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See Aster and Borchers, Time Series Analysis, chapter 4.
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It is also sometimes useful to know the energy per unit frequency, 𝑋(𝑓) #, the 
Energy Spectral Density.

This is also the FT of the autocorrelation,
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Now 𝜏 is just a dummy variable of integration so it doesn’t matter if we call it 𝜏 or 𝑡
anymore.  

Φ∗ 𝑓 = 𝐹[𝜙∗ −𝑡 ]
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Φ 𝑓 Φ∗ 𝑓 = 𝐹 𝜙(𝑡) ∗ 𝜙∗(−𝑡) = 𝐹[𝜙 𝑡 ⋆ 𝜙∗ 𝑡 ]

This says that a function with a sharp narrow autocorrelation function will also 
have a broad energy spectral density (ESD).

For example, purely random noise will have a delta function for it’s autocorrelation. 
So it’s ESD will be a broad scalar constant at all frequencies.

We often refer to noise that has equal power at all frequencies as “white noise”.   
This stems from the fact that white light contains equal contributions from all colors 
(or frequencies of electromagnetic radiation).  More on noise later.
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And in this case, the Fourier Transform doesn’t converge so we can’t know the ESD.

If a signal looks statistically similar (e.g. the mean, variance, etc) over successive 
windows, or finite length time periods, it is said to be stationary.

Power is energy per unit time ⁄/ , and for stationary signals we can estimate the 
power of the signal using,
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Note the boxcar function, Π( ⁄( ,), is used to “window” a T length section of the signal.
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Note the boxcar function, Π( ⁄( ,), is used to “window” a T length section of the signal.

The PSD will have units of A0!
12 so it really is a spectral density that shows how 

power is distributed over each frequency.
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𝑃𝑆𝐷 𝜙 𝑡 = lim
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The PSD is approximated over a finite length time by “windowing”.  And recall that 
multiplication in the time domain (the windowing) is convolution in the frequency 
domain.
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convolution with the sinc function in the frequency domain.
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This means that the simple act of selecting a finite length time period to work with 
is mathematically equivalent to multiplying by a boxcar.  And that translates into 
convolution with the sinc function in the frequency domain.

That convolution causes our estimate of the power at each frequency to include 
contributions of the power from neighboring frequencies weighted by the sinc
function.
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This smearing, or leaking, of energy at one frequency into neighboring frequencies 
(for all frequencies) is called spectral leakage.

What to do to reduce this leakage or smearing?

Remember the FT of functions with sharp edges are very wiggly and edges don’t get 
much sharper than those of a boxcar.

Choose a smoother window.  

Run Aster matlab program, leaktest.



33

Seismic signals often span several orders of magnitude in amplitude. It is 
customary to plot the PSD as a function of db and log(f).



34

Seismic signals often span several orders of magnitude in amplitude. It is 
customary to plot the PSD as a function of db and log(f).

Recall a decibel = db = 20log(amplitude)



35

Seismic signals often span several orders of magnitude in amplitude. It is 
customary to plot the PSD as a function of db and log(f).

Recall a decibel = db = 20log(amplitude)

Amplitude is proportional to the square root of power.



36

Seismic signals often span several orders of magnitude in amplitude. It is 
customary to plot the PSD as a function of db and log(f).

Recall a decibel = db = 20log(amplitude)

Amplitude is proportional to the square root of power.

𝑑𝑏 = 20 log 𝑃𝑆𝐷 43 # = 10 log(𝑃𝑆𝐷)



37

Seismic signals often span several orders of magnitude in amplitude. It is 
customary to plot the PSD as a function of db and log(f).

Recall a decibel = db = 20log(amplitude)

Amplitude is proportional to the square root of power.

𝑑𝑏 = 20 log 𝑃𝑆𝐷 43 # = 10 log(𝑃𝑆𝐷)

Different sensors and data may have different units (e.g. velocity or acceleration) 
so always be sure to properly label your units as “db wrt A0!

12” where u are your 

units.  For example “db wrt A4(#$%&'(
))!

12” or “db wrt M4# )!
!

12”  or “db wrt A4#!
)*

12”
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Figure 14: Earth Acceleration Power Spectral Density for background noise at the Ala 
Archa IRIS/IDA station as a function of period. Z, N, E refer to vertical, north, and 
east seismometer components. Curves labeled NM are the empirical noise model 
bounds of Peterson (1994) denoting to extremal PSD values from stations installed 
around the world. The reference (0 db) level is (1 m/s2)2/Hz. PSD estimates were 
obtained using Welch’s method. 
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It is sometimes useful to track changes in the PSD over time.  We just calculate the 
PSD estimate multiple times advancing the window by some T for each new PSD.  We 
then plot the results in 3-d using color.  This is called a spectragram.
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It is sometimes useful to track changes in the PSD over time.  We just calculate the 
PSD estimate multiple times advancing the window by some T for each new PSD.  We 
then plot the results in 3-d using color.  This is called a spectragram.

