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See Aster and Borchers, Time Series Analysis, chapter 3.
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A normal distribution, or bell curve, is a gaussian distribution of the form,

𝑓 𝑥 = 𝑒 !" #"$ !

%&!

where, 𝜇 = 𝑚𝑒𝑎𝑛
𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎% = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

This distribution is very common (hence the name normal distribution).
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The Fourier Series is conceptually similar to the FT but mathematically quite different.

We can expand any periodic function into a weighted sum of sines and cosines,

𝑓 𝑥 =
1
2𝑎' +7

()*

+

𝑎( cos 𝑛𝑥 + 𝑏( sin 𝑛𝑥

Where,

𝑎( =
1
𝜋
?
",

,
𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥

𝑏( =
1
𝜋?",

,
𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥
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The Fourier Series in complex form,

𝑓 𝑥 = 7
()"+

+

𝑐(𝑒-(# where 𝑐( = ∫",
, 𝑓(𝑥)𝑒-(#𝑑𝑥

We’ll see that the discrete Fourier Transform is

𝜙( =
1
𝑁7

.)'

/"*

Φ.𝑒 0-%,.(
/

Φ. = 7
()'

/"*

𝜙(𝑒 0"-%,.(
/

Discrete, band limited, finite 
length series.
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We can use the sampling function, or replicating function also referred to as the 
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We can use the sampling function, or replicating function also referred to as the 
Shah function due to its resemblance to the Cyrillic letter shah, 

ΠΠ

The Shah function, ΠΠ(𝑡), is a series of delta functions,

t

It is also sometimes called a dirac comb (after the dirac delta).
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We’ll use the dirac comb to help mathematically develop the Discrete Fourier 
Transform from the continuous but first we need to find the FT of a Guassian.
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We’ll use the dirac comb to help mathematically develop the Discrete Fourier 
Transform from the continuous but first we need to find the FT of a Guassian.
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We’ll use the dirac comb to help mathematically develop the Discrete Fourier 
Transform from the continuous but first we need to find the FT of a gaussian.

Let 𝜙 𝑡 = 𝑒",1!
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Φ 𝑓 = 𝑒",2! ?
"+

+

𝑒", 14-2 !𝑑𝑡 Let 𝜏 = 𝑡 + 𝑖𝑓, 𝑑𝜏 = 𝑑𝑡
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Φ 𝑓 = 𝑒",2! ?
"+

+

𝑒", 14-2 !𝑑𝑡 Let 𝜏 = 𝑡 + 𝑖𝑓, 𝑑𝜏 = 𝑑𝑡

Φ 𝑓 = 𝑒",2! ?
"+

+

𝑒",6!𝑑𝜏

From tables, ∫"+
+ 𝑒"#!𝑑𝑥 = 𝜋

∴ ?
"+

+

𝑒",6!𝑑𝜏 = 1

Φ 𝑓 = 𝑒",2! ?
"+

+

𝑒",6!𝑑𝜏 = 𝑒",2!

The Fourier Transform of a gaussian is another gaussian!
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Now consider the function,

𝑓 𝑡 =
1
𝜏 𝑒

",6!1! 7
()"+

+

𝑒 !", 1"( !

6!

𝑒",6!1!is a broad gaussian of width ⁄* 6 (it’s standard deviation).

The sum is a series of gaussian “spikes” each of width 𝜏.

𝜏𝜏𝜏 𝜏 𝜏 t-t

1
𝜏
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𝜏𝜏𝜏 𝜏 𝜏 t-t

1
𝜏

𝑓 𝑡 =
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𝜏𝜏𝜏 𝜏 𝜏 t-t

1
𝜏

In the limit, lim
6→'

𝑓(𝑡), the broad envelope converges to 1 and the “spikes” become 
infinitely narrow and tall so that,

𝑓 𝑡 =
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𝜏𝜏𝜏 𝜏 𝜏 t-t

1
𝜏

In the limit, lim
6→'

𝑓(𝑡), the broad envelope converges to 1 and the “spikes” become 
infinitely narrow and tall so that,

𝑓 𝑡 =
1
𝜏 𝑒

",6!1! 7
()"+

+

𝑒 !", 1"( !

6!

𝑡 = lim
6→'

𝑓 𝑡 = 7
()"+

+

𝛿(𝑡 − 𝑛)ΠΠ



29

We leave as an exercise for the student to show that the Fourier Series of our 
gaussian spikes is 
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We leave as an exercise for the student to show that the Fourier Series of our 
gaussian spikes is 

1
𝜏
7
()"+

+

𝑒 !", 1"( !

6! = 7
()"+

+

𝑒",6!(!𝑒-%,(1 so that, 

ΠΠ 𝑡 = lim
6→'

𝑒",6!1! 7
()"+

+

𝑒",6!(!𝑒-%,(1

ΠΠ𝐹[ (𝑡)] = lim
6→'

7
()"+

+

𝑒",6!(! 𝐹 𝑒",6!1!𝑒-%,(1
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Recall the shifting property,

𝐹 𝜙 𝑡 − 𝑎 = 𝑒-%,82Φ(𝑓)
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Recall the sifting property,
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8
Φ 2

8
and knowing the FT of a 

gaussian is another gaussian,
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ΠΠ𝐹[ (𝑡)] = lim
6→'

7
()"+

+

𝑒",6!(!
1
𝜏 𝑒

", 2"( !/6!
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ΠΠ𝐹[ (𝑡)] = lim
6→'

7
()"+

+

𝑒",6!(!
1
𝜏 𝑒

", 2"( !/6!

Π[𝑓]= Π
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ΠΠ𝐹[ (𝑡)] = lim
6→'

7
()"+

+

𝑒",6!(!
1
𝜏 𝑒

", 2"( !/6!

Π[𝑓]= Π

Now let 𝜓 𝑡 = 𝜙(𝑡) Q 𝑟 Q ΠΠ(𝑟𝑡) where r is the sampling rate.
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ΠΠ𝐹[ (𝑡)] = lim
6→'

7
()"+

+

𝑒",6!(!
1
𝜏 𝑒

", 2"( !/6!

Π[𝑓]= Π

Now let 𝜓 𝑡 = 𝜙(𝑡) Q 𝑟 Q ΠΠ(𝑟𝑡) where r is the sampling rate.

If the rate is in samples per second, then samples are separated in time by 
*
:

seconds.

