
FIR Filters

1

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 5.

2

Ut quod ali cibus est aliis fuat acre venenum.
What is food to one, is to others bitter poison.
Titus Lucretius Carus (c. 99 BC – 55 BC), Roman poet and philosopher.

An alternative interpretation: One person’s noise is another person’s signal.

3

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

4

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

5

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

6

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

2. Remove instrument response from data

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

7

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

2. Remove instrument response from data

3. Differentiate or integrate

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

8

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

2. Remove instrument response from data

3. Differentiate or integrate

4. Change sampling rate

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

9

Digital Filtering is a very broad topic some spend entire careers on. We’ll be taking a
cursory glance over a few short weeks.

1. Noise rejection/Signal Enhancement

2. Remove instrument response from data

3. Differentiate or integrate

4. Change sampling rate

5. Creative effects in audio and video

Filtering provides a means to alter the amplitude and/or phase of different
frequency components of the data.

10

One way to describe some filters we work with most frequently is what they do
to the amplitude

11

One way to describe some filters we work with most frequently is what they do
to the amplitude

𝑓

Φ(𝑓)

A low pass filter keeps low frequencies and rejects high frequencies.

12

One way to describe some filters we work with most frequently is what they do
to the amplitude

𝑓

Φ(𝑓)

A low pass filter keeps low frequencies and rejects high frequencies.

Beware sharp edges (distortion)!

13

One way to describe some filters we work with most frequently is what they do
to the amplitude

𝑓

Φ(𝑓)

A high pass filter rejects low frequencies and keeps high frequencies.

Beware sharp edges (distortion)!

14

One way to describe some filters we work with most frequently is what they do
to the amplitude

A band pass filter keeps frequencies within a specified range and rejects those
outside the range.

𝑓

Φ(𝑓)

Beware sharp edges (distortion)!

15

One way to describe some filters we work with most frequently is what they do
to the amplitude

𝑓

Φ(𝑓)

A notch or band gap filter rejects frequencies within a specified range and keeps
those outside the range.

Beware sharp edges (distortion)!

16

The key in the design is enhancing the desired portion of the signal while minimizing
distortion.

17

The key in the design is enhancing the desired portion of the signal while minimizing
distortion.

Most filters we encounter are also Linear Time Invariant systems (LTI).

𝜙X Y

18

The key in the design is enhancing the desired portion of the signal while minimizing
distortion.

Most filters we encounter are also Linear Time Invariant systems (LTI).

𝜙X Y

Allows us to take advantage of all the tools we’ve learned so far.

19

The key in the design is enhancing the desired portion of the signal while minimizing
distortion.

Most filters we encounter are also Linear Time Invariant systems (LTI).

𝜙X Y

Allows us to take advantage of all the tools we’ve learned so far.

Beware the unstable filter (no poles on the RHS of the S-plane).

20

One of the most simple, though not the best, ways to filter is by direct manipulation
in the frequency domain.

21

One of the most simple, though not the best, ways to filter is by direct manipulation
in the frequency domain.

Computing the FT may be impractical for very long time series.

22

One of the most simple, though not the best, ways to filter is by direct manipulation
in the frequency domain.

Computing the FT may be impractical for very long time series.

Not real-time.

23

One of the most simple, though not the best, ways to filter is by direct manipulation
in the frequency domain.

Computing the FT may be impractical for very long time series.

Not real-time.

Windowing cautions apply.

24

One of the most simple, though not the best, ways to filter is by direct manipulation
in the frequency domain.

Computing the FT may be impractical for very long time series.

Not real-time.

Windowing cautions apply.

Run matlab command, filterdemo_mac

25

FIR → Finite Impulse Response

Finite duration time-domain impulse response, often ten to a few hundred points,
applied with direct time-domain convolution.

26

FIR → Finite Impulse Response

Finite duration time-domain impulse response, often ten to a few hundred points,
applied with direct time-domain convolution.

Fast → no FT required.

27

FIR → Finite Impulse Response

Finite duration time-domain impulse response, often ten to a few hundred points,
applied with direct time-domain convolution.

Fast → no FT required.

Real-time → Can be done in real-time using a small buffer
(which means it can be acausal if you’re not careful).

28

FIR → Finite Impulse Response

Finite duration time-domain impulse response, often ten to a few hundred points,
applied with direct time-domain convolution.

Fast → no FT required.

Real-time → Can be done in real-time using a small buffer
(which means it can be acausal if you’re not careful).

