Sampled Time Series

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 3.
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A normal distribution, or bell curve, is a gaussian distribution of the form,

—(x—p)?

f@=e = /o
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A normal distribution, or bell curve, is a gaussian distribution of the form,

—(e—m)r

f@=e = /o

where, u = mean
o = standard deviation (6% = variance)

This distribution is very common (hence the name normal distribution).
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The Fourier Series is conceptually similar to the FT but mathematically quite different.
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The Fourier Series is conceptually similar to the FT but mathematically quite different.

We can expand any periodic function into a weighted sum of sines and cosines,

1 (0¢]
A= 5 o + Z a, cos(nx) + b, sin(nx)
n=1
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The Fourier Series is conceptually similar to the FT but mathematically quite different.

We can expand any periodic function into a weighted sum of sines and cosines,

1 (0¢]
A= 5 o + Z a, cos(nx) + b, sin(nx)
n=1

Where,

= }T J:Tf (x) cos(nx) dx
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The Fourier Series in complex form,

(0.0)

16 = z Ce i where ¢, = ffnf(x)ei"xdx

n=-—oo
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The Fourier Series in complex form,

(0.0)

16 = z Ce i where ¢, = ffnf(x)ei"xdx

n=-—oo

We’'ll see that the discrete Fourier Transform is

Z o elZTL’le/
k

®, = z e —zann/
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The Fourier Series in complex form,

(0.0)

16 = z Ce i where ¢, = ffnf(x)ei"xdx

n=-—oo

We’'ll see that the discrete Fourier Transform is

Z o elZTL’le/
k

®, = z e —zann/

Discrete, band limited, finite

length series.
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We can use the sampling function, or replicating function also referred to as the
Shah function due to its resemblance to the Cyrillic letter shah, 11
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We can use the sampling function, or replicating function also referred to as the
Shah function due to its resemblance to the Cyrillic letter shah, 11

The Shah function, ITI(t), is a series of delta functions,

LT

It is also sometimes called a dirac comb (after the dirac delta).
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We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a Guassian.
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We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a Guassian.

Let ¢(t) = e~ ™
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We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a Guassian.

Let ¢(t) = e~ ™

(0}

Flp(D] = d(f) = f et g2t gy

— 00
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We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a Guassian.

Let ¢(t) = e~ ™

(0}

Flp(D] = d(f) = f et g2t gy

— 00

(0.0)

_ o-nif? J o-m(t242ift-r?) g, (Remember this trick,
it will be useful later)

— 00
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We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a Guassian.

Let ¢(t) = e~ ™

(0}

Flp(D] = d(f) = f et g2t gy

— 00

(0.0)

_ o-nif? J o-m(t242ift-r?) g, (Remember this trick,
it will be useful later)

— 00

(t+if)? =t?+ 2ift — f*

MEMPHIS



17

We'll use the dirac comb to help mathematically develop the Discrete Fourier
Transform from the continuous but first we need to find the FT of a gaussian.

Let ¢(t) = e~ ™

(0}

Flp(D] = d(f) = f et g2t gy

— 00

(0.0)

_ o-nif? J o-m(t242ift-r?) g, (Remember this trick,
it will be useful later)

— 00

(t+if)? =t?+ 2ift — f*

(0.0)

O(f) = e ™f* je'”(”if)zdt

— 00
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(00)

d(f) = e~ ™f* j e~ T+ gy Lett =t +if, dt =dt

— 00

d(f) = e f* fe‘mzdr

— 00
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(00)

d(f) = e~ ™f* j e~ T+ gy Lett =t +if, dt =dt

— 00

From tables, [~ e~ "dx = T

O(f) = e~™* fe"”zdr i
e y fe‘mzdr =i

— 00
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(00)

d(f) = e~ ™f* j e~ T+ gy Lett =t +if, dt =dt

— 00

From tables, [~ e~ "dx = T

(0]

O(f) = e~™* fe"”zdr i
—0o0 o f e_nTZdT il

— 00

(0.0)

O(f) = e TS’ J e~ dr = e~ S’

— 00
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(00)

d(f) = e~ ™f* j e~ T+ gy Lett =t +if, dt =dt

— 00

From tables, ffooo e~ "dx = T

(0]

O(f) = e~™* fe"”zdr i
y fe‘mzdr =_l;

— 00

— 00

(0.0)

(A = o J e " dr = ¢~f”

— 00

The Fourier Transform of a gaussian is another gaussian!
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Now consider the function,

e e Loy
f(t) — 18_7”21:2 Z e g /1'2
T

n=-—oo
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Now consider the function,

DM T L
f() = 18_7”21:2 Z e i /1'2
T

n=-—oo

e~™"*t*is a broad gaussian of width 1/; (it's standard deviation).
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Now consider the function,

DM T L
f() = 18_7”21:2 Z e i /1'2
T

n=—oo
e~™"*t*is a broad gaussian of width 1/; (it's standard deviation).

The sum is a series of gaussian “spikes” each of width t.
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Now consider the function,

DM T L
f() = 18_7”21:2 Z e i /1'2
T

n=-—oo

e~™"*t*is a broad gaussian of width 1/; (it's standard deviation).

The sum is a series of gaussian “spikes” each of width t.
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' i L N2
f@) = le‘mz’f2 E Lt /o2
T

n=—0oo

In the limit, lin% f(t), the broad envelope converges to 1 and the “spikes” become
T
infinitely narrow and tall so that,
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' i L N2
f(t) = le'mz’:2 E e e /TZ
7

n=—0oo

In the limit, lin% f(t), the broad envelope converges to 1 and the “spikes” become
T
infinitely narrow and tall so that,

me =lmf@®= ) 8t—n)

n=—0o
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We leave as an exercise for the student to show that the Fourier Series of our
gaussian spikes is

15: (t-n)? 5:
—n(t—n / -
i

n=—0oo n=—oo

MEMPHIS




30

We leave as an exercise for the student to show that the Fourier Series of our
gaussian spikes is

(0.0] i B 2 (0 0)
i z e Pl Z g~TT N gl2mnt oqihat

(9

n=—0oo n=—oo

(0.0)