𝑡

−
1
𝑟 0

1
𝑟
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𝜓 𝑡 = 𝜙(𝑡) Q 𝑟 Q ΠΠ(𝑟𝑡) 𝐹[𝜓 𝑡 ] = 𝐹[𝜙 𝑡 ] ∗ 𝐹[rΠΠ(𝑟𝑡)]
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𝑟ΠΠ 𝑟𝑡 𝑒"-%,21𝑑𝑡 Let 𝜏 = 𝑟𝑡 𝑑𝜏 = 𝑟𝑑𝑡
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Ψ 𝑓 = Φ(𝑓) ∗ ?
"+

+
𝑟ΠΠ(𝜏)𝑒"-%,2 ⁄6 :

𝑑𝜏
𝑟
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+
𝑟ΠΠ(𝜏)𝑒"-%,2 ⁄6 :

𝑑𝜏
𝑟

= Φ(𝑓) ∗ ΠΠ
𝑓
𝑟
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𝜓 𝑡 = 𝜙(𝑡) Q 𝑟 Q ΠΠ(𝑟𝑡) 𝐹[𝜓 𝑡 ] = 𝐹[𝜙 𝑡 ] ∗ 𝐹[rΠΠ(𝑟𝑡)]

Ψ(𝑓) = Φ(𝑓) ∗ ?
"+

+
𝑟ΠΠ 𝑟𝑡 𝑒"-%,21𝑑𝑡 Let 𝜏 = 𝑟𝑡 𝑑𝜏 = 𝑟𝑑𝑡

Ψ 𝑓 = Φ(𝑓) ∗ ?
"+

+
𝑟ΠΠ(𝜏)𝑒"-%,2 ⁄6 :

𝑑𝜏
𝑟

= Φ(𝑓) ∗ ΠΠ
𝑓
𝑟

𝑓
−𝑟 𝑟0

Φ(𝑓)

ΠΠ 2
:

replicates Φ 𝑓 at intervals of 𝑟.
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟

𝐹"* Ψ(𝑓) = 𝜙(𝑡) ∗ 𝐹"*
1
𝑟 ΠΠ

𝑓
𝑟
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟

𝐹"* Ψ(𝑓) = 𝜙(𝑡) ∗ 𝐹"*
1
𝑟 ΠΠ

𝑓
𝑟

= 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π

𝑓
𝑟
𝑒-%,21𝑑𝑓
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟

𝐹"* Ψ(𝑓) = 𝜙(𝑡) ∗ 𝐹"*
1
𝑟 ΠΠ

𝑓
𝑟

= 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π

𝑓
𝑟
𝑒-%,21𝑑𝑓 𝑣 =

𝑓
𝑟 𝑑𝑣 =

1
𝑟 𝑑𝑓

𝜓 𝑡 = 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π(𝑣)𝑒-%,<:1𝑟𝑑𝑣
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟

𝐹"* Ψ(𝑓) = 𝜙(𝑡) ∗ 𝐹"*
1
𝑟 ΠΠ

𝑓
𝑟

= 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π

𝑓
𝑟
𝑒-%,21𝑑𝑓 𝑣 =

𝑓
𝑟 𝑑𝑣 =

1
𝑟 𝑑𝑓

𝜓 𝑡 = 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π(𝑣)𝑒-%,<:1𝑟𝑑𝑣

= 𝜙(𝑡) ∗ ΠΠ(𝑟𝑡)
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Likewise, if Ψ 𝑓 = Φ(𝑓) Q *
:
Q ΠΠ

𝑓
𝑟

𝐹"* Ψ(𝑓) = 𝜙(𝑡) ∗ 𝐹"*
1
𝑟 ΠΠ

𝑓
𝑟

= 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π

𝑓
𝑟
𝑒-%,21𝑑𝑓 𝑣 =

𝑓
𝑟 𝑑𝑣 =

1
𝑟 𝑑𝑓

𝜓 𝑡 = 𝜙(𝑡) ∗ ?
"+

+ 1
𝑟 Π
Π(𝑣)𝑒-%,<:1𝑟𝑑𝑣

= 𝜙(𝑡) ∗ ΠΠ(𝑟𝑡)

Digitizing in 𝑡 makes Φ(𝑓) periodic (replicates).

Digitizing in 𝑓 makes 𝜙(𝑡) periodic.
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Figure 1: The Shah function and its Fourier Transform; 
Fourier Transform of a Sampled Function (slightly aliased) 

From Aster’s notes:
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Figure 1: The Shah function and its Fourier Transform; 
Fourier Transform of a Sampled Function (slightly aliased) 

From Aster’s notes:

𝜙 𝑡 is completely 
recoverable from Φ(𝑓) if 
Φ(𝑓) is band limited 
between ± :

%
.
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Aster and Borchers Figure 3.1: The Shah function and its 
Fourier Transform; Fourier Transform of a Sampled Function 
(slightly aliased) 

From Aster’s notes:

𝜙 𝑡 is completely 
recoverable from Φ(𝑓) if 
Φ(𝑓) is band limited 
between ± :

%
.

If Φ(𝑓) is not band 
limited between ± :

%
then 

it is said to be aliased.

Aliased overlap.



56From Aster’s notes:

𝜙 𝑡 is completely 
recoverable from Φ(𝑓) if 
Φ(𝑓) is band limited 
between ± :

%
.

If Φ(𝑓) is not band 
limited between ± :

%
then 

it is said to be aliased.

𝑟 = 2𝑓=8#

𝑓/ = 2𝑓=8#

𝑁 ⟹ 𝑁𝑦𝑞𝑢𝑖𝑠𝑡Aster and Borchers Figure 3.1: The Shah function and its 
Fourier Transform; Fourier Transform of a Sampled Function 
(slightly aliased) 
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Need at least two samples per 
cycle to avoid aliasing (though 
at two samples per cycle, the 
amplitude will be incorrect 
without perfect phase 
alignment).
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Need at least two samples per 
cycle to avoid aliasing (though 
the amplitude will be incorrect 
without perfect phase 
alignment).

Aliased signals map to −𝑓=8# , 𝑓=8#
by 𝑓8 = ± 𝑟 − 𝑓 where 𝑓8 is the 
aliased frequency on −𝑓=8# , 𝑓=8# , 
𝑟 is the sample rate (or Nyquist 
frequency) and 𝑓 is the true 
unaliased frequency.
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Need at least two samples per 
cycle to avoid aliasing (though 
the amplitude will be incorrect 
without perfect phase 
alignment).