The PNSN has nice continuously updating spectragrams for their volcano monitoring. 
This is the one for Mt St. Helens.

https://pnsn.org/spectrogram/current/volcanic/helens
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Welch’s Method.

If a signal is stationary, it is statistically similar over any given window of fixed length.

We can then improve our PSD estimates by averaging over several windows.
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Welch’s Method.

If a signal is stationary, it is statistically similar over any given window of fixed length.

We can then improve our PSD estimates by averaging over several windows.

t

But we lose a lot of data by down weighting at the edge of the windows.
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This is Welch’s method.  It is common to overlap windows by 50%.
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So we allow the windows to overlap.

t

This is Welch’s method.  It is common to overlap windows by 50%.

And there’s a handy matlab program called pwelch to do this.

[Pxx,F] = pwelch(X,window,Noverlap,nfft,Fs)
Pxx = psd (one-sided is default)
F = frequency vector (Hz)
X = data vector, real
Window = type of window (Hamming is default)
Noverlap = number of points of overlap
nfft = number of points in each fft
Fs = sample rate
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[Pxx,F] = pwelch(X,window,Noverlap,nfft,Fs)

Example:
Fs = 1000; t=0:1/Fs:.296;
x = cos(2*pi*t*200)+randn(size(t)); %A cosine of 200Hz plus noise.
[Pxx,F]=pwelch(x,[],[],[],Fs,’twosided’); %Uses default window, overlap, and NFFT

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

-34

-32

-30

-28

-26

-24

-22

-20

-18

Po
w

er
/fr

eq
ue

nc
y 

(d
b/

H
z)



46

Multitaper Spectral Estimation similarly to Welch’s Method computes an average 
PSD over several windows.  This method, while computationally much more 
expensive, reduces data and bandwidth loss from windowing by operating on the 
same data segment T.
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Multitaper Spectral Estimation similarly to Welch’s Method computes an average 
PSD over several windows.  This method, while computationally much more 
expensive, reduces data and bandwidth loss from windowing by operating on the 
same data segment T.

A suite of prolate spheroidal tapers is used to window the data.
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The matlab pmtm command computes the PSD using the multitaper prolate spheroid 
method. https://www.mathworks.com/help/signal/ref/pmtm.html

n = 0:319; x = cos(pi/4*n)+randn(size(n)); pxx = pmtm(x);

https://www.mathworks.com/help/signal/ref/pmtm.html
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PSD PDF’s are composed of combining many PSD’s into an empirical Probability 
Density Function.  They are useful for observing long term trends and signal 
characteristics of a seismic station.

IRIS has a tool to produce PDF plots for any channel in there archive. Start here and 
choose PDF Plot. https://ds.iris.edu/mustang/databrowser/

https://ds.iris.edu/mustang/databrowser/
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Construction of an empirical PDF (probability density function) requires many PSD’s.
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and troughs at amplitudes that are rare.
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Construction of an empirical PDF (probability density function) requires many PSD’s.

At each frequency, the amplitude values in the PSD’s are counted. 

Each amplitude and frequency in the PDF is colored depending on how many 
PSD’s share that same data point.  Hot colors mean many PSD’s had that 
amplitude at that frequency.  Cooler colors mean that amplitude at that frequency is 
less common.

One can think of extracting a vector of amplitudes at a single frequency and 
observing it’s characteristics.  It will have peaks at amplitudes that occur often 
and troughs at amplitudes that are rare.

It is useful for finding local noise sources, instrument problems (especially 
ephemeral ones), and other long term trends in the data.
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From Aster, “As a final indication of the great utility of the PSD, the Figure (15) 
shows processed PSDs from a broadband seismometer (Guralp CMG-3Tb) 
located in a 255-m deep borehole in the polar icecap near the South Pole. A great 
many of 1-hour data length, 50% overlap, PSDs using a hamming taper, were 
calculated from the month of May, 2003, and the resulting individual PSDs were 
used to assemble an empirical probability density function for the signal 
characteristics at he station The bifurcation of the high frequency noise is caused 
by intermittent periods where tractors are moving snow near the station. Pink 
misty areas concentrated around 1 and 20 s are PSDs that include teleseismic
earthquake signals. At short periods this is among the quietest stations on Earth. “
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The High and Low Noise Models (HNM and LNM) are constructed using many 
PSD’s from the Global Seismic Network (or some superset that includes the GSN) 
and extracting the highest and lowest amplitudes at each frequency across all 
PSD’s.

The HNM and LNM may contain data points from many different stations.  
Each point represents the highest or lowest recorded for that frequency in the 
entire global dataset. (No station will be as good across all frequencies as the 
LNM though it is possible to construct a station that is noisier than the HNM at 
all frequencies).