. e 242 > 2.2 -
m(t) = lime~T*"t E e~ TN elZTL’Tlt
-0
n=-—oo
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We leave as an exercise for the student to show that the Fourier Series of our
gaussian spikes is

(0/0] i _ > 0
1 z e iy /1'2 = Z e_TsznzeiZTL'nt so that,

(9

I==90 n=-—oo

(0.0)

- 242 T
M(t) = lime ™"t 2 e~ TT N pi2mnt

-0
n=-oo
(0.0]
F[l'H(t)] — lir% p g i F[e—ﬂTtheiZTmt]
T
n=-—oo
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Recall the shifting property,

Flp(t — a)] = e @ (f)
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Recall the sifting property,

Flp(t —a)] = e?™ d(f) similarly, F7[®(f —n)] = e™¢p(t)
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Recall the sifting property,
Flp(t —a)] = e?™ d(f) similarly, F7[®(f —n)] = e™¢p(t)
A phase shift of nt in time is equivalent to a shift of f-n in frequency. Then,

—mt2t? i A
F[e Tt elZnnt] E 4 F[e Tt ]f=f_n
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Recall the sifting property,
Flp(t —a)] = e?™ d(f) similarly, F7[®(f —n)] = e™¢p(t)
A phase shift of nt in time is equivalent to a shift of f-n in frequency. Then,

—mt2t? i A
F[e Tt elZnnt] E 4 F[e Tt ]f=f_n

F[H’[(t)] o lrll,)% e—TL"[ZnZF[e—TL'TZtZ]
Nn=—co

f=f-n
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Recall the sifting property,
Flp(t —a)] = e?™ d(f) similarly, F7[®(f —n)] = e™¢p(t)
A phase shift of nt in time is equivalent to a shift of f-n in frequency. Then,

—mt2t? i A
F[e Tt elZnnt] E 4 F[e Tt ]f=f_n

FImM®] =lim » e ™ Flem
n=—oo

f=f-n

Recall the scaling property, F[¢(at)] = %CD (5) and knowing the FT of a

gaussian is another gaussian,
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Recall the sifting property,
Flp(t —a)] = e?™ d(f) similarly, F7[®(f —n)] = e™¢p(t)
A phase shift of nt in time is equivalent to a shift of f-n in frequency. Then,

—mt2t? i A
F[e Tt elZnnt] E 4 F[e Tt ]f=f_n

FImM®] =lim » e ™ Flem
n=—oo

f=f-n

Recall the scaling property, F[¢(at)] = %CD (5) and knowing the FT of a

gaussian is another gaussian,
MEMPHIS
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1
F[m(®] = lim e—mTin? E o~ (F-n)?/72
n=-—oo

MEMPHIS



39

1
F[m(®] = lim e—mTin? E o~ (F-n)?/72
n=-—oo
= HI[f]
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1
F[m(®] = lim e—mTin? E o~ (F-n)?/72
n=-—oo

= m[f)

Now let Y(t) = ¢(t) - r - I(rt) where ris the sampling rate.
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1
F[m(®] = lim e—mTin? E o~ (F-n)?/72
n=-—oo

= HI[f]

Now let Y(t) = ¢(t) - r - I(rt) where ris the sampling rate.

If the rate is in samples per second, then samples are separated in time by
% seconds.
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() = ¢(t) - r - MI(rt) Fly(®)] = Fl¢(®)] * F[rIT(rt)]
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() = ¢(t) - r - MI(rt) Fly(®)] = Fl¢(®)] * F[rIT(rt)]

Y(f) = d(f) * f r(rt)e~2Wtdt  Lett=rt  dr=rdt
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Y(t) = o) - r- MI(re) Fly(0)] = Flop(®)] * F[rII(rt)]
W(f) = O(f) * foorm(rt)e‘iz”ftdt Lett =1t dr = rdt

Y(f) = @(f) * j_oo rii(z)e 2" /r i—r
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() = ¢(t) - r - MI(rt) Fly(®)] = Fl¢(®)] * F[rIT(rt)]

W(f) = O(f) * f—oo rIll(rt)e~ 2™ tdt

Y(f) = @(f) * j_oo rii(z)e 2" /r i—r

= (f) M (f)

Lett =1t

dt = rdt

MEMPHIS



46

Y(t) = o) - r- MI(re) Fly(0)] = Flop(®)] * F[rII(rt)]
W(f) = O(f) * foorm(rt)e‘iz”ftdt Lett =1t dr = rdt

Y(f) = @(f) * j_oo rii(z)e 2" /r i—r

E%

R———
=7 > >
= 0 r /

IT1 (f) replicates ®(f) at intervals of r.
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Likewise, if ¥(f) = ®(f) - 1 I (f)

r
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Likewise, if ¥(f) = ®(f) - 1 I (f)

r

FY(] = ¢p(t) x F* Em (2)‘
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Likewise, if ¥(f) = ®(f) - 1 I (f)

r
I RN =G Em (é)‘

=g+ [ _m(y)eriar
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Likewise, if P(f) = ®(f) - 717 I (:ﬂ—f)

FUW(A)] = p(t) » F° Em (’;)]

d —1d
v—r f

o [2mera oo

Y(t) = d(t) * j_oo %Hl(v)eizm’”rdv
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Likewise, if P(f) = ®(f) - 717 I (:ﬂ—f)

FUW(A)] = p(t) » F° Em (’;)]

d —1d
v—r f

= ¢(t) * f;%m (é) el?2mtdf T
Y(t) = d(t) * j_i%m(v)eiz’w”rdv

= ¢(t) * MI(rt)
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Likewise, if P(f) = ®(f) - 717 I (:ﬂ—f)

Fw()l = o+ [-m(D))

d —1d
v—r f

= ¢(t) * f;%m (é) el?2mtdf T
Y(t) = d(t) * j_i%m(v)eiz’w”rdv

= ¢(t) * I(rt)
Digitizing in t makes ®(f) periodic (replicates).