Aliased signals map to −𝑓=8# , 𝑓=8#
by 𝑓8 = ± 𝑟 − 𝑓 where 𝑓8 is the 
aliased frequency on −𝑓=8# , 𝑓=8# , 
𝑟 is the sample rate (or Nyquist 
frequency) and 𝑓 is the true 
unaliased frequency.

e.g. 𝑓 = 60𝐻𝑧, 𝑟 = 100𝑠𝑝𝑠,
𝑓8 = ±40𝐻𝑧
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚

𝑥( ∗ 𝑦( = 7
.)"+

+

𝑥.𝑦(". Here 𝑛 ⟹ 𝑡 and 𝑘 ⟹ 𝜏
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚

𝑥( ∗ 𝑦( = 7
.)"+

+

𝑥.𝑦(". Here 𝑛 ⟹ 𝑡 and 𝑘 ⟹ 𝜏

Let 𝑠( = 𝑒-%,2( 𝑔( = 𝑥( ∗ 𝑠( = 7
.)"+

+

𝑥.𝑒-%,2((".)
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚

𝑥( ∗ 𝑦( = 7
.)"+

+

𝑥.𝑦(". Here 𝑛 ⟹ 𝑡 and 𝑘 ⟹ 𝜏

Let 𝑠( = 𝑒-%,2( 𝑔( = 𝑥( ∗ 𝑠( = 7
.)"+

+

𝑥.𝑒-%,2((".) = 𝑒-%,2( 7
.)"+

+

𝑥.𝑒"-%,2.
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚

𝑥( ∗ 𝑦( = 7
.)"+

+

𝑥.𝑦(". Here 𝑛 ⟹ 𝑡 and 𝑘 ⟹ 𝜏

Let 𝑠( = 𝑒-%,2( 𝑔( = 𝑥( ∗ 𝑠( = 7
.)"+

+

𝑥.𝑒-%,((".) = 𝑒-%,2( 7
.)"+

+

𝑥.𝑒"-%,2.

= 𝑒-%,2(𝑋(𝑓)
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Discrete time equivalents.

𝛿("= = `1, 𝑛 = 𝑚
0, 𝑛 ≠ 𝑚 𝐻("= = `1, 𝑛 ≥ 𝑚

0, 𝑛 < 𝑚

𝑥( ∗ 𝑦( = 7
.)"+

+

𝑥.𝑦(". Here 𝑛 ⟹ 𝑡 and 𝑘 ⟹ 𝜏

Let 𝑠( = 𝑒-%,2( 𝑔( = 𝑥( ∗ 𝑠( = 7
.)"+

+

𝑥.𝑒-%,((".) = 𝑒-%,2( 7
.)"+

+

𝑥.𝑒"-%,2.

= 𝑒-%,2(𝑋(𝑓)

Much like 𝑔 𝑡 = 𝜙 𝑡 ∗ 𝑒-%,21 = ?
"+

+
𝜙(𝜏)𝑒-%,2(1"6)𝑑𝜏

= 𝑒-%,21?
"+

+
𝜙 𝜏 𝑒"-%,26𝑑𝜏 = 𝑒-%,21Φ(𝑓)
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We previously found, 𝑋 𝑓 = 𝐹 𝑥( = 𝐹[𝑟ΠΠ 𝑟𝑡 𝑥(𝑡)]
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We previously found, 𝑋 𝑓 = 𝐹 𝑥( = 𝐹[𝑟ΠΠ 𝑟𝑡 𝑥(𝑡)]

𝑋(𝑓) = 𝑟𝐹 7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡)
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We previously found, 𝑋 𝑓 = 𝐹 𝑥( = 𝐹[𝑟ΠΠ 𝑟𝑡 𝑥(𝑡)]

𝑋(𝑓) = 𝑟𝐹 7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) = 𝑟?
"+

+
7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) 𝑒"-%,21𝑑𝑡
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We previously found, 𝑋 𝑓 = 𝐹 𝑥( = 𝐹[𝑟ΠΠ 𝑟𝑡 𝑥(𝑡)]

𝑋(𝑓) = 𝑟𝐹 7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) = 𝑟?
"+

+
7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) 𝑒"-%,21𝑑𝑡

The integral is 0 for 𝑟𝑡 − 𝑛 ≠ 0 and 1 for 𝑡 = ⁄( :.

𝑋 𝑓 = 𝑟 7
()"+

+

𝑥
𝑛
𝑟 𝑒"-%,2 ⁄( :
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We previously found, 𝑋 𝑓 = 𝐹 𝑥( = 𝐹[𝑟ΠΠ 𝑟𝑡 𝑥(𝑡)]

𝑋(𝑓) = 𝑟𝐹 7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) = 𝑟?
"+

+
7
()"+

+

𝛿 𝑟𝑡 − 𝑛 𝑥(𝑡) 𝑒"-%,21𝑑𝑡

The integral is 0 for 𝑟𝑡 − 𝑛 ≠ 0 and 1 for 𝑡 = ⁄( :.

Let 𝑟 = 1 for simplicity which implies 𝑓=8# = ⁄* %.

𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2(

𝑋 𝑓 = 𝑟 7
()"+

+

𝑥
𝑛
𝑟 𝑒"-%,2 ⁄( :
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𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2(

We set 𝑓=8# =
*
%

which means 𝑋(𝑓) is band limited between − *
%
, *
%

so we can 
recover the original sequence with the inverse Fourier Transform.
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𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2(

We set 𝑓=8# =
*
%

which means 𝑋(𝑓) is band limited between − *
%
, *
%

so we can 
recover the original sequence with the inverse Fourier Transform.

𝑥( = 𝐹"* 𝑋(𝑓) = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓
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𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2(

We set 𝑓=8# =
*
%

which means 𝑋(𝑓) is band limited between − *
%
, *
%

so we can 
recover the original sequence with the inverse Fourier Tansform.

𝑥( = 𝐹"* 𝑋(𝑓) = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓

While this is a transform pair (𝑥( 𝑎𝑛𝑑 𝑋(𝑓)), it is not symmetric and n is discrete 
but infinite and f is continuous but finite. 
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We have this less than ideal transform pair,

𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2( 𝑥( = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓
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We have this less than ideal transform pair,

𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2( 𝑥( = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓

We require 𝑋(𝑓) be bandlimited and discrete which makes 𝑥( periodic in N (recall 
the convolution with the shah function).
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We have this less than ideal transform pair,

𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2( 𝑥( = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓

We require 𝑋(𝑓) be bandlimited and discrete which makes 𝑥( periodic in N (recall 
the convolution with the shah function).

