Deconvolution

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 6.
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Assume we have a convolution equation for a linear system, g.

m(t) is the input
d(t) = g(t) * m(t) g(t) is the transfer function for the system

d(t) is the output

We know g and observe d, and we want to find m.

For example, if we obtain a seismogram, that’s our observable, d(t). And
we have the impulse response of our seismometer, g(t). We then wish to

find the ground motion input, m(t).
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d(6) = g(t) » m(t) = j g@m(E — t)dz

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.
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d(6) = g(t) » m(t) = j g@m(E — t)dz

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.

But we also know that, D(f) = G(f)M(f) which suggests,

D
M) = % m(e) = 51
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d(6) = g(t) » m(t) = j g@m(E — t)dz

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.

But we also know that, D(f) = G(f)M(f) which suggests,

D D
MP =g mO=F" 2]

Likewise, d,, = (g,, * m,)At
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d(6) = g(t) » m(t) = j g@m(E — t)dz

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.

But we also know that, D(f) = G(f)M(f) which suggests,

pin A e
M =g mO=F[7]
Likewise, d,, = (g,, * m,)At D, = G, M, At, k=(ON-1)
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duramo*ma»:j.ﬂﬂmu—rmf

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.

But we also know that, D(f) = G(f)M(f) which suggests,

) _ -1 [PY)
M) = G 1MO_F1LUJ
Likewise, d,, = (g,, * m,)At D, = G, M, At, k=(ON-1)
My = G At
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duramo*ma»:j.ﬂﬂmu—rmf

We're trying to find m(t) but there’s no obvious way to do the inverse operation of
convolution in the time domain.

But we also know that, D(f) = G(f)M(f) which suggests,

G [P
MO =Gy O = g
Likewise, d,, = (g, * m,)At D, = G M, At, k=(ON-1)
M, = Gth =P  Spectral Division
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Spectral division is not stable.

Recall the amplitude response for an example broadband seismometer

NM.LNXT.00.HHZ
2017-04-10T00:00:00 to null

Gain (Counts / m/s)

sens freq 1.0 (Hz) |

nyquist: 50.0 (Hz) ‘
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Spectral division is not stable.

Recall the amplitude response for an example broadband seismometer

NM.LNXT.00.HHZ
2017-04-10T00:00:00 to null
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|
sens freq 1.0 (Hz) | ;
! nyquist: 50.0 (Hz)|

We record some frequencies with poor fidelity (e.g. the gain of the instrument at
those frequencies is very small).
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Spectral division is not stable.

Recall the amplitude response for an example broadband seismometer

NM.LNXT.00.HHZ
2017-04-10T00:00:00 to null

le6 4
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Gain (Counts / m/s)
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1]
w

an

|
sens freq 1.0 (Hz) | ;
! nyquist: 50.0 (Hz)|

We record some frequencies with poor fidelity (e.g. the gain of the instrument at
those frequencies is very small).

And using spectral division, we divide by small numbers at those frequencies.
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There is also noise in all real physical systems.

d(t) = g(@) * [m(t) + n(t)] D(f) = G(HIM(f) + N(f)]
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There is also noise in all real physical systems.

d(t) = g(t) * [m(t) + n(t)] D(f)=G(HIM) + N()]
Not so bad when the noise is in the data.
G
M(f) + N(f) = 0
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There is also noise in all real physical systems.

d(t) = g(t) * [m(t) + n(t)] D(f)=G(HIM) + N()]
Not so bad when the noise is in the data.
M) + N() = 2L
G(f) It's is relatively easy to remove with filtering if

we know something about the noise.
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There is also noise in all real physical systems.

d(t) = g(t) * [m(t) + n(t)] D(f)=G(HIM) + N()]
Not so bad when the noise is in the data.
M) + N() = 2L
G(f) It's is relatively easy to remove with filtering if

we know something about the noise.

What if the noise is added after the convolution (e.g. instrument noise)?

d(t) = g(t) * m(t) + n(t)
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d(t) = g(t) * m(t) + n(t)

D(f) = G(FIM(f) + N(f)
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d(t) = g(t) * m(t) + n(t)

N(H) _ D)
¢(H ~ 6(f)

D(f) = G(FIM(f) + N(f) M(f) +

Remember we're trying to deconvolve the instrument response (G) from the data (D)
to get the input ground motion (M). Where G is small, we amplify the noise.
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d(t) = g(t) * m(t) + n(t)

N(H) _ D)
¢(H ~ 6(f)

D(f) = G(FIM(f) + N(f) M(f) +

Remember we're trying to deconvolve the instrument response (G) from the data (D)
to get the input ground motion (M). Where G is small, we amplify the noise.