Digitizing in f makes ¢(t) periodic.
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From Aster’s notes:

r I (rt) o (t)e r III (rt)

T 1t 0 Lt e T

T (f/r) &(f) * TII (f/r)

Nyquist
Interval

Figure 1: The Shah function and its Fourier Transform;
Fourier Transform of a Sampled Function (slightly aliased)
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From Aster’s notes:

r 01 (rt) o () r I (rt)
¢(t) is completely

recoverable from ®(f) if
®(f) is band limited

between + g

T 1t 0 Lt e T

T (f/r) &(f) * TII (f/r)

Nyquist
Interval

Figure 1: The Shah function and its Fourier Transform;
Fourier Transform of a Sampled Function (slightly aliased)
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From Aster’s notes:

r 01 (rt) o () r I (rt)
¢(t) is completely

recoverable from ®(f) if
®(f) is band limited

between + g

T 1t 0 Lt e T

III (/1) &(f) * I (f/r) If ®(f) is not band
limited between i;ithen

it is said to be aliased.

. .

0

Nyquist
Interval

Aster and Borchers Figure 3.1: The Shah function and its Aliased overlap.
Fourier Transform; Fourier Transform of a Sampled Function

(slightly aliased)
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From Aster’s notes:

r 01 (rt) o () r I (rt)
¢(t) is completely

recoverable from ®(f) if
®(f) is band limited

between + g

T 1t 0 Lt e T

III (/1) &(f) * I (f/r) If ®(f) is not band
limited between i;ithen

it is said to be aliased.

T = 2fmax
Eﬁ&i’«ff fv = 2fmax
Aster and Borchers Figure 3.1: The Shah function and its ,
N = Nyquist

Fourier Transform; Fourier Transform of a Sampled Function
(slightly aliased)
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hﬂtﬂlﬂﬂlﬂl'ﬂ'a"”tﬂﬂllltmm'a'n'4I
'IUIHIUI‘II'llﬂ“'l!lﬂ{ﬂIgﬂl’“ﬂ'ﬂ'ﬂ!

YRRV

Need at least two samples per
cycle to avoid aliasing (though

at two samples per cycle, the
amplitude will be incorrect

without perfect phase
alignment).

Il‘l“

|I|ﬂ’lgl\!l ::I ﬂ!ﬂ‘ﬂ
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'MMIHNIIIA'AI&I’MMMI‘IMLU'A'A'4I
AV NI WHWARARAVAVAUAT AW WHWANAR Need at least two samples per

VRURTBIRTRVHVAVAIAIRIRIBVATRIRTATA) cycle to avoid aliasing (though
i
&A VY ! V% -. v " a the amplitude will be incorrect
without perfect phase

alignment).

mmlm\nnln nnw A Aliased signals map to (—finax finax)
NG VR lgl m‘nyn oy £ i S e faf i
ULV VIV N Aluuuuu -

| ; R aliased frequency on (—frax finax)
r is the sample rate (or Nyquist
frequency) and f is the true
unaliased frequency.
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'MMIHNIIIA'AI&I’MMMI‘IMLU'A'A'4I
AV NI WHWARARAVAVAUAT AW WHWANAR Need at least two samples per

VRURTBIRTRVHVAVAIAIRIRIBVATRIRTATA) cycle to avoid aliasing (though
i
&A VY ! V% -. v " a the amplitude will be incorrect
without perfect phase

alignment).

immmmnmw PPARNNNIE Aiiased signals map o (~fas, fas
NIV NG VL m‘nyn oy £ 3t e AP
ANSZANINAAANS ik ;

Aluuuuu

o aliased frequency on (—frax frnax)s
r is the sample rate (or Nyquist
frequency) and f is the true
unaliased frequency.

e.qg. f = 60Hz,r = 100sps,

fo = £40Hz
MEMPHIS




Discrete time equivalents.
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Discrete time equivalents.
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Discrete time equivalents.

5 s n=m " -0 n>m
Ot (0] n#+m Gl n<m
it — 2 Y Heren=tandk =7+

k=—o0
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Discrete time equivalents.

5 s n=m " -0 n>m
Ot (0] n#+m Gl n<m
it — 2 Y Heren=tandk =7+

k=—o0

(0.0)

s Sl = 2 xk812nf(n—k)

k=—o0

Let s, = e2FiE S M
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Discrete time equivalents.

5 s n=m . o |l n>m
L L O, n+m n-m 0, n<m
(0¢]
Xn*VYn = 2 XkYVYn—k Heren=tand k=T
k=—0o0
(0] (0¢]
Let S ei27rfn g = 20, Wish = Z xkeian(n—k) - eiann Z xke—i2nfk
k=—c k=—o0
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Discrete time equivalents.

5 s n=m . o |l n>m
LUt LA O, n+xm n-m 0, n<m
(0 0]
it — 2 Y Heren=tandk =7+
k=—0o0
(0 0] (00}
Let s, = 2772 SN S Z X ei2T(k) — gizmfn Z Xy I2TTE
k=—c0 k=—o0

L eiZn’an(f)
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Discrete time equivalents.

5 s n=m . (1, n>m
L LA (s n#+m n-m 0, n<m

Xn *¥Yn = z X VYn—k Heren =tandk =1

k=—o0
Let s, = 2772 SN S Z X ei2T(k) — gizmfn Z Xy I2TTE
k=—o k=—c0
L eiZn’an(f)
Much like gt) = ¢(t) xe?™t = f ¢ (1)e?2t-Dqr

- eiantj ¢(T)e—i2ndeT - eiZTL'fth(f)
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We previously found, X(f) = Flx,] = F[rITl(rt)x(t)]
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We previously found, X(f) = Flx,] = F[rITl(rt)x(t)]

X(f) =rF

Z S(rt — n)x(t)‘

n=—0oo
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We previously found, X(f) = Flx,] = F[rITl(rt)x(t)]

X(f)=rF Z S(rt — n)x(t)‘ - rjoo Z S(rt —n)x(t) e 2™ tdt

n=—oo n=—oo
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We previously found, X(f) = Flx,] = F[rITl(rt)x(t)]

X(f)=rF Z S(rt — n)x(t)‘ - rjoo Z S(rt —n)x(t) e 2™ tdt

n=—oo n=—oo

The integral is O for rt —n + 0 and 1 for t = "/,

(00)

X(f)=r Z x(;) e~ iznf"/r

n=—0oo
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We previously found, X(f) = Flx,] = F[rITl(rt)x(t)]

X(f)=rF Z S(rt — n)x(t)‘ - rjoo Z S(rt —n)x(t) e 2™ tdt

n=-—oo )

The integral is O for rt —n + 0 and 1 for t = "/,

(00)

X(f)=r Z x(;) e~ iznf"/r

n=-—oo

Let r = 1 for simplicity which implies f,,.x = /.