That makes 𝑓 = ⁄. / which lets 𝑋(𝑓) become 𝑋. periodic.  Then 𝑥( on the Nth 
interval may be fully recovered from 𝑋. also on the Nth interval.
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We have this less than ideal transform pair,

𝑋 𝑓 = 7
()"+

+

𝑥(𝑛)𝑒"-%,2( 𝑥( = ?
" 0* %

0* %

𝑋(𝑓)𝑒-%,2(𝑑𝑓

We require 𝑋(𝑓) be bandlimited and discrete which makes 𝑥( periodic in N (recall 
the convolution with the shah function).

That makes 𝑓 = ⁄. / which lets 𝑋(𝑓) become 𝑋. periodic.  Then 𝑥( on the Nth 
interval may be fully recovered from 𝑋. also on the Nth interval.

𝑥( =
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(// = 𝐼𝐷𝐹𝑇 𝑋. 𝑋. = 7
()'

/"*

𝑥(𝑒"-%,.(// = 𝐷𝐹𝑇 𝑥(

This is the discrete Fourier Transform.
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To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).

𝑥( =
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//
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𝐷𝐹𝑇 𝑥( = 𝐷𝐹𝑇
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//

To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).
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𝐷𝐹𝑇 𝑥( = 𝐷𝐹𝑇
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//

To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).

7
()'

/"*

𝑥(𝑒"-%,(=// = 7
()'

/"*
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(// 𝑒"-%,(=//
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𝐷𝐹𝑇 𝑥( = 𝐷𝐹𝑇
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//

To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).

7
()'

/"*

𝑥(𝑒"-%,(=// = 7
()'

/"*
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(// 𝑒"-%,(=//

=
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,((."=)//
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𝐷𝐹𝑇 𝑥( = 𝐷𝐹𝑇
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//

To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).

7
()'

/"*

𝑥(𝑒"-%,(=// = 7
()'

/"*
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(// 𝑒"-%,(=//

=
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,((."=)//

De Moivre’s theorem says, 𝑒# ( = 𝑒*# Q 𝑒%# Q 𝑒>#⋯𝑒(# = 𝑒(# (where n is a positive integer)
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𝐷𝐹𝑇 𝑥( = 𝐷𝐹𝑇
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(//

To verify the transform pair we apply the forward DFT both sides of the IDFT 
(though we must take care with our choice of summation indices since k is 
already used for the sequence 𝑋.).

7
()'

/"*

𝑥(𝑒"-%,(=// = 7
()'

/"*
1
𝑁7

.)'

/"*

𝑋.𝑒-%,.(// 𝑒"-%,(=//

=
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,((."=)//

7
()'

/"*

𝑥(𝑒"-%,(=// =
1
𝑁
7
.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,(."=)// (

De Moivre’s theorem says, 𝑒# ( = 𝑒*# Q 𝑒%# Q 𝑒>#⋯𝑒(# = 𝑒(# (where n is a positive integer)
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When 𝑘 − 𝑚 is a multiple of 𝑁, k."=
/ is an integer and,

𝑒-%,(."=)// = 𝑒-%,? = 1
sin 𝑗2𝜋 = 0
cos 𝑗2𝜋 = 1 For integer 𝑗
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When 𝑘 − 𝑚 is a multiple of 𝑁, k."=
/ is an integer and,

𝑒-%,(."=)// = 𝑒-%,? = 1
sin 𝑗2𝜋 = 0
cos 𝑗2𝜋 = 1 For integer 𝑗

so that 7
()'

/"*

𝑒-%,(."=)// ( = 7
()'

/"*

1( = 𝑁
For values of 𝑘 − 𝑚 that are 
multiples of 𝑁.
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When 𝑘 − 𝑚 is a multiple of 𝑁, k."=
/ is an integer and,

𝑒-%,(."=)// = 𝑒-%,? = 1
sin 𝑗2𝜋 = 0
cos 𝑗2𝜋 = 1 For integer 𝑗

so that 7
()'

/"*

𝑒-%,(."=)// ( = 7
()'

/"*

1( = 𝑁
For values of 𝑘 − 𝑚 that are 
multiples of 𝑁.

When (𝑘 − 𝑚) is not a multiple of 𝑁 it’s a bit more complicated. 
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r

Subtract 𝑟𝑠 from 𝑠

𝑠 − 𝑟𝑠 = 𝑎 − 𝑎𝑟(



91

Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r

Subtract 𝑟𝑠 from 𝑠

𝑠 − 𝑟𝑠 = 𝑎 − 𝑎𝑟( 𝑠 1 − 𝑟 = 𝑎(1 − 𝑟()⟹

𝑠 = 𝑎
1 − 𝑟(

1 − 𝑟
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r

Subtract 𝑟𝑠 from 𝑠

𝑠 − 𝑟𝑠 = 𝑎 − 𝑎𝑟( 𝑠 1 − 𝑟 = 𝑎(1 − 𝑟()⟹

𝑠 = 𝑎
1 − 𝑟(

1 − 𝑟
⟹ 7

()'

/"*

𝑟( =
1 − 𝑟/

1 − 𝑟
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r

Subtract 𝑟𝑠 from 𝑠

𝑠 − 𝑟𝑠 = 𝑎 − 𝑎𝑟( 𝑠 1 − 𝑟 = 𝑎(1 − 𝑟()⟹

𝑠 = 𝑎
1 − 𝑟(

1 − 𝑟
⟹ 7

()'

/"*

𝑟( =
1 − 𝑟/

1 − 𝑟

7
()'

/"*

𝑒-%,(."=)// ( =
1 − 𝑒-%,(."=)// /

1 − 𝑒-%,(."=)//
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Consider the geometric series,

𝑠 = 𝑎 + 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> +⋯+ 𝑎𝑟("*

𝑟𝑠 = 𝑎𝑟 + 𝑎𝑟% + 𝑎𝑟> + 𝑎𝑟@ +⋯+ 𝑎𝑟(

Multiply by r

Subtract 𝑟𝑠 from 𝑠

𝑠 − 𝑟𝑠 = 𝑎 − 𝑎𝑟( 𝑠 1 − 𝑟 = 𝑎(1 − 𝑟()⟹

𝑠 = 𝑎
1 − 𝑟(

1 − 𝑟
⟹ 7

()'