Back to the discrete version of our Y Dy
original d = g * m F GG
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d(t) = g(t) * m(t) + n(t)

N(H) _ D)
¢(H ~ 6(f)

D(f) = G(FIM(f) + N(f) M(f) +

Remember we're trying to deconvolve the instrument response (G) from the data (D)
to get the input ground motion (M). Where G is small, we amplify the noise.

Back to the discrete version of our Y Dy
original d = g * m F GG

We wish to keep the denominator from getting small so we add a small constant to it.

MEMPHIS

M, —
k= (G A




24

D When G is large, A will have a small effect.
k

When G is small, 2 will have a larger effect.

When G = —A, we have a problem.

NM.LNXT.00.HHZ
2017-04-10T00:00:00 to null
leS;,__,_, 235 TE 5 RN LT 55 L 53 L I LN ) T AT 5 LSS LIS 3 LRt Eige
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sens freq 1.0 (Hz) | I
| nyquist: 50.0 |H2':
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We'd like to have a scheme that changes G only when needed, and not at all
otherwise.
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We'd like to have a scheme that changes G only when needed, and not at all
otherwise.

We’d also like a scheme that preserves the phase response (more on why in the
next chapter).
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We'd like to have a scheme that changes G only when needed, and not at all
otherwise.

We’d also like a scheme that preserves the phase response (more on why in the
next chapter).

A common method is water level regularization.

G(f)

CH =wich)
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We'd like to have a scheme that changes G only when needed, and not at all
otherwise.

We’d also like a scheme that preserves the phase response (more on why in the
next chapter).

A common method is water level regularization.

G(f) | Preserves the phase of G, with
|G (P constant amplitude w.

G(f) =w
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We'd like to have a scheme that changes G only when needed, and not at all
otherwise.

We’d also like a scheme that preserves the phase response (more on why in the
next chapter).

A common method is water level regularization.

G(f)

Preserves the phase of G, with

Gy =w 1G()] I constant amplitude w.
But be careful of 0.
(GRS I
ar o JWGE()
6 =1 BelGenlEE
| w, G(f) =0
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Of course the tricky part is setting w.

If w is too large, we just get back the output data scaled by w.
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Of course the tricky part is setting w.

If w is too large, we just get back the output data scaled by w.

If w is too small, we leave behind too much noise, especially at frequencies where
the response is small .

Or, if you're working with earthquake data, use the mean or 90t percentile of the
pre-event noise.
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Of course the tricky part is setting w.

If w is too large, we just get back the output data scaled by w.

If w is too small, we leave behind too much noise, especially at frequencies where
the response is small .

Or, if you're working with earthquake data, use the mean or 90t percentile of the
pre-event noise.

If you know N(f) (e.g. the average instrument noise say from an ASL study for

your system) then that can define w.
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As an example, let the input be, m(t) = te™t

And the linear system be, g(t) = e>¢ sin(10t)

Run matlab program deconvdemoA to demonstrate recovering m(t) in the presence
of noise using water level regularization.

MEMPHIS



35

Another more elegant method is Tikhonov regularization.

o ___ GiDi When [Gy| » 4, My = 25
“T (GG + DAt

When |G, | « A, M, is reduced rather than amplified.
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Another more elegant method is Tikhonov regularization.

*
Vi Gy D Dy _ GgDy

M, = — =k
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Another more elegant method is Tikhonov regularization.

- G Dy . |G, le % D
V= __ Dy _ GyDp _ k k
kT (GiGr + DAt Nofe that, My = S A e
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Another more elegant method is Tikhonov regularization.

. Gy Dy . G, |e %% D,  |G.|D
M, = __ Dk GyDr _ k k k1~k
kT (GiGr + DAt Note that, M = S o e - S PR = 0

Division by G, = |G, |e'®k is preserved.

MEMPHIS




39

Another more elegant method is Tikhonov regularization.

- Gy Dy \ G le %D,  |G,|D
M. = _ Dk _ Gpbi _ 10k k k1K

Division by G, = |G, |e'®k is preserved.

Generally choose |G, N, | < 1At (though there are better ways)

In Aster and Borchers, |G| is around 3 and |N, | is about 0.003
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Another more elegant method is Tikhonov regularization.

- Gy Dy \ G le %D,  |G,|D
M. = _ Dk _ Gpbi _ 10k k k1K

Division by G, = |G, |e'®k is preserved.
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Another more elegant method is Tikhonov regularization.

. Gy Dy \ G le %D,  |G,|D
M. = _ Dk _ Gpbi _ 10k k k1K

Division by G, = |G, |e'®k is preserved.

Generally choose |G, N, | < 1At (though there are better ways)
In Aster and Borchers, |G| is around 3 and |N, | is about 0.003
Then |G, N, | = 0.01, At = 0.01 (100 Hz) so 1 = 1

One could also use average pre-event noise and average event amplitude or some
similar scheme to choose 4

Run matlab program deconvdemoB
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