Stable → no recursive components. Time domain impulse response
goes to 0 within finite number of points.

29

FIR → Finite Impulse Response

Finite duration time-domain impulse response, often ten to a few hundred points,
applied with direct time-domain convolution.

Fast → no FT required.

Real-time → Can be done in real-time using a small buffer
(which means it can be acausal if you’re not careful).

Stable → no recursive components. Time domain impulse response
goes to 0 within finite number of points.

Linear phase response → minimal distortion

30

In the construction of a FIR filter, we typically select some desired
frequency response, Ω(𝑓), and a desired number of points, 𝑀.

31

In the construction of a FIR filter, we typically select some desired
frequency response, Ω(𝑓), and a desired number of points, 𝑀.

Choice of 𝑀 is key and can either be done by truncation (aka, windowing
with a boxcar), or by windowing in the time domain to 𝑀-points.

32

In the construction of a FIR filter, we typically select some desired
frequency response, Ω(𝑓), and a desired number of points, 𝑀.

Choice of 𝑀 is key and can either be done by truncation (aka, windowing
with a boxcar), or by windowing in the time domain to 𝑀-points.

Alternatively, choose the desired frequency-domain resolution, ∆𝑓, to
determine 𝑀.

33

In the construction of a FIR filter, we typically select some desired
frequency response, Ω(𝑓), and a desired number of points, 𝑀.

Choice of 𝑀 is key and can either be done by truncation (aka, windowing
with a boxcar), or by windowing in the time domain to 𝑀-points.

Alternatively, choose the desired frequency-domain resolution, ∆𝑓, to
determine 𝑀.

Both approaches accomplish the same thing, choosing 𝑀, but depend on
which aspect is most important to the design; time-length or frequency
resolution.

34

Consider the running mean filter, an easy and fast FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

35

Consider the running mean filter, and easy and fast FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

Where 𝑤! = 𝑤#, 𝑤$, 𝑤%, ⋯ , 𝑤&'$ are the time-domain filter weights.

36

Consider the running mean filter, an easy and fast FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

Where 𝑤! = 𝑤#, 𝑤$, 𝑤%, ⋯ , 𝑤&'$ are the time-domain filter weights.

Convolution of the data with the filter weights, 𝑤!, gives a weighted sum of the
input within Π& or in this case, an average, since all the weights are equal.

37

Consider the running mean filter, an easy and fast FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

Where 𝑤! = 𝑤#, 𝑤$, 𝑤%, ⋯ , 𝑤&'$ are the time-domain filter weights.

Convolution of the data with the filter weights, 𝑤!, gives a weighted sum of the
input within Π& or in this case, an average, since all the weights are equal.

The output is then, 𝑧! = 𝑦! ∗ 𝑤! = 9
()'*

*

𝑦(𝑤!'(

38

Consider the running mean filter, possible the most common FIR filter.

𝑤! =
1
𝑀Π" =

1
𝑀 , 𝑛 ≤ 0𝑀 − 1

2

0, 𝑛 > 0𝑀 − 1
2

Where 𝑤! = 𝑤#, 𝑤$, 𝑤%, ⋯ , 𝑤&'$ are the time-domain filter weights.

Convolution of the data with the filter weights, 𝑤!, gives a weighted sum of the
input within Π& or in this case, an average, since all the weights are equal.

The output is then, 𝑧! = 𝑦! ∗ 𝑤! = 9
()'*

*

𝑦(𝑤!'(=
1
𝑀 9

() +' &'$
%

+&'$
%

𝑦(

39

For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

40

For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

𝑧 11 =
𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12 + 𝑦 13

5

41

For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

𝑧 11 =
𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12 + 𝑦 13

5

= 𝑦 10 +
𝑦 13 − 𝑦 8

5

42

For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

𝑧 11 =
𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12 + 𝑦 13

5

= 𝑧 10 +
𝑦 13 − 𝑦 8

5
Very fast to
implement in code.

43

For example, let 𝑀 = 5

𝑧 10 =
𝑦 8 + 𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12

5

𝑧 11 =
𝑦 9 + 𝑦 10 + 𝑦 11 + 𝑦 12 + 𝑦 13

5

= 𝑧 10 +
𝑦 13 − 𝑦 8

5
Very fast to
implement in code.

We use the DFT to see the frequency domain response of this filter.

44

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤!