/"*

𝑟( =
1 − 𝑟/

1 − 𝑟

7
()'

/"*

𝑒-%,(."=)// ( =
1 − 𝑒-%,(."=)// /

1 − 𝑒-%,(."=)//
=

1 − 𝑒-%,(."=)

1 − 𝑒-%,(."=)//

Remember we’re working with values of (𝑘 − 𝑚) not integer 
multiples of 𝑁. 
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Both 𝑘 and 𝑚 are always integers so that 𝑒-%,(."=) has an exponent that is 
always an integer multiple of 2𝜋, so that,
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Both 𝑘 and 𝑚 are always integers so that 𝑒-%,(."=) has an exponent that is 
always an integer multiple of 2𝜋, so that,

1 − 𝑒-%,(."=)

1 − 𝑒-%,(."=)//
=

1 − 1
1 − 𝑒-%,(."=)//

= 0 When (𝑘 − 𝑚) are not integer 
multiples of 𝑁. 
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Both 𝑘 and 𝑚 are always integers so that 𝑒-%,(."=) has an exponent that is 
always an integer multiple of 2𝜋, so that,

1 − 𝑒-%,(."=)

1 − 𝑒-%,(."=)//
=

1 − 1
1 − 𝑒-%,(."=)//

= 0 When (𝑘 − 𝑚) are not integer 
multiples of 𝑁. 

7
()'

/"*

𝑒-%,(."=)// ( = `𝑁0
(𝑘 − 𝑚) integer multiples of N
otherwise

So that
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Both 𝑘 and 𝑚 are always integers so that 𝑒-%,(."=) has an exponent that is 
always an integer multiple of 2𝜋, so that,

1 − 𝑒-%,(."=)

1 − 𝑒-%,(."=)//
=

1 − 1
1 − 𝑒-%,(."=)//

= 0 When (𝑘 − 𝑚) are not integer 
multiples of 𝑁. 

7
()'

/"*

𝑒-%,(."=)// ( = `𝑁0
(𝑘 − 𝑚) integer multiples of N
otherwise

We’re only working with values of 𝑘 and 𝑚 on the interval (0, 𝑁 − 1), 

7
()'

/"*

𝑒-%,(."=)// ( = 𝑁𝛿."=

So that
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Now back to the DFT. 7
()'

/"*

𝑥(𝑒"-%,(=// =
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,(."=)// (
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Now back to the DFT. 7
()'

/"*

𝑥(𝑒"-%,(=// =
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,(."=)// (

=
1
𝑁7

.)'

/"*

𝑋.𝑁𝛿."= = 𝑋=
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Now back to the DFT. 7
()'

/"*

𝑥(𝑒"-%,(=// =
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,(."=)// (

=
1
𝑁7

.)'

/"*

𝑋.𝑁𝛿."= = 𝑋=

So we successfully verified our DFT/IDFT pair.

Φ. = 7
()'

/"*

𝜙(𝑒"-%,.(// 𝜙( =
1
𝑁7

.)'

/"*

Φ.𝑒-%,.(//
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Now back to the DFT. 7
()'

/"*

𝑥(𝑒"-%,(=// =
1
𝑁7

.)'

/"*

𝑋. 7
()'

/"*

𝑒-%,(."=)// (

=
1
𝑁7

.)'

/"*

𝑋.𝑁𝛿."= = 𝑋=

So we successfully verified our DFT/IDFT pair.

Φ. = 7
()'

/"*

𝜙(𝑒"-%,.(// 𝜙( =
1
𝑁7

.)'

/"*

Φ.𝑒-%,.(//

Similarly to the continuous FT, we can decompose 𝜙( into its constituent 
frequency components Φ., and we can reconstruct 𝜙( from those frequency 
components.  Except here, both frequency and time are finite length, 
periodic, and discrete. (very handy for working with computers)
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)//
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)// = 7
()'

/"*

𝑥(𝑒"-%,(𝑒-%,(.//
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)// = 7
()'

/"*

𝑥(𝑒"-%,(𝑒-%,(.//

𝑒-%,( = cos 2𝜋𝑛 + 𝑖 sin 2𝜋𝑛
01

= 1
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)// = 7
()'

/"*

𝑥(𝑒"-%,(𝑒-%,(.//

𝑒-%,( = cos 2𝜋𝑛 + 𝑖 sin 2𝜋𝑛
01

= 1 𝑋/". = 7
()'

/"*

𝑥(𝑒-%,(.// = 𝑋".
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)// = 7
()'

/"*

𝑥(𝑒"-%,(𝑒-%,(.//

𝑒-%,( = cos 2𝜋𝑛 + 𝑖 sin 2𝜋𝑛
01

= 1 𝑋/". = 7
()'

/"*

𝑥(𝑒-%,(.// = 𝑋".

0 𝑁

𝑋/".

−𝑁

𝑋".

2𝑁
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The DFT is periodic in 𝑁.

𝑋/". = 7
()'

/"*

𝑥(𝑒"-%,((/".)// = 7
()'

/"*

𝑥(𝑒"-%,(𝑒-%,(.//

𝑒-%,( = cos 2𝜋𝑛 + 𝑖 sin 2𝜋𝑛
01

= 1 𝑋/". = 7
()'

/"*

𝑥(𝑒-%,(.// = 𝑋".

0 𝑁

𝑋/".

−𝑁

𝑋".

Matlab FFT vector.