(00}

X()= ) x(nye 2w

n=—oo
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(0.0)

() ) g

n=—0oo

We set f,,,, = %which means X (f) is band limited between (—%%) SO we can
recover the original sequence with the inverse Fourier Transform.

MEMPHIS



73

(0.0)

() ) g

n=—0oo

We set f,,,, = %which means X (f) is band limited between (—%%) SO we can
recover the original sequence with the inverse Fourier Transform.

1
/2
%, = FLX()] = j X(fe2nnaf

_1/2
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(0.0)

() ) g

n=—0oo

We set f,,,, = %which means X (f) is band limited between (—%%) SO we can
recover the original sequence with the inverse Fourier Tansform.

1
/2
%, = FLX()] = j X(fe2nnaf

_1/2

While this is a transform pair (x,, and X(f)), it is not symmetric and n is discrete

but infinite and f is continuous but finite.
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We have this less than ideal transform pair,

% 1/,
X()= Y xnye-tznsn = | X(Pemmag
n=-—oo = 1/
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We have this less than ideal transform pair,

% 1/,
X()= Y xnye-tznsn = | X(Pemmag
n=-—oo = 1/

We require X (f) be bandlimited and discrete which makes x,, periodic in N (recall
the convolution with the shah function).
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We have this less than ideal transform pair,

% 1/,
X()= Y xnye-tznsn = | X(Pemmag
n=-—oo = 1/

We require X (f) be bandlimited and discrete which makes x,, periodic in N (recall
the convolution with the shah function).

That makes f = %/, which lets X(f) become X, periodic. Then x,, on the Nth
interval may be fully recovered from X;, also on the Nth interval.
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We have this less than ideal transform pair,

% 1/,
X()= Y xnye-tznsn = | X(Pemmag
n=-—oo = 1/

We require X (f) be bandlimited and discrete which makes x,, periodic in N (recall
the convolution with the shah function).

That makes f = %/, which lets X(f) become X, periodic. Then x,, on the Nth
interval may be fully recovered from X;, also on the Nth interval.

N— N—-1
l lZTL’kn/N ad IDFT[X ] e —i2mkn/N _
Xn N k Xy Xn€ = DFT|x,,]

MEMPHIS

This is the discrete Fourier Transform.
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To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

N-—
l Z l2TL’kn/N
Xn N 4
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To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

DFT[x,] = DFT |-

N
z lZTL’le/N]

MEMPHIS



81

To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

DFT[x,] = DFT

N—-
l z l27Tkn/N
N j—

N-1 N-1 1 N-1

z xne—lZnnm/N L Z _Z Xkeiann/N e—i2nnm/N
N

n=0 n=0 k=0
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To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

DFT[x,] = DFT

N—-
lz l27Tkn/N

N j—

N

Z l27Tkn/N] —i2ntnm/N
N— N-

Z Z i2nn(k—m)/N

N-1
z xne—lZnnm/N i Z

=0 n=0

S
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To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

DFT[x,] = DFT

N—-
l z l27Tkn/N
N j—
N—-1 N
z xne—iZnnm/N — Z Z l27Tkn/N] —i2nnm/N
=0 n=0 k=0

1 N-1 N-1
' X i2nn(k—-m)/N
N Z ; Z ;
k=0 n=0

De Moivre’s theorem says, (e*)" = e - ey - e3 - e = e™ (where n is a positive integer)

S
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To verify the transform pair we apply the forward DFT both sides of the IDFT
(though we must take care with our choice of summation indices since k is
already used for the sequence X,,).

DFT[x,] = DFT

N—-
l z l27Tkn/N
N j—
N—-1 N
z xne—iZnnm/N — Z Z l27Tkn/N] —i2nnm/N
=0 n=0 k=0

1 N-1 N-1
' X i2nn(k—-m)/N
N Z ; Z ;
k=0 n=0

De Moivre’s theorem says, (e*)" = e - ey - e3 - e = e™ (where n is a positive integer)

N-—-1 N-—-1
2 X, Z (ei2n(k—m)/N)n
k=0

- MEMPHIS
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e~i2nnm/N —
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S
Il
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When (k — m) is a multiple of N, (k"m)/N is an integer and,

i2n(k-m)/N — pi2mj — q sin(j.Zn) = For int ]
e =Vl cos(j2m) = 1 or integer j
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When (k — m) is a multiple of N, (""m)/N is an integer and,

i2n(k—m)/N _ ji2mj _ 1 Sil’l(]iZT[) =1 For int 5
e = e = COS(]ZT[) =1 or integer j

N-1 N-1
: For values of (k — m) that are
2m(k—m)/N\" _ [
SOl z(el i ) P Z 1"=N multiples of N.
n=0 n=0
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When (k — m) is a multiple of N, (""m)/N is an integer and,

i2n(k-m)/N — gizmj — q sin(j.Zn) = For int ]
e = gl27 = cos(j2m) = 1 or integer j

N-1 N-1
: For values of (k — m) that are
2m(k—m)/N\" _ [
SOl z(el i ) P Z 1"=N multiples of N.
n=0 n=0

When (k — m) is not a multiple of N it's a bit more complicated.

