Introduction to Linear Systems in

the Frequency Domain.

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 2.
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We can use an infinitely smooth and periodic function to construct an
infinitely discontinuous function. For example, a sum of cosines (or sines)
becomes a delta function.

Run matlab program sumcosine
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We can use an infinitely smooth and periodic function to construct an
infinitely discontinuous function. For example, a sum of cosines (or sines)
becomes a delta function.

Run matlab program sumcosine

1, x =0
] = {sin(x
sinc(x) x( ), L

Li_r)r(l) %Sinc (g) = d(x)
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Fourier theory tells us we can decompose a reasonably well behaved signal in
time (or space) into its frequency components (complex sinusoids).

Recall, e?? = cos6 + isin 0

e?™It = cos(2mft) + isin(2mft)
Where fis in Hz (cycles/s) and t is in seconds

Sometimes, we use radians (units of 1/seconds)

e'®t = cos(wt) + isin(wt)
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Given the impulse response, h(t), of a linear system h, we can find it's response,
g(t), to a complex unit sinusoid, e*?™t, by convolution.

eiZTL'ft > A > g(t)
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Given the impulse response, h(t), of a linear system h, we can find it's response,
g(t), to a complex unit sinusoid, e*?™t, by convolution.

eiZTL'ft > A > g(t)

g(t) = h(t) x e?™'t = j h(t)e?™ =Dy
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Given the impulse response, h(t), of a linear system h, we can find it's response,
g(t), to a complex unit sinusoid, e*?™t, by convolution.

eiZTL'ft > A > g(t)

g(t) = h(t) x e?™'t = j h(t)e?™ =Dy

L eiantj h(T)e—ianrdT
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Given the impulse response, h(t), of a linear system h, we can find it's response,
g(t), to a complex unit sinusoid, e*?™t, by convolution.

eiZTL'ft > A > g(t)

g(t) = h(t) x e?™'t = j h(t)e?™ =Dy

L eiantj h(T)e—ianrdT

input amp phase
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Given the impulse response, h(t), of a linear system h, we can find it's response,
g(t), to a complex unit sinusoid, e*?™t, by convolution.

ei2nft > A > g(t)

g(t) = h(t) x e?™'t = j h(t)e?™ =Dy

L eiantj h(T)e—ianrdT

input amp phase

This tells us that the response of a linear system to a complex sinusoid
remains unchanged in functional form and only the input’'s amplitude and
phase are modified.
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amplitude
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In fact, g(t) = e?™/'t f_oooo h(t)e 2™ Tdr = 2™ tH(f)

Where H(f) is the frequency domain impulse response of the linear system.
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)
In fact, g(t) = e?™/'t f_oooo h(t)e 2™ Tdr = 2™ tH(f)

Where H(f) is the frequency domain impulse response of the linear system.

And in general, the Fourier Transform (not to be confused with the Fourier
series) is thus defined for an arbitrary ¢(t) as,

Forward Transform WAENIIIGIE foo d(t)e P tdt
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13
In fact, g(t) = e?™/'t f_oooo h(t)e 2™ Tdr = 2™ tH(f)

Where H(f) is the frequency domain impulse response of the linear system.

And in general, the Fourier Transform (not to be confused with the Fourier
series) is thus defined for an arbitrary ¢(t) as,

Forward Transform WAENIIIGIE foo d(t)e P tdt

(0]

I o $(0) = F1D(f)] = j O(f)el2mtdf

— 00
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* In some cases it may be more convenient to use w = 2rf though this
requires a normalization factor of 1/2m on the inverse transform.
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* In some cases it may be more convenient to use w = 2rf though this
requires a normalization factor of 1/2m on the inverse transform.

« Some, particularly symmetry minded physicists, put 1/+/2r on both.
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In some cases it may be more convenient to use w = 2rf though this
requires a normalization factor of 1/2m on the inverse transform.

Some, particularly symmetry minded physicists, put 1/+/2m on both.
Some, particularly in engineering fields, use j instead of /.
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In some cases it may be more convenient to use w = 2rf though this
requires a normalization factor of 1/2m on the inverse transform.
Some, particularly symmetry minded physicists, put 1/+/2m on both.
Some, particularly in engineering fields, use j instead of /.

In some cases, complex frequency is used.

Know your convention.
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In some cases it may be more convenient to use w = 2rf though this
requires a normalization factor of 1/2m on the inverse transform.
Some, particularly symmetry minded physicists, put 1/+/2m on both.
Some, particularly in engineering fields, use j instead of /.

In some cases, complex frequency is used.

Know your convention.

Forward Transform d(w) = Flp(t)] = foo d(t)e wtdt
18 3% .
Inverse Transform ¢(t) = FH[P(w)] = %j d(w)e®tdw
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* In some cases it may be more convenient to use w = 2nf though this
requires a normalization factor of 1/2m on the inverse transform.

« Some, particularly symmetry minded physicists, put 1/+/2r on both.

« Some, particularly in engineering fields, use j instead of i.

* In some cases, complex frequency is used.

 Know your convention.

