔I
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
𝑖2𝜋a

−𝑖𝜔I
𝑠 − 𝑖𝜔I

𝑒$%𝑑𝑠

= 𝐿#1
−𝑖𝜔I
𝑠 − 𝑖𝜔I

= −𝑖𝜔I𝐿#1
1

𝑠 − 𝑖𝜔I
𝑙𝑒𝑡	𝑎 = −𝑖𝜔I

= 𝑎𝐿#1
1

𝑠 + 𝑎 = 𝑎𝑒#*% From tables
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
𝑖2𝜋a

−𝑖𝜔I
𝑠 − 𝑖𝜔I

𝑒$%𝑑𝑠

= 𝐿#1
−𝑖𝜔I
𝑠 − 𝑖𝜔I

= −𝑖𝜔I𝐿#1
1

𝑠 − 𝑖𝜔I
𝑙𝑒𝑡	𝑎 = −𝑖𝜔I

= 𝑎𝐿#1
1

𝑠 + 𝑎 = 𝑎𝑒#*% From tables

= −𝑖𝜔I𝑒&G#%
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Φ 𝑠 =
𝜔I

𝜔I + 𝑖𝑠
=

−𝑖𝜔I
𝑠 − 𝑖𝜔I

Isolate 𝑠 to facilitate 𝐿#1

𝜙 𝑡 = 𝐿#1 Φ(𝑠) =
1
𝑖2𝜋a

−𝑖𝜔I
𝑠 − 𝑖𝜔I

𝑒$%𝑑𝑠

= 𝐿#1
−𝑖𝜔I
𝑠 − 𝑖𝜔I

= −𝑖𝜔I𝐿#1
1

𝑠 − 𝑖𝜔I
𝑙𝑒𝑡	𝑎 = −𝑖𝜔I

= 𝑎𝐿#1
1

𝑠 + 𝑎 = 𝑎𝑒#*% From tables

= −𝑖𝜔I𝑒&G#%

This is the impulse response of our system so that for a given input, 𝑥, we can 
find the predicted output, 𝑦(𝑡) = 𝜙(𝑡) ∗ 𝑥(𝑡).

Run matlab program chandler.m
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So why doesn’t 𝑞(𝑡) = −𝑖𝜔I𝑒&G#% look more like what we see in the data?
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So why doesn’t 𝑞(𝑡) = −𝑖𝜔I𝑒&G#% look more like what we see in the data?

Multiple successive inputs from numerous different sources are superimposed.