45

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

46

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

The DFT of a boxcar

47

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

= 𝑌,
1
𝑀
sin 0𝑚𝜋𝑘

𝑁
sin 0𝜋𝑘

𝑁

The DFT of a boxcar

48

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

= 𝑌,
1
𝑀
sin 0𝑚𝜋𝑘

𝑁
sin 0𝜋𝑘

𝑁

The DFT of a boxcar

The discrete
equivalent of a
sync function.

49

𝑍, = 𝑌, A 𝐷𝐹𝑇 𝑤! = 𝑌,
1
𝑀

9
!) +' &'$

%

+&'$
%

𝑒'-%.,!/0

= 𝑌,
1
𝑀
sin 0𝑚𝜋𝑘

𝑁
sin 0𝜋𝑘

𝑁

The DFT of a boxcar

The discrete
equivalent of a
sync function.

A low pass filter with a lot of ripple
in the stop band.

50

In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

51

In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

If 𝑤! is symmetric and real, it has linear phase response.

𝑊, = 𝑒'-%.,(&'$)/0 9
!)'(&'$)/%

(&'$)/%

𝑤!𝑒'-%.,!/0

Phase shift Time shift

Recall the shift property
of the FT

52

In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

If 𝑤! is symmetric and real, it has linear phase response.

𝑊, = 𝑒'-%.,(&'$)/0 9
!)'(&'$)/%

(&'$)/%

𝑤!𝑒'-%.,!/0

Phase shift Time shift

= 𝑒'-%.,(&'$)/0 2 9
!)$

(&'$)/%

𝑤! cos 2𝜋𝑘𝑛/𝑁 + 𝑤#

𝑤! is symmetric
(even function)

53

In general, an M-point FIR filter an be written in the frequency domain as,

𝑊, = 9
!)#

&'$

𝑤!𝑒'-%.,!/0

If 𝑤! is symmetric and real, it has linear phase response.

𝑊, = 𝑒'-%.,(&'$)/0 9
!)'(&'$)/%

(&'$)/%

𝑤!𝑒'-%.,!/0

Phase shift Time shift

= 𝑒'-%.,(&'$)/0 2 9
!)$

(&'$)/%

𝑤! cos 2𝜋𝑘𝑛/𝑁 + 𝑤#

𝑤! is symmetric
(even function)

= 𝑃(𝑘) A 𝐴(𝑘)

54

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

55

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

56

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

No distortion.

57

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

No distortion.

𝐴, is the real valued frequency domain amplitude response of the filter.

58

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

No distortion.

𝐴, is the real valued frequency domain amplitude response of the filter.

The matlab conv(𝒙,𝒘) command is useful to convolve the filter sequence
(or weights), 𝑤 with the input sequence (or data), 𝑥.

59

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

No distortion.

𝐴, is the real valued frequency domain amplitude response of the filter.

The matlab conv(𝒙,𝒘) command is useful to convolve the filter sequence
(or weights), 𝑤 with the input sequence (or data), 𝑥.

This will produce an extra 𝑀 − 1 points on the output which is the time it
takes the filter response to decay after the last data point.

60

𝑊, = 𝑃, A 𝐴,

𝑃, is a linear phase shift just like the 15f phase shift from before

Time shifts of each frequency component are all the same relative to each
other.

No distortion.

𝐴, is the real valued frequency domain amplitude response of the filter.

The matlab conv(𝒙,𝒘) command is useful to convolve the filter sequence
(or weights), 𝑤 with the input sequence (or data), 𝑥.

This will produce an extra 𝑀 − 1 points on the output which is the time it
takes the filter response to decay after the last data point.

Just cut the extra points if not needed, y=y(1:N);

61

The matlab filter command may also be used to implement your FIR filter. It’s
designed for IIR filters (more later) which uses two vectors but works just as well
with 1 vector.

y=filter(w,[1],x);

62

One method of FIR filter design is to begin with an ideal continuous frequency
domain response, Ω 𝑓 , and inverse FT on the Nyquist interval to get the time
domain FIR weights.

63

One method of FIR filter design is to begin with an ideal continuous frequency
domain response, Ω 𝑓 , and inverse FT on the Nyquist interval to get the time
domain FIR weights.

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

64

One method of FIR filter design is to begin with an ideal continuous frequency
domain response, Ω 𝑓 , and inverse FT on the Nyquist interval to get the time
domain FIR weights.

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

The problem here is there may be an infinite number of non-zero weights, 𝑤!.

It is frequently more intuitive to design a filter in the frequency domain.