MEMPHIS
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Consider the geometric series,

s=a+ar+ar®+ar’+--+ar™!
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Consider the geometric series,

s=a+ar+ar*+ard+--+ar™?! Multiply by r

rs=ar+ar®+ar3+ar*+--+ ar™

MEMPHIS
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Consider the geometric series,

s=a+ar+ar*+ar3+--+ar™? Multiply by r
rs'='ar + ar2 ¥y dro g e et Subtract rs from s

s—rs=a—ar"

MEMPHIS
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Consider the geometric series,

s=a+ar+ar*+ard+--+ar™?! Multiply by r
VoL
rs=ar+ar*+ar3+ar*+ -+ ar® Subtract rs from s
s—rs=a—ar" = s(l—-r)=a(l-1r")
1—r"
Py IF =g

MEMPHIS
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Consider the geometric series,

s=a+ar+ar*+ard+--+ar™?! Multiply by r
S
rs=ar+ar*+ar3+ar*+ -+ ar® Subtract rs from s
s—rs=a—ar" = s(l—-r)=a(l-1r")
1—7" - 1—7rN
Py 7 - 2 Zrn:1—r

=0

=

MEMPHIS
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Consider the geometric series,

s=a+ar+ar*+ard+--+ar™?! Multiply by r
rs=ar+ar:+ar3+ar*+--+ar® Subtract rs from s
S—rs=a—ar"® - s(l—r)za(l—r")

N—1
1 — oy Z "l rN
1—r 1—r
n=0

N-1 T N
(eiZn(k—m)/N)” ; o (81211( m)/N)

T 1 — eizn(k-m)/N

n=0

MEMPHIS
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Consider the geometric series,

s=a+ar+ar*+ard+--+ar™?! Multiply by r
rs=ar+ar:+ar3+ar*+--+ar® Subtract rs from s
S—rs=a—ar"® - s(l—r)za(l—r")

N—1
1 — oy Z "l rN
1—r 1—r
n=0

— i2m(k—m) /N _ i (eizﬂ(k—m)/N)N g 1 — ei2n(k-m)
Z (e ) 1 — ei2n(k-m)/N 1 — pi2m(k—m)/N
n=0

Remember we’re working with values of (k — m) not integer

multiples of N. MEMPHIS
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Both k and m are always integers so that e*?"(k=™) has an exponent that is
always an integer multiple of 2m, so that,
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Both k and m are always integers so that e*?"(k=™) has an exponent that is
always an integer multiple of 2m, so that,

121t(k—
Tisek S 1-1 _o When (k —m) are not integer

1 — eizn(k-m)/N — | _ gizn(k—-m)/N _ multiples of N.
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Both k and m are always integers so that e*?"(k=™) has an exponent that is
always an integer multiple of 2m, so that,

121t(k—
Tisek S 1-1 _o When (k —m) are not integer

1 — eizn(k-m)/N — | _ gizn(k—-m)/N _ multiples of N.

N-1 ) .

So that z (eiZn(k—m)/N)n _ [N (k—m) integer multiples of N
A 0 otherwise

n=

MEMPHIS
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Both k and m are always integers so that e*?"(k=™) has an exponent that is
always an integer multiple of 2m, so that,

121t(k—
Tisek S 1-1 _o When (k —m) are not integer

1 — eizn(k-m)/N — | _ gizn(k—-m)/N _ multiples of N.

N-1 ) .

So that z (eiZn(k—m)/N)n _ [N (k—m) integer multiples of N
A 0 otherwise

n=

We’re only working with values of k and m on the interval (0,N — 1),

N-1
z(emn(k—m)/zv)" e
n=0

MEMPHIS
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Now back to the DFT.

N—- N-1
xne—iZTmm/N ly 7 (ei2n(k—m)/1v)n
N i

k=0 n=0

(N

MEMPHIS
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NS N-1 N-
- 1
Now back to the DFT. Z o 7 7 i2m(ie—m)/N)"

1N 1
NE XpNog—m = Xm
0

MEMPHIS
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N-1 1 N-1 N-—
Now back to the DFT. Z Ylprs 2SR Ny 7 i2m(k— m)/N)
N-1
1
~ N Nég—m = X
k=0

So we successfully verified our DFT/IDFT pair.

N-1 1 N-1
ch ad Z ¢ne—i2nkn/N (pn i Nz q)keiann/N
n=0 k=0
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NS N-1 N-
- 1
Now back to the DFT. Z o 7 7 i2m(ie—m)/N)"

1N 1
NE XiNOg—m = Xm
0

So we successfully verified our DFT/IDFT pair.

N-1 1 N-1
ch ad Z ¢ne—i2nkn/N (pn i Nz q)keiann/N
n=0 k=0

Similarly to the continuous FT, we can decompose ¢,, into its constituent
frequency components ®;, and we can reconstruct ¢,, from those frequency
components. Except here, both frequency and time are finite length,

periodic, and discrete. (very handy for working with computers)
MEMPHIS




103
The DFT is periodic in N.

N-1
XN—k = Z xne—lZRn(N—k)/N
n=0

MEMPHIS
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The DFT is periodic in N.

N—-1 N—-1
XN—k = Z xne—lZRn(N—k)/N -3 z xne—lZRnBLZnnk/N
n=0 n=0

MEMPHIS
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The DFT is periodic in N.

N—-1 N—-1
XN—k = Z xne—lZRn(N—k)/N -3 z xne—lZRnBLZnnk/N
n=0 n=0

0

1
B = COS(Z%I) + isin}[nn) =

MEMPHIS
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The DFT is periodic in N.

N—-1 N—-1
XN—k = Z xne—lZRn(N—k)/N -3 z xne—lZRnBLZnnk/N
n=0 n=0

1 0] N-1
B = COS(Z%I) + isin}[nn) —il ANk = Z e =
n=0

MEMPHIS
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The DFT is periodic in N.

N—-1 N—-1
XN—k = Z xne—lZRn(N—k)/N -3 z xne—lZnnBLZnnk/N
n=0 n=0
1 0 N-1
] . A 4 i2nnk/N _—
i A— cos(Z%z) + Lsm}[nn) —il Xn-k = Z Xneé (=]
n=0
X—k XN—k
* *
S DR P DR : 2T 2 s RN
| \ : [ \ \ [ \
) \ : I \ / \ ! \
— A : i N -/ Nl Sy
_N | 0 N 2N
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The DFT is periodic in N.

