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See Aster and Borchers, Time Series Analysis, chapter 6.
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Assume we have a convolution equation for a linear system, g.

𝑑 𝑡 = 𝑔(𝑡) ∗ 𝑚(𝑡)

𝑚(𝑡) is the input

g(𝑡) is the transfer function for the system

𝑑(𝑡) is the output

We know 𝑔 and observe 𝑑, and we want to find 𝑚.

For example, if we obtain a seismogram, that’s our observable, 𝑑(𝑡). And 
we have the impulse response of our seismometer, 𝑔(𝑡).  We then wish to 
find the ground motion input, 𝑚(𝑡).
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Recall the amplitude response for an example broadband seismometer

Spectral division is not stable.

We record some frequencies with poor fidelity (e.g. the gain of the instrument at 
those frequencies is very small).

And using spectral division, we divide by small numbers at those frequencies.
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There is also noise in all real physical systems.
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There is also noise in all real physical systems.

𝑑 𝑡 = 𝑔(𝑡) ∗ 𝑚 𝑡 + 𝑛(𝑡) 𝐷 𝑓 = 𝐺(𝑓) 𝑀 𝑓 + 𝑁(𝑓)

𝑀 𝑓 + 𝑁 𝑓 =
𝐷(𝑓)
𝐺(𝑓)

Not so bad when the noise is in the data.

It’s is relatively easy to remove with filtering if 
we know something about the noise.

What if the noise is added after the convolution (e.g. instrument noise)?

𝑑 𝑡 = 𝑔 𝑡 ∗ 𝑚 𝑡 + 𝑛(𝑡)
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Remember we’re trying to deconvolve the instrument response (G) from the data (D) 
to get the input ground motion (M). Where G is small, we amplify the noise.
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𝑑 𝑡 = 𝑔 𝑡 ∗ 𝑚 𝑡 + 𝑛(𝑡)

𝐷 𝑓 = 𝐺 𝑓 𝑀 𝑓 + 𝑁(𝑓) 𝑀 𝑓 +
𝑁(𝑓)
𝐺(𝑓) =

𝐷(𝑓)
𝐺(𝑓)

Remember we’re trying to deconvolve the instrument response (G) from the data (D) 
to get the input ground motion (M). Where G is small, we amplify the noise.

We wish to keep the denominator from getting small so we add a small constant to it.

𝑀% =
𝐷%
𝐺%∆𝑡

Back to the discrete version of our 
original 𝑑 = 𝑔 ∗ 𝑚

𝑀% =
𝐷%

𝐺% + 𝜆 ∆𝑡
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𝑀% =
𝐷%

𝐺% + 𝜆 ∆𝑡

When 𝐺 is large, 𝜆 will have a small effect.

When 𝐺 is small, 𝜆 will have a larger effect.

When 𝐺 = −𝜆, we have a problem.

𝜆𝜆
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We’d like to have a scheme that changes 𝐺 only when needed, and not at all 
otherwise.
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We’d like to have a scheme that changes 𝐺 only when needed, and not at all 
otherwise.

We’d also like a scheme that preserves the phase response (more on why in the 
next chapter).

A common method is water level regularization.

<𝐺 𝑓 = 𝑤
𝐺(𝑓)
𝐺(𝑓)

Preserves the phase of 𝐺, with 
constant amplitude 𝑤.

But be careful of 0.

<𝐺 𝑓 =

𝐺(𝑓), 𝐺(𝑓) > 𝑤
𝑤𝐺(𝑓)
𝐺(𝑓) , 0 < 𝐺(𝑓) ≤ 𝑤

𝑤, 𝐺 𝑓 = 0
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Of course the tricky part is setting 𝑤.

If you know 𝑁(𝑓) (e.g. the average instrument noise say from an ASL study for 
your system) then that can define 𝑤.

Or, if you’re working with earthquake data, use the mean or 90th percentile of the 
pre-event noise.

If 𝑤 is too large, we just get back the output data scaled by 𝑤.

If 𝑤 is too small, we leave behind too much noise, especially at frequencies where 
the response is small . 
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As an example, let the input be, 𝑚 𝑡 = 𝑡𝑒!&

And the linear system be, 𝑔 𝑡 = 𝑒!'& sin 10𝑡

Run matlab program deconvdemoA to demonstrate recovering 𝑚(𝑡) in the presence 
of noise using water level regularization.
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Another more elegant method is Tikhonov regularization.

E𝑀% =
𝐺%∗𝐷%

𝐺%∗𝐺% + 𝜆 ∆𝑡
When 𝐺% ≫ 𝜆, 𝑀% =

)!
*!

When 𝐺% ≪ 𝜆, 𝑀% is reduced rather than amplified.
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Another more elegant method is Tikhonov regularization.

E𝑀% =
𝐺%∗𝐷%

𝐺%∗𝐺% + 𝜆 ∆𝑡
=

𝐺% 𝑒!+! 𝐷%
𝐺% ,Note that, 𝑀% =
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*!
= *!

∗)!
*!
∗*!

=
𝐺% 𝐷%
𝐺% ,𝑒+!

Division by 𝐺% = 𝐺% 𝑒-+! is preserved.

Generally choose 𝐺%∗𝑁% < 𝜆∆𝑡 (though there are better ways)

In Aster and Borchers, 𝐺%  is around 3 and 𝑁%  is about 0.003

Then 𝐺%∗𝑁% ≈ 0.01, ∆𝑡 = 0.01 (100 Hz) so 𝜆 ≈ 1

One could also use average pre-event noise and average event amplitude or some 
similar scheme to choose 𝜆

Run matlab program deconvdemoB
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