65

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

66

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓

67

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓

For simplicity, let 𝑓4 = 1
= V

'3!/5

3!/5
𝑒-%.3!𝑑𝑓

68

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓

For simplicity, let 𝑓4 = 1
= V

'3!/5

3!/5
𝑒-%.3!𝑑𝑓

= V
'$/5

$/5
𝑒-%.3!𝑑𝑓

69

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓

For simplicity, let 𝑓4 = 1
= V

'3!/5

3!/5
𝑒-%.3!𝑑𝑓

= V
'$/5

$/5
𝑒-%.3!𝑑𝑓= 2V

#

$/5
cos 2𝜋𝑓𝑛 𝑑𝑓

70

Consider the ideal low pass filter, a boxcar.

Ω 𝑓 = Π
𝛼𝑓
2

𝑓 = 0

Ω(𝑓)

𝑓 = −
1
𝛼

1
𝛼

1

0
Transitions at 53

%
= ± $

%

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓

For simplicity, let 𝑓4 = 1
= V

'3!/5

3!/5
𝑒-%.3!𝑑𝑓

= V
'$/5

$/5
𝑒-%.3!𝑑𝑓= 2V

#

$/5
cos 2𝜋𝑓𝑛 𝑑𝑓=

2
𝛼 𝑠𝑖𝑛𝑐

2𝑛
𝛼

71

𝑤! =
%
5
𝑠𝑖𝑛𝑐 %!

5
, are the time domain weights of our filter for the ideal low pass

response.

72

𝑤! =
%
5
𝑠𝑖𝑛𝑐 %!

5
, are the time domain weights of our filter for the ideal low pass

response.

The weights decay as $
!

and only goes to 0 in the limit as 𝑛 → ∞.

73

𝑤! =
%
5
𝑠𝑖𝑛𝑐 %!

5
, are the time domain weights of our filter for the ideal low pass

response.

The weights decay as $
!

and only goes to 0 in the limit as 𝑛 → ∞.

We can truncate the weights using a boxcar from ± 0(&'$)
%, but as we

found with windowing in our discussion on power spectra, this creates
spectral leakage in the frequency domain by convolving the ideal filter,
Ω(𝑓) with a sinc function.

74

𝑤! =
%
5
𝑠𝑖𝑛𝑐 %!

5
, are the time domain weights of our filter for the ideal low pass

response.

The weights decay as $
!

and only goes to 0 in the limit as 𝑛 → ∞.

We can truncate the weights using a boxcar from ± 0(&'$)
%, but as we

found with windowing in our discussion on power spectra, this creates
spectral leakage in the frequency domain by convolving the ideal filter,
Ω(𝑓) with a sinc function.

This leads us right back to windowing.

Run matlab program aster_fig54ff.m

75

We designed our FIR filter by first selecting the desired ideal frequency response,
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

This, incidentally, is similar to our asymmetric transform pair we found in equation
3.32 in Aster and Borchers while developing the DFT.

76

We designed our FIR filter by first selecting the desired ideal frequency response,
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

We then windowed 𝑤! to the desired number of weights (128 points in our example).

77

We designed our FIR filter by first selecting the desired ideal frequency response,
Ω(𝑓), then converting it to the discrete time domain with the integral transform,

𝑤! = V
'3!/%

3!/%
Ω(𝑓)𝑒-%.3!𝑑𝑓 where 𝑓4 is the sample rate.

We then windowed 𝑤! to the desired number of weights (128 points in our example).

This is not the best way to design a FIR filter but it is the easiest.

Run matlab program firpmdemo.m

78

Consider how successive
superpositions of precisely
aligned (think phase) cosines
sum to create a discontinuity.

79

Consider how successive
superpositions of precisely
aligned (think phase) cosines
sum to create a discontinuity.

Long periods are needed to
make the flat parts and high
frequencies are needed to
construct the discontinuity.

80

This leads us to a phenomena known
as Gibbs Phenomena which is a
result of constructing discontinuous
signals with a finite number of
discrete frequencies.

Consider how successive
superpositions of precisely
aligned (think phase) cosines
sum to create a discontinuity.

Long periods are needed to
make the flat parts and high
frequencies are needed to
construct the discontinuity.

81

On the one hand, we need the lower frequencies to construct the flat portion of the
function, and high frequencies aligned to create the discontinuity.

82

This creates overshoot at the discontinuity. We can make the overshoot more
narrow by adding additional higher frequencies but the amplitude of the
overshoot remains at 9%. This is Gibb’s phenomena.

Run gibbs.m