N-1 N-1
XN—k = Z xne—lZRn(N—k)/N -3 z xne—lZnnBLZnnk/N
n=0 n=0
1 0 N-1
] . A 4 i2nnk/N _—
i A— cos(Z%z) + Lsm}[nn) —il Xn-k = Z Xneé (=]
n=0
X—k XN—k
* *
S DR P DR : 2T 2 s RN
| \ : [ \ \ [ \
) \ : ! \ / \ ! \
— N : i S =/ N B Sy
_N ’ 0 N 2N

Matlab FFT vector. MEMPHIS
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Indexing

If N is even, plot — > < k < (5 — 1) If N is odd, plot — = <k < =2

MEMPHIS
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Indexing

If N is even, plot =% < k < (5 — 1) If N is odd, plot — =2 < k < ©-2
I
: : ‘ Time resolution
I At I t=n-At I o At=%, N=T:r
n=0 1 n=N-—-1

r = sample rate, samps/sec

MEMPHIS




Indexing

. N N

Ileseven,pIot—;SkS(E—l)
i

et |
=0 1 n=N-1

| | e e |

>

e o,

ST o

2FNyquist = 2Fnax

If N is odd, plot — = <k < =2

111

2

Time resolution

At—T N=T
_N' — r

r = sample rate, samps/sec

Frequency resolution
2Fmax r

Af— :N

MEMPHIS




Indexing
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If N is even, plot =% < k < (5 — 1) If N is odd, plot — =2 < k < ©-2
T

; ' ' Time resolution
| At | t=n-At | i

y At = —, N=T:-r
R, i )

= O 1 \~\\\\\ n= N = 1
r = sample rate, samps/sec
. Fy & At setby r

| Af | f=k-Af | Frequency resolution
2 [ MFZ%Mzi

2FNyquist = 2Fnax

Fy, or the frequency band, is limited by the sample rate.

MEMPHIS
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If N is even, plot =% < k < (5 — 1) If N is odd, plot — =2 < k < ©-2
T
' ' Time resolution
| At | t=n-At T ¥
y 4 At = —, N=T:-r
| r g | >t N
— 1 \\‘\\\\ ///’/, n=N-1
r = sample rate, samps/sec
T & Af setby N . Fy & At setby r 5 i
| Af | f=k-Af | Frequency resolution
2 [ MFZ%Mzi

2FNyquist = 2Fnax

Fy, or the frequency band, is limited by the sample rate.

Af, or frequency resolution, is limited by N or T.

MEMPHIS
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Discrete Convolution

Let z, = x,, * y, DFT|[z,] = XYy zn = IDFT[X} Y] = xp * yp

MEMPHIS
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Discrete Convolution

Let z, = x,, * y, DFT|[z,] = XYy zn = IDFT[X} Y] = xp * yp

1 N-1
A Nkz_oxkykeiZNRn/N

MEMPHIS
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Discrete Convolution

Let z, = x,, * V. DFT[z,] = XY, z, = IDFT[XYi] = %, * Vi,
1 N—-1 1 N—-1 =5l
= Nz Xkykeiann/N s Nz xe —lZTL‘kl/N] lz Vi e—lZTL’km/N] i2ckn/N
k=0 k=0 Li=0

MEMPHIS
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Discrete Convolution

Let z, = x,, * V. DFT[z,] = XY, z, = IDFT[XYi] = %, * Vi,
1 N—-1 1 N—-1 =5l
= Nz Xkykeiann/N s Nz xe —lZTL‘kl/N] lz Vi e—lZTL’km/N] i2ckn/N
k=0 k=0 Li=0

X, = DFT[xn] Yy = DFT[yn]

MEMPHIS
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Discrete Convolution

Let z, = x,, * y, DFT|z,] = XiYx zn = IDFT[X} Yy ] = xp * Yy

N-1

1 1
il X.Y [2Tkn/N _— _z

k=0

=il

xe —lanl/N]lzy e—lZTL’km/N] i2tkn/N
=0

X, = DFT[xn] Yy = DFT[yn]

N-1

2

-1 N-1

XiYme
m=0

—i27'ckl/Ne—ianm/Nei2nkn/N

=l

=
Il
O
o
Il
(=) &

MEMPHIS
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Discrete Convolution

Let z, = x,, * V. DFT[z,] = XY, z, = IDFT[XYi] = %, * Vi,
1 N—-1 1 N—-1 =5l
= Nz Xkykeiann/N s Nz xe —lZTL‘kl/N] lz Vi e—lZTL’km/N] i2ckn/N
k=0 k=0 Li=0

X, = DFT[xn] Yy = DFT[yn]

—i27'ckl/Ne—ianm/Nei2nkn/N

i2rk(n—-m-1)/N

MEMPHIS
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N-1

: N, n—m-101=0
2 -m-1)/N _ ’
From before, Z G {0, otherwise
k=0

MEMPHIS
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N-1

: N, n—m-1=0
—-m-1 - )
From before, Z G {0, otherwise
k=0

i2mrk(n—-m-1)/N

MEMPHIS




N-1

From before Z AL {](\)’ '
k=0 g

n—-m-1=0
otherwise

122
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N-1

: N, n—m-101=0
2 -m-1)/N _ ’
From before, Z G {0, otherwise
k=0

k=0
| )
m=n-—1I !
N5n—m—l
Sifts valuesof m =n — [
1 N-1 N-1 /
> ﬁ X1 Ym [N5n—m—l]
=0 m=0

MEMPHIS
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N-1
N, n—m-101=0

12 -m-1l)/N _—
From before, Z e {0, otherwise
k=0

Sifts valuesof m =n — [
N—-1 N-1 /

X1 Ym [N5n—m—l]

= z xYn_1  The discrete convolution.

MEMPHIS
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Linear Convolution: Zn = Z X1Yn-1

[=—0o0
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Linear Convolution: Zn = Z X1Yn-1
[=—0o0
N-—1
Circular Convolution: z, = Z X1Vn-1
=)

MEMPHIS




o 127

Linear Convolution: Zn = Z X1¥Yn—1

[=—0o0

N—-1
Circular Convolution: z, = Z X1Vn-1
[=0

X Periodicity can be graphically modeled by putting the
data vectors on a circle.

Yn-1

MEMPHIS
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Linear Convolution: Zn = Z X1Yn-1
[=—0o0
N-—1
Circular Convolution: z, = Z X1Vn-1
=)

X Periodicity can be graphically modeled by putting the
data vectors on a circle.

Yn-1 Multiply and sum, then rotate one point. Repeat for
N — 1 points.
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Linear Convolution: Zn = Z X1¥Yn—1

[=—00
N-1

Circular Convolution: z, = Z X1Yn—1
[=0

X Periodicity can be graphically modeled by putting the
data vectors on a circle.