2𝑁
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Indexing

If 𝑁 is even, plot − /
%
≤ 𝑘 ≤ /

%
− 1 If 𝑁 is odd, plot − (/"*)

%
≤ 𝑘 ≤ (/"*)

%
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Indexing

If 𝑁 is even, plot − /
%
≤ 𝑘 ≤ /

%
− 1 If 𝑁 is odd, plot − (/"*)

%
≤ 𝑘 ≤ (/"*)

%

𝑡

𝑛 = 0 1

∆𝑡

𝑛 = 𝑁 − 1

𝑇

Time resolution

∆𝑡 =
𝑇
𝑁 , 𝑁 = 𝑇 Q 𝑟𝑡 = 𝑛 Q ∆𝑡

𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒, samps/sec



111
Indexing

If 𝑁 is even, plot − /
%
≤ 𝑘 ≤ /

%
− 1 If 𝑁 is odd, plot − (/"*)

%
≤ 𝑘 ≤ (/"*)

%

𝑡

𝑛 = 0 1

∆𝑡

𝑛 = 𝑁 − 1

𝑓

k= 0 1

∆𝑓

𝑘 = 𝑁 − 1

𝑇

2𝐹/ABC-D1 = 2𝐹=8#

Time resolution

∆𝑡 =
𝑇
𝑁 , 𝑁 = 𝑇 Q 𝑟

Frequency resolution

∆𝑓 =
2𝐹=8#
𝑁 =

𝑟
𝑁

𝑡 = 𝑛 Q ∆𝑡

𝑓 = 𝑘 Q ∆𝑓

𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒, samps/sec
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Indexing

If 𝑁 is even, plot − /
%
≤ 𝑘 ≤ /

%
− 1 If 𝑁 is odd, plot − (/"*)

%
≤ 𝑘 ≤ (/"*)

%

𝑡

𝑛 = 0 1

∆𝑡

𝑛 = 𝑁 − 1

𝑓

k= 0 1

∆𝑓

𝑘 = 𝑁 − 1

𝑇

2𝐹/ABC-D1 = 2𝐹=8#

Time resolution

∆𝑡 =
𝑇
𝑁 , 𝑁 = 𝑇 Q 𝑟

Frequency resolution

∆𝑓 =
2𝐹=8#
𝑁 =

𝑟
𝑁

𝑡 = 𝑛 Q ∆𝑡

𝑓 = 𝑘 Q ∆𝑓

𝐹/, or the frequency band, is limited by the sample rate.

𝐹/ & ∆𝑡 set by 𝑟
𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒, samps/sec
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Indexing

If 𝑁 is even, plot − /
%
≤ 𝑘 ≤ /

%
− 1 If 𝑁 is odd, plot − (/"*)

%
≤ 𝑘 ≤ (/"*)

%

𝑡

𝑛 = 0 1

∆𝑡

𝑛 = 𝑁 − 1

𝑓

k= 0 1

∆𝑓

𝑘 = 𝑁 − 1

𝑇

2𝐹/ABC-D1 = 2𝐹=8#

Time resolution

∆𝑡 =
𝑇
𝑁 , 𝑁 = 𝑇 Q 𝑟

Frequency resolution

∆𝑓 =
2𝐹=8#
𝑁 =

𝑟
𝑁

𝑡 = 𝑛 Q ∆𝑡

𝑓 = 𝑘 Q ∆𝑓

𝐹/, or the frequency band, is limited by the sample rate.

∆𝑓, or frequency resolution, is limited by 𝑁 or 𝑇.

𝑇 & ∆𝑓 set by N 𝐹/ & ∆𝑡 set by 𝑟
𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒, samps/sec
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(

𝑧( =
1
𝑁7

.)'

/"*

𝑋.𝑌.𝑒-%,.(//
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(

𝑧( =
1
𝑁7

.)'

/"*

𝑋.𝑌.𝑒-%,.(// =
1
𝑁7

.)'

/"*

7
E)'

/"*

𝑥E𝑒"-%,.E// 7
=)'

/"*

𝑦=𝑒"-%,.=// 𝑒-%,.(//
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(

𝑧( =
1
𝑁7

.)'

/"*

𝑋.𝑌.𝑒-%,.(// =
1
𝑁7

.)'

/"*

7
E)'

/"*

𝑥E𝑒"-%,.E// 7
=)'

/"*

𝑦=𝑒"-%,.=// 𝑒-%,.(//

𝑋. = 𝐷𝐹𝑇 𝑥( 𝑌. = 𝐷𝐹𝑇 𝑦(
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(

𝑧( =
1
𝑁7

.)'

/"*

𝑋.𝑌.𝑒-%,.(// =
1
𝑁7

.)'

/"*

7
E)'

/"*

𝑥E𝑒"-%,.E// 7
=)'

/"*

𝑦=𝑒"-%,.=// 𝑒-%,.(//

𝑋. = 𝐷𝐹𝑇 𝑥( 𝑌. = 𝐷𝐹𝑇 𝑦(

=
1
𝑁7

.)'

/"*

7
E)'

/"*

7
=)'

/"*

𝑥E𝑦=𝑒"-%,.E//𝑒"-%,.=//𝑒-%,.(//
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Discrete Convolution

Let 𝑧( = 𝑥( ∗ 𝑦( 𝐷𝐹𝑇 𝑧( = 𝑋.𝑌. 𝑧( = 𝐼𝐷𝐹𝑇 𝑋.𝑌. = 𝑥( ∗ 𝑦(

𝑧( =
1
𝑁7

.)'

/"*

𝑋.𝑌.𝑒-%,.(// =
1
𝑁7

.)'

/"*

7
E)'

/"*

𝑥E𝑒"-%,.E// 7
=)'

/"*

𝑦=𝑒"-%,.=// 𝑒-%,.(//

𝑋. = 𝐷𝐹𝑇 𝑥( 𝑌. = 𝐷𝐹𝑇 𝑦(

=
1
𝑁7

.)'

/"*

7
E)'

/"*

7
=)'

/"*

𝑥E𝑦=𝑒"-%,.E//𝑒"-%,.=//𝑒-%,.(//

=
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 7
.)'

/"*

𝑒-%,.(("="E)//
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From before, 7
.)'

/"*

𝑒-%,(("="E)// = `𝑁,0,
𝑛 − 𝑚 − 𝑙 = 0
otherwise
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From before, 7
.)'

/"*

𝑒-%,(("="E)// = `𝑁,0,
𝑛 − 𝑚 − 𝑙 = 0
otherwise

𝑧( =
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 7
.)'

/"*

𝑒-%,.(("="E)//
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From before, 7
.)'

/"*

𝑒-%,(("="E)// = `𝑁,0,
𝑛 − 𝑚 − 𝑙 = 0
otherwise

𝑁𝛿("="E
𝑚 = 𝑛 − 𝑙

𝑧( =
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 7
.)'

/"*

𝑒-%,.(("="E)//
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From before, 7
.)'

