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See Aster and Borchers, Time Series Analysis, chapter 5.



2

Ut quod ali cibus est aliis fuat acre venenum.
What is food to one, is to others bitter poison.
Titus Lucretius Carus (c. 99 BC – 55 BC), Roman poet and philosopher.

An alternative interpretation: One person’s noise is another person’s signal.
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Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a 
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

2. Remove instrument response from data

3. Differentiate or integrate

4. Change sampling rate

5. Creative effects in audio and video

Filtering provides a means to alter the amplitude and/or phase of different 
frequency components of the data.
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One way to describe some filters we work with most frequently is what they do 
to the amplitude 

𝑓

Φ(𝑓)

A notch or band gap filter rejects frequencies within a specified range and keeps 
those outside the range.

Beware sharp edges (distortion)!
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The key in the design is enhancing the desired portion of the signal while minimizing 
distortion.

Most filters we encounter are also Linear Time Invariant systems (LTI).

𝜙X Y

Allows us to take advantage of all the tools we’ve learned so far.

Beware the unstable filter (no poles on the RHS of the S-plane).
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One of the most simple, though not the best, ways to filter is by direct manipulation 
in the frequency domain.

Computing the FT may be impractical for very long time series.

Not real-time.

Windowing cautions apply.

Run matlab command, filterdemo_mac
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FIR → Finite Impulse Response

Finite duration time-domain impulse response,  often ten to a few hundred points, 
applied with direct time-domain convolution.

Fast → no FT required.

Real-time → Can be done in real-time using a small buffer 
(which means it can be acausal if you’re not careful).

Stable → no recursive components.  Time domain impulse response 
goes to 0 within finite number of points.

Linear phase response → minimal distortion
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In the construction of a FIR filter, we typically select some desired 
frequency response, Ω(𝑓), and a desired number of points, 𝑀.

Choice of 𝑀 is key and can either be done by truncation (aka, windowing 
with a boxcar), or by windowing in the time domain to 𝑀-points.

Alternatively, choose the desired frequency-domain resolution, ∆𝑓, to 
determine 𝑀.

Both approaches accomplish the same thing, choosing 𝑀, but depend on 
which aspect is most important to the design; time-length or frequency 
resolution.
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Consider the running mean filter, possible the most common FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

Where 𝑤! = 𝑤#, 𝑤$, 𝑤%, ⋯ , 𝑤&'$ are the time-domain filter weights.

Convolution of the data with the filter weights, 𝑤!, gives a weighted sum of the 
input within Π& or in this case, an average, since all the weights are equal.

The output is then, 𝑧! = 𝑦! ∗ 𝑤! = 9
()'*

*

𝑦(𝑤!'( =
1
𝑀 9
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For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

𝑧 11 =
𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12 + 𝑦 13

5

= 𝑧 10 +
𝑦 13 − 𝑦 8

5
Very fast to 
implement in code.

We use the DFT to see the frequency domain response of this filter.
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𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

= 𝑌,
1
𝑀
sin 0𝑚𝜋𝑘

𝑁
sin 0𝜋𝑘

𝑁

The DFT of a boxcar

The discrete 
equivalent of a 
sync function.

A low pass filter with a lot of ripple 
in the stop band.
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In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

If 𝑤! is symmetric and real, it has linear phase response.

𝑊, = 𝑒'-%.,(&'$)/0 9
!)'(&'$)/%

(&'$)/%

𝑤!𝑒'-%.,!/0

Phase shift Time shift

Recall the shift property 
of the FT
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In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

If 𝑤! is symmetric and real, it has linear phase response.

𝑊, = 𝑒'-%.,(&'$)/0 9
!)'(&'$)/%

(&'$)/%

𝑤!𝑒'-%.,!/0

Phase shift Time shift

= 𝑒'-%.,(&'$)/0 2 9
!)$

(&'$)/%

𝑤! cos 2𝜋𝑘𝑛/𝑁 + 𝑤#

𝑤! is symmetric 
(even function)

= 𝑃(𝑘) A 𝐴(𝑘)
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𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each 
other.

No distortion.

𝐴, is the real valued frequency domain amplitude response of the filter.

The matlab conv(𝒙,𝒘) command is useful to convolve the filter sequence 
(or weights), 𝑤 with the input sequence (or data), 𝑥.

This will produce an extra 𝑀 − 1 points on the output which is the time it 
takes the filter response to decay after the last data point.

Just cut the extra points if not needed, y=y(1:N);
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The matlab filter command may also be used to implement your FIR filter. It’s 
designed for IIR filters (more later) which uses two vectors but works just as well 
with 1 vector.

y=filter(w,[1],x);
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domain response, Ω 𝑓 , and inverse FT on the Nyquist interval to get the time 
domain FIR weights.
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One method of FIR filter design is to begin with an ideal continuous frequency 
domain response, Ω 𝑓 , and inverse FT on the Nyquist interval to get the time 
domain FIR weights.

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

The problem here is there may be an infinite number of non-zero weights, 𝑤!.

It is frequently more intuitive to design a filter in the frequency domain.
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Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
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𝑤! =
%
5
𝑠𝑖𝑛𝑐 %!

5
, are the time domain weights of our filter for the ideal low pass 

response. 

The weights decay as $
!

and only goes to 0 in the limit as 𝑛 → ∞.

We can truncate the weights using a boxcar from ± 0(&'$)
%, but as we 

found with windowing in our discussion on power spectra, this creates 
spectral leakage in the frequency domain by convolving the ideal filter, 
Ω(𝑓) with a sinc function.

This leads us right back to windowing.

Run matlab program aster_fig54ff.m
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We designed our FIR filter by first selecting the desired ideal frequency response, 
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

This, incidentally, is similar to our asymmetric transform pair we found in equation 
3.32 in Aster and Borchers while developing the DFT. 
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We designed our FIR filter by first selecting the desired ideal frequency response, 
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

We then windowed 𝑤! to the desired number of weights (128 points in our example).
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We designed our FIR filter by first selecting the desired ideal frequency response, 
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

We then windowed 𝑤! to the desired number of weights (128 points in our example).

This is not the best way to design a FIR filter but it is the easiest.

Run matlab program firpmdemo.m
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Consider how successive 
superpositions of precisely 
aligned (think phase) cosines 
sum to create a discontinuity.
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Consider how successive 
superpositions of precisely 
aligned (think phase) cosines 
sum to create a discontinuity.

Long periods are needed to 
make the flat parts and high 
frequencies are needed to 
construct the discontinuity.
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This leads us to a phenomena known 
as Gibbs Phenomena which is a 
result of constructing discontinuous 
signals with a finite number of 
discrete frequencies.

Consider how successive 
superpositions of precisely 
aligned (think phase) cosines 
sum to create a discontinuity.

Long periods are needed to 
make the flat parts and high 
frequencies are needed to 
construct the discontinuity.
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On the one hand, we need the lower frequencies to construct the flat portion of the 
function, and high frequencies aligned to create the discontinuity.
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This creates overshoot at the discontinuity.  We can make the overshoot more 
narrow by adding additional higher frequencies but the amplitude of the 
overshoot remains at 9%.  This is Gibb’s phenomena.

Run gibbs.m