Yn-1 Multiply and sum, then rotate one point. Repeat for
N — 1 points.

We almost always want linear convolution but only have N — 1 and summing over
(—o0, ) is not feasible for discrete finite length series. So we approximate linear
convolution using circular convolution by padding with zeros.
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If x,, has N points and y,, has M points, we pad x with M points and y with N points
then keep the first N + M — 1 values in the convolution.
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If x,, has N points and y,, has M points, we pad x with M points and y with N points
then keep the first N + M — 1 values in the convolution.

X1
Vn-i N+M-1
Zn = 2 X1Yn-1
0’s O's £

MEMPHIS
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If x,, has N points and y,, has M points, we pad x with M points and y with N points
then keep the first N + M — 1 values in the convolution.

X1
Vn-i N+M-1
@ Zn = 2 X1Yn-1
0’s O's £

Another way of looking at it is windowing x and y by a boxcar prior to convolution so

that all points outside the window are 0.
MEMPHIS
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If x,, has N points and y,, has M points, we pad x with M points and y with N points
then keep the first N + M — 1 values in the convolution.

X1
Yy N+M-1
Zn = 2 X1Yn-1
0’s O's £

Another way of looking at it is windowing x and y by a boxcar prior to convolution so
that all points outside the window are 0.

Our data are finite length, so we’re still performing circular convolution, but we
approximate the linear convolution by windowing the data.

MEMPHIS




0.5 x1
0 L 1 | | 1 1 1 1 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1
0.5 x2=ifft(X1.*X1)
0 L 1 1 | 1 1 1 L 1
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
1
0.5 x3
O 1 i} 1 I L | Il
0 0.5 1 1.5 2 25 3 35
1
0.5
x4=ifft(X3.*X3)
0 1 1 1 1 Il
0 05 1 1.5 2 25 3 35
1
0.5
conv(x1,x1)
0 Il 1 1 L 1
0 0.5 1 1.5 2 2.5 3 35
time (s)

The matlab conv command
takes care of the padding for you
and returns N + M — 1, points.

Figure to the left is from wrap.m
that we reviewed earlier.

MEMPHIS



135

More discrete analogs to the continuous FT.

N-1

DFT[Xn 710 oo Xohae —lZT[kn/N

=0

S

MEMPHIS
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More discrete analogs to the continuous FT.
o Letn—ny =1 n=1+n,

DFT[Xn 710 oo Xohae —lZT[kn/N

=0

S

MEMPHIS
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More discrete analogs to the continuous FT.

o Letn—ng=L, n=1+n,

DFT[xn no f— xn no —lZTL'le/N FOFTL - 0, l: _no

=0

S

For i = N =10 =S NS =0

MEMPHIS
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More discrete analogs to the continuous FT.

Letn—ng=L, n=1+n,

N-1

DFT[xTL—TLO] f— xn_noe_iznkn/N FOF n = 0, l == _no
I Forn=N-1,l=N-1-n,
N—no—l

Il
INg
=
aQ
|
<
=)
;V
=
+
S
S)
| —
~
=
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More discrete analogs to the continuous FT.

Letn—ng=L, n=1+n,

N-1
DFT|xa =i ar e et Forn=0, I = —n,
=0
4 For i = N =10 =S NS =0
Ntiozl N-ng—1
. 2 X e—i2nk(l+no)/N: —i2mwkng/N z X:e i2rkl/N
l——TlO l——no
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More discrete analogs to the continuous FT.

Letn—ng=L, n=1+n,

N-1
DFT|xa =i ar e et Forn=0, I = —n,
=0
4 For i = N =10 =S NS =0
N—no—l N—Tlo—l
= 2 xle—ian(Hno)/N: o —i2mkng/N Z x e ~2TKU/N
l=—TL0 l=—n0

Periodicity says it doesn’'t matter what N-length interval we sum over so,

. . MEMPHIS
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More discrete analogs to the continuous FT.

Letn—ng=L, n=1+n,

N-1
DFT|xa =i ar e et Forn=0, I = —n,
=0
4 For i = N =10 =S NS =0
N—no—l N—Tlo—l
= 2 xle—ian(Hno)/N: o —i2mkng/N Z x e ~2TKU/N
l=—TL0 l=—n0

Periodicity says it doesn’'t matter what N-length interval we sum over so,

N-1

DFT[xn_nO] — g~ i2mkng/N Z xle—i2nkl/N
=0

MEMPHIS
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More discrete analogs to the continuous FT.

Letn—ng=L, n=1+n,

N-1
DFT|xa =i ar e et Forn=0, I = —n,
=0
4 For i = N =10 =S NS =0
N—no—l N—Tlo—l
= 2 xle—ian(Hno)/N: o —i2mkng/N Z x e ~2TKU/N
l=—TL0 l=—n0

Periodicity says it doesn’'t matter what N-length interval we sum over so,

N-1
— ,—l2mkng/N —i2mkl/N ¥
DFT[xn_nO] =e o/ Z xe o e lZﬂkno/NXk
[=0

Time shift <4==p Phase shift
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S

(=)

Zlf—*

1
1 .
N X i2nkn/N
Nj k€

k=0

N-—
Z lZTL’kTL/N

[=0

N-1

1 )
F % X i2rin/N
NEIW

[=0

, N—1
- X* —i2min/N
NEI”

|

*

145

MEMPHIS




b O o — 7

1

N-
1
N

k=0

N—-1 1 N—-1 1 A
N X i2nkn/N _Z X i2rin/N
NS‘W WAL
n=0 k=0 =0
N—-1
XkeLann/N lz Xl*e—izmn/N]
N
[=0

Xle*eiZTL'n(k—l)/N

|

*
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b O o — 7

1

N-
1
N

k=0

N—-1 1 N—-1
N X ei27'rkn/N
N§1k
n=0 k=0
XkeLann/N
[=0

Xle*eiZTL'n(k—l)/N .