/"*

𝑒-%,(("="E)// = `𝑁,0,
𝑛 − 𝑚 − 𝑙 = 0
otherwise

𝑁𝛿("="E
𝑚 = 𝑛 − 𝑙

=
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 𝑁𝛿("="E

Sifts values of 𝑚 = 𝑛 − 𝑙

𝑧( =
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 7
.)'

/"*

𝑒-%,.(("="E)//
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From before, 7
.)'

/"*

𝑒-%,(("="E)// = `𝑁,0,
𝑛 − 𝑚 − 𝑙 = 0
otherwise

𝑁𝛿("="E
𝑚 = 𝑛 − 𝑙

=
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 𝑁𝛿("="E

Sifts values of 𝑚 = 𝑛 − 𝑙

= 7
E)'

/"*

𝑥E𝑦("E The discrete convolution.

𝑧( =
1
𝑁7

E)'

/"*

𝑥E 7
=)'

/"*

𝑦= 7
.)'

/"*

𝑒-%,.(("="E)//
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Linear Convolution: 𝑧( = 7
E)"+

+

𝑥E𝑦("E
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Linear Convolution: 𝑧( = 7
E)"+

+

𝑥E𝑦("E

Circular Convolution: 𝑧( = 7
E)'

/"*

𝑥E𝑦("E
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Linear Convolution: 𝑧( = 7
E)"+

+

𝑥E𝑦("E

Circular Convolution: 𝑧( = 7
E)'

/"*

𝑥E𝑦("E

𝑥E

𝑦("E

Periodicity can be graphically modeled by putting the 
data vectors on a circle.
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Linear Convolution: 𝑧( = 7
E)"+

+

𝑥E𝑦("E

Circular Convolution: 𝑧( = 7
E)'

/"*

𝑥E𝑦("E

𝑥E

𝑦("E Multiply and sum, then rotate one point.  Repeat for 
𝑁 − 1 points.

Periodicity can be graphically modeled by putting the 
data vectors on a circle.
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Linear Convolution: 𝑧( = 7
E)"+

+

𝑥E𝑦("E

Circular Convolution: 𝑧( = 7
E)'

/"*

𝑥E𝑦("E

𝑥E

𝑦("E Multiply and sum, then rotate one point.  Repeat for 
𝑁 − 1 points.

Periodicity can be graphically modeled by putting the 
data vectors on a circle.

We almost always want linear convolution but only have 𝑁 − 1 and summing over 
−∞,∞ is not feasible for discrete finite length series.  So we approximate linear 

convolution using circular convolution by padding with zeros. 
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If 𝑥( has 𝑁 points and 𝑦( has 𝑀 points, we pad 𝑥 with 𝑀 points and 𝑦 with 𝑁 points 
then keep the first 𝑁 +𝑀 − 1 values in the convolution.
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If 𝑥( has 𝑁 points and 𝑦( has 𝑀 points, we pad 𝑥 with 𝑀 points and 𝑦 with 𝑁 points 
then keep the first 𝑁 +𝑀 − 1 values in the convolution.

𝑥E
𝑦("E

0’s0’s

𝑧( = 7
E)'

/4F"*

𝑥E𝑦("E
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If 𝑥( has 𝑁 points and 𝑦( has 𝑀 points, we pad 𝑥 with 𝑀 points and 𝑦 with 𝑁 points 
then keep the first 𝑁 +𝑀 − 1 values in the convolution.

𝑥E
𝑦("E

0’s0’s

𝑧( = 7
E)'

/4F"*

𝑥E𝑦("E

Another way of looking at it is windowing 𝑥 and 𝑦 by a boxcar prior to convolution so 
that all points outside the window are 0.
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If 𝑥( has 𝑁 points and 𝑦( has 𝑀 points, we pad 𝑥 with 𝑀 points and 𝑦 with 𝑁 points 
then keep the first 𝑁 +𝑀 − 1 values in the convolution.

𝑥E
𝑦("E

0’s0’s

𝑧( = 7
E)'

/4F"*

𝑥E𝑦("E

Another way of looking at it is windowing 𝑥 and 𝑦 by a boxcar prior to convolution so 
that all points outside the window are 0.

Our data are finite length, so we’re still performing circular convolution, but we 
approximate the linear convolution by windowing the data.
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The matlab conv command 
takes care of the padding for you 
and returns 𝑁 +𝑀 − 1, points.

Figure to the left is from wrap.m
that we reviewed earlier.
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G

For 𝑛 = 0, 𝑙 = −𝑛'

For 𝑛 = 𝑁 − 1, 𝑙 = 𝑁 − 1 − 𝑛'
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G

For 𝑛 = 0, 𝑙 = −𝑛'

For 𝑛 = 𝑁 − 1, 𝑙 = 𝑁 − 1 − 𝑛'

= 7
E)"("

/"(""*

𝑥E𝑒"-%,. E4(" //
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G

For 𝑛 = 0, 𝑙 = −𝑛'

For 𝑛 = 𝑁 − 1, 𝑙 = 𝑁 − 1 − 𝑛'

= 7
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G

For 𝑛 = 0, 𝑙 = −𝑛'

For 𝑛 = 𝑁 − 1, 𝑙 = 𝑁 − 1 − 𝑛'

= 7
E)"("

/"(""*

𝑥E𝑒"-%,. E4(" //= 𝑒"-%,.("// 7
E)"("

/"(""*

𝑥E𝑒"-%,.E//

Periodicity says it doesn’t matter what N-length interval we sum over so,

0 𝑁−𝑁 2𝑁
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More discrete analogs to the continuous FT.
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More discrete analogs to the continuous FT.

𝐷𝐹𝑇 𝑥("(" = 7
()'

/"*

𝑥("("𝑒
"-%,.(//

Let 𝑛 − 𝑛' = 𝑙, 𝑛 = 𝑙 + 𝑛G

For 𝑛 = 0, 𝑙 = −𝑛'

For 𝑛 = 𝑁 − 1, 𝑙 = 𝑁 − 1 − 𝑛'

= 7
E)"("

/"(""*

𝑥E𝑒"-%,. E4(" //= 𝑒"-%,.("// 7
E)"("

/"(""*

𝑥E𝑒"-%,.E//

Periodicity says it doesn’t matter what N-length interval we sum over so,

𝐷𝐹𝑇 𝑥("(" = 𝑒"-%,.("// 7
E)'

/"*

𝑥E𝑒"-%,.E//= 𝑒"-%,.("//𝑋.

Time shift Phase shift
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From Signal Processing and Linear Systems, B.P. Lathi, 1998.
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Example of amplitude resolution CATM.EHZ.NM.00

2*% = ±2048 2%@ = ±8,388,608
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Examples of Discrete Processes from Signal Processing and Linear Systems by 
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.
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Examples of Discrete Processes from Signal Processing and Linear Systems by 
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.

Consider a person who makes bank deposits at regular intervals, 𝑇 (e.g. once each 
month). The bank pays interest on the balance during 𝑇.  We wish to find the output 
(the account balance) of the “system” to the input (the deposit).
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Examples of Discrete Processes from Signal Processing and Linear Systems by 
B.P. Lathi, 1998, Section 8.5, pp 562-564.

Discrete systems don’t necessarily need to be digitized versions of continuous systems.

Consider a person who makes bank deposits at regular intervals, 𝑇 (e.g. once each 
month). The bank pays interest on the balance during 𝑇.  We wish to find the output 
(the account balance) of the “system” to the input (the deposit).

𝑓 𝑘 = deposit made at 𝑘1I interval

𝑦 𝑘 = account balance at 𝑘 immediately after the deposit

𝜏 = interest rate per dollar per 𝑇
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𝑓(𝑘)

𝜏𝑦(𝑘 − 1)

𝑦(𝑘)

𝑦(𝑘 − 1)
Delay

T
Interest

𝜏

Σ

The balance, 𝑦(𝑘), is the sum of the previous balance, 𝑦 𝑘 − 1 , the interest earned 
on 𝑦 𝑘 − 1 during 𝑇, and the deposit 𝑓(𝑘).
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𝑓(𝑘)

𝜏𝑦(𝑘 − 1)

𝑦(𝑘)

𝑦(𝑘 − 1)
Delay

T
Interest

𝜏

Σ

The balance, 𝑦(𝑘), is the sum of the previous balance, 𝑦 𝑘 − 1 , the interest earned 
on 𝑦 𝑘 − 1 during 𝑇, and the deposit 𝑓(𝑘).

𝑦 𝑘 = 𝑦 𝑘 − 1 + 𝜏𝑦 𝑘 − 1 + 𝑓(𝑘)

= 1 + 𝜏 𝑦 𝑘 − 1 + 𝑓(𝑘)
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If we assume monthly deposits are a constant, 𝐷, then

𝑦' = 𝐷
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If we assume monthly deposits are a constant, 𝐷, then

𝑦' = 𝐷

𝑦* = 𝜏𝑦' + 𝐷 = 𝜏𝐷 + 𝐷
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If we assume monthly deposits are a constant, 𝐷, then

𝑦' = 𝐷

𝑦* = 𝜏𝑦' + 𝐷 = 𝜏𝐷 + 𝐷

𝑦% = 𝜏𝑦* + 𝐷 = 𝜏%𝐷 + 𝜏𝐷 + 𝐷
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If we assume monthly deposits are a constant, 𝐷, then

𝑦' = 𝐷

𝑦* = 𝜏𝑦' + 𝐷 = 𝜏𝐷 + 𝐷

𝑦% = 𝜏𝑦* + 𝐷 = 𝜏%𝐷 + 𝜏𝐷 + 𝐷

𝑦/ = 7
()'

/"*

𝜏(𝐷
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𝑓(𝑘) students register for a class in the 𝑘1I semester and must buy a book. Books 
last  three semesters.  ⁄* @ of the books from the previous semester are sold as 
used. 𝑦(𝑘) is the number of new books sold.
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𝑓(𝑘) students register for a class in the 𝑘1I semester and must buy a book. Books 
last  three semesters.  ⁄* @ of the books from the previous semester are sold as 
used. 𝑦(𝑘) is the number of new books sold.

𝑦 𝑘 = number of new books sold in semester 𝑘.
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𝑓(𝑘) students register for a class in the 𝑘1I semester and must buy a book. Books 
last  three semesters.  ⁄* @ of the books from the previous semester are sold as 
used. 𝑦(𝑘) is the number of new books sold.

𝑦 𝑘 = number of new books sold in semester 𝑘.

𝑦 𝑘 − 1 = number of new books sold in semester 𝑘 − 1.
⁄* @ 𝑦(𝑘 − 1) of these new books are sold as used in semester 𝑘.
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𝑓(𝑘) students register for a class in the 𝑘1I semester and must buy a book. Books 
last  three semesters.  ⁄* @ of the books from the previous semester are sold as 
used. 𝑦(𝑘) is the number of new books sold.

𝑦 𝑘 = number of new books sold in semester 𝑘.

𝑦 𝑘 − 1 = number of new books sold in semester 𝑘 − 1.

𝑦 𝑘 − 2 = number of new books sold in semester 𝑘 − 2.

⁄* @ 𝑦(𝑘 − 1) of these new books are sold as used in semester 𝑘.

⁄* @ 𝑦 𝑘 − 2 of these new books are sold as used in semester k-1 
and ⁄* @ of those, or ⁄* *J 𝑦(𝑘 − 2) are sold as used in semester 𝑘.
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𝑓(𝑘) students register for a class in the 𝑘1I semester and must buy a book. Books 
last  three semesters.  ⁄* @ of the books from the previous semester are sold as 
used. 𝑦(𝑘) is the number of new books sold.

𝑦 𝑘 = number of new books sold in semester 𝑘.

𝑦 𝑘 − 1 = number of new books sold in semester 𝑘 − 1.

𝑦 𝑘 − 2 = number of new books sold in semester 𝑘 − 2.

⁄* @ 𝑦(𝑘 − 1) of these new books are sold as used in semester 𝑘.

⁄* @ 𝑦 𝑘 − 2 of these new books are sold as used in semester k-1 
and ⁄* @ of those, or ⁄* *J 𝑦(𝑘 − 2) are sold as used in semester 𝑘.

𝑓 𝑘 = 𝑦 𝑘 +
1
4𝑦 𝑘 − 1 +

1
16𝑦(𝑘 − 2)
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Delay
𝑇

Delay
𝑇

1
4

1
16

Σ
𝑓(𝑘)

𝑦(𝑘)

𝑦(𝑘 − 1) 𝑦(𝑘 − 2)

𝑓 𝑘 = 𝑦 𝑘 +
1
4
𝑦 𝑘 − 1 +

1
16
𝑦(𝑘 − 2)