1 3
N2

N-1

[=0

, N—1
- X* —i2min/N
NEI”

-1 N-

1

N—

1

O

k

S

Oh

=

(=] §
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*

1 )
F % X i2rin/N
NEIW ]

X4 (eiZn(k—l)/N)n
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N
% @
o
>3
Ll
3

7 7 Xle*(eiZn(k—l)/N)n

]
=,
S~
S A o
: NI
Q I T
> =2 2
— B  —— — o
| T = | ]
NZZ W = 2n
T I
=,
W *el =
g 5 =
S i - il
V = ~ &
X2 = L]
S — | = g T
i -0 R
AL z 2 Ml
S
— | = b.m VM - il
PN i e
Q _ 15 A2
= ' S VMm Nv/l Se
= = ﬂv/‘ﬂ 4. ﬂ
5 _Nk TG (T el T
— T T
=2 S = =
i it i it 1_2 1_2
> e > e = =

S« S



S
Il

1

(=)

1

N

N

2

1

*
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X (eiZn(k—l)/N)n

N-1 1 N-1 1 N-1
X AT 7 _7 X, et2mkn/N _Z X, et2nin/N
Fg | VA W
1 Ni=1 1 N-1
i XkeLann/N - Xl*e—izmn/N
N N
k=0 [=0
N-1N-1N-1 1 —1N—1N-
7 X, X eizmk-D/N _ —
n=0 k=0 [=0 n=0 k=0 [=0
N-1N-1 N 1 N-1 N-1
* —¥ > *
Xk Xl 5k—l i N2 2 Xka 1
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1 N-1 1 N-1 .
Z |xn|2 LH xnxr*z di 4 7 XkeLZTERn/N ot z Xlelzmn/N
, |N N
n=0 n=0 n=0 k= =0
N-1 1

1 N-
s X elZTL’kTL/N
N k

, N—1
- X* —i2min/N
NEI”

n=0 k=0 (=0
1 N-1N-1N-1 1 —1N-1N-1
* 1 = * i - n
= : S“ y Xle8127Tn(k /N _— m ‘ ‘ Xle (eLZTL'(k l)/N)
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1 Introduction to Signals and Systems

f(r)

Fig. 1.5 Examples of Signals: (a) analog, continuous-time (b) digital, continuous-time
(c) analog, discrete-time (d) digital, discrete-time.

From Signal Processing and Linear Systems, B.P. Lathi, 1998. M=\l xdg!’




Example of amplitude resolution CATM.EHZ.NM.00

212 = 42048 2%% = 48,388,608

500 520.1
1
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Examples of Discrete Processes from Signal Processing and Linear Systems by
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.
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Examples of Discrete Processes from Signal Processing and Linear Systems by
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.

Consider a person who makes bank deposits at regular intervals, T (e.g. once each
month). The bank pays interest on the balance during T. We wish to find the output
(the account balance) of the “system” to the input (the deposit).
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Examples of Discrete Processes from Signal Processing and Linear Systems by
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.

Consider a person who makes bank deposits at regular intervals, T (e.g. once each
month). The bank pays interest on the balance during T. We wish to find the output
(the account balance) of the “system” to the input (the deposit).

f (k) = deposit made at kt" interval
y(k) = account balance at k immediately after the deposit

T = interest rate per dollar per T
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The balance, y(k), is the sum of the previous balance, y(k — 1), the interest earned
on y(k — 1) during T, and the deposit f (k).

k
f (k) ° &8
ty(k—1) | Interest B Delay
T V| T
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The balance, y(k), is the sum of the previous balance, y(k — 1), the interest earned
on y(k — 1) during T, and the deposit f (k).

k
f (k) ° &8
ty(k—1) | Interest B Delay
T V| T

y(k) =ylk—1) +y(k — 1) + f (k)

=1 +7yk -1 + f(k)
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If we assume monthly deposits are a constant, D, then

Yo=D
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If we assume monthly deposits are a constant, D, then

Yo=D

ylzTyo‘l‘D:TD‘l‘D
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If we assume monthly deposits are a constant, D, then

Yo =D

V1 :Tyo‘l‘D =1tD+ D

yzzTyl‘l‘D:TzD‘l‘TD‘l‘D
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If we assume monthly deposits are a constant, D, then
Yo =D
V1 :Tyo‘l‘D =1tD+ D

yzzTyl‘l‘D:TzD‘l‘TD‘l‘D

N-1
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f (k) students register for a class in the k" semester and must buy a book. Books
last three semesters. 1/, of the books from the previous semester are sold as
used. y(k) is the number of new books sold.
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f (k) students register for a class in the k" semester and must buy a book. Books
last three semesters. 1/, of the books from the previous semester are sold as
used. y(k) is the number of new books sold.

y(k) = number of new books sold in semester k.
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f (k) students register for a class in the k" semester and must buy a book. Books
last three semesters. 1/, of the books from the previous semester are sold as
used. y(k) is the number of new books sold.

y(k) = number of new books sold in semester k.

y(k — 1) = number of new books sold in semester k — 1.
1/, v(k — 1) of these new books are sold as used in semester k.
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f (k) students register for a class in the k" semester and must buy a book. Books
last three semesters. 1/, of the books from the previous semester are sold as
used. y(k) is the number of new books sold.

y(k) = number of new books sold in semester k.

y(k — 1) = number of new books sold in semester k — 1.
1/, v(k — 1) of these new books are sold as used in semester k.

y(k — 2) = number of new books sold in semester k — 2.

1/, y(k — 2) of these new books are sold as used in semester k-1
and 1/, of those, or 1/, y(k — 2) are sold as used in semester k
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f (k) students register for a class in the k" semester and must buy a book. Books
last three semesters. 1/, of the books from the previous semester are sold as
used. y(k) is the number of new books sold.

y(k) = number of new books sold in semester k.

y(k — 1) = number of new books sold in semester k — 1.
1/, v(k — 1) of these new books are sold as used in semester k.

y(k — 2) = number of new books sold in semester k — 2.

1/, y(k — 2) of these new books are sold as used in semester k-1
and 1/, of those, or 1/, y(k — 2) are sold as used in semester k
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f(k) =y(k) + Zy(k — 19 25 1—6y(k — 2)




1 1
f(k) =y(k) + Zy(k =21kt 1—6y(k — 2)
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y(k —2)
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