Forward Transform d(w) = Flp(t)] = foo d(t)e wtdt
18 3% .
Inverse Transform ¢(t) = FH[P(w)] = %j d(w)e®tdw

Another way to view the inverse transform is decomposing ¢(t) into it's
individual frequency components each with its own amplitude and phase.
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It is common in the physical sciences to characterize linear systems as a
differential equation. And in general,

dny dn—ly dn—Zy dly
anﬁ+an_1dt?+an 2dn2+ +a1d1+a0y
d™x di S diasiv dlx
= md—m+bm_1dm 1+ m_zdtm_2+“'+blﬁ+box
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It is common in the physical sciences to characterize linear systems as a
differential equation. And in general,

dny dn—ly dn—Zy dly
anﬁ+an_1dt?+an 2dn2+ +a1d1+a0y
d™x di S diasiv dlx
= md—m+bm_1dm 1+ m_zdtm_2+“'+blﬁ+box

Recall that in general, the response of a linear system to a complex sinusoid
remains unchanged in functional form and only the input’s amplitude and
phase are modified.

g(t) = h(t) * pl2nft — pi2mft f_oooo h(T)e‘iZ”deT = eiantH(f)
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It is common in the physical sciences to characterize linear systems as a
differential equation. And in general,

d™y dn_ly d”—zy dly
anﬁ-l_an_ldtn_l = Gl Zdn 2+ +a1d1+a0y
d™x A=l dm 2y A1
— mdm+bm_1dm1-|— m_zdtm_2+...+blﬁ+b0x

Let x(t) = 2™/t (a complex sinusoid input), then y(t) = ®(f)e2™/t

i > ¢ > ()
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It is common in the physical sciences to characterize linear systems as a
differential equation. And in general,

dny dn—ly dn—Zy dly
anﬁ+an_1dt?+an 2dn2+ +a1F+a0y
d™x i Al d?
— md—m o5 bm_]_ drm-1 + 0> drm—2 r 25 b1 s + box

Let x(t) = 2™/t (a complex sinusoid input), then y(t) = ®(f)e2™/t

Where in this case, x(t) is the input to the linear system characterized by the
differential equation with frequency domain impulse response ®(f) and output y(t).

O(f) = j p(De 2T dt = F[g(0)]
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Now plug in our values for x and y. s

e n-1 n-2

d d d
and - [q)(f)eLZTEft] e 1d — [q)(f)BLZTEft] +a,_ Zdtn : [q)(f)elmcft] T

d! ) ]
+ ;= [0(Ne?] + ag[@()e2™]

dm m-—1 m-—2

it bmd m(eLant) +b, 4 (eLZth) +b, .

(el27Tft) . 8

dtm-1 dtm—2

as ;
+ bl E(eLant) Er b09127rft
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Now plug in our values for x and y. Zs

n n-—1 n—2

d d d
and - [q)(f)eLZTEft] e 1d — [q)(f)BLZTL'ft] +a,_ Zdtn : [q)(f)elmcft] T

d! ) ]
+ ;= [0(Ne?] + ag[@()e2™]

dm m-—1 m-—2

it bmd m(eLant) +b, 4 (eLZth) +b, .

(el27Tft) ey

dml dmz

as ;
+ bl E(eLant) Er boeLZth

We know that me = ::n (et2™1t) = (2mif)™e'®™* and that ®(f) does not depend on t.

tm
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Now plug in our values for x and y. A

1 n-1 n-2

d d d
and n[cb(f)eLZtht] e 1d — [q)(f)BLZTL'ft] +a,_ Zdtn : [q)(f)elmcft] T

d! ) ]
+ ;= [0(Ne?] + ag[@()e2™]

dm m-—1 m-—2

it bmd m(eLant) +b, 4 (eLZth) +b, .

(el27Tft) . 8

dtm-1 dtm—2

as ;
+ bl E(eLant) Er boeLZth

We know that me = ::n (et2™t) = (2mif)me'?™t and that ®(f) does not depend on t.

tm

@(f){an(iznf)neiznft + a,_,(i2nf)t"Lei2nft 4 ... 4 q, (i2nf)Lei2nft 4 aoei2nft}

= bm(iZHf)meiZ”ft + bm_l(iZHf)m_leiZ”ft _jo A bl(i2ﬂf)1ei2”ft + boeiant
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Divide through by e'?7/t

O(a,@2rf)" + ap_1 (27f)" " + -+ a, (@21f)' + a,}
= b, ((20f)™ + b1 (20f)™ L + - + b (i2f) + by
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Divide through by e'?7/t

O(a,@2rf)" + ap_1 (27f)" " + -+ a, (@21f)' + a,}
= b, ((20f)™ + b1 (20f)™ L + - + b (i2f) + by

Solve for ©(f)

b, ((2f)™ + b, ((2nf)™ 1 + .-+ by (i27f)! + b,
a,(@2nf)" + a,_(2nf)" 1 + .-+ a,(i2nf)! + a,

G =
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Divide through by e'?7/t

O(a,@2rf)" + ap_1 (27f)" " + -+ a, (@21f)' + a,}
= b, ((20f)™ + b1 (20f)™ L + - + b (i2f) + by

Solve for ©(f)

b, ((2f)™ + b, ((2nf)™ 1 + .-+ by (i27f)! + b,
a,(@2nf)" + a,_(2nf)" 1 + .-+ a,(i2nf)! + a,

G =

- 2?1:0 b (i2rf)’
h k-0 xS
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Divide through by e'?7/t

O(a,@2rf)" + ap_1 (27f)" " + -+ a, (@21f)' + a,}
= b, ((20f)™ + b1 (20f)™ L + - + b (i2f) + by

Solve for ©(f)

b, ((2f)™ + b, ((2nf)™ 1 + .-+ by (i27f)! + b,
a,(@2nf)" + a,_(2nf)" 1 + .-+ a,(i2nf)! + a,

G =

] Roots of polynomial are the zeros
ST by(i2nf) e

n 9 k
k=0 ak (lznf)
e Roots of polynomial are the poles

MEMPHIS




31

—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2"d order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2"d order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

S by (i27f))
r_oar(i2mf)k

N S
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2"d order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

;(l=0 ay (l27Tf)k

N S
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2" order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

Ll:() ak (l27Tf)k
\ Roots of polynomial are the poles
(where the denominator is 0)
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2" order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

Ll:() ak (l27Tf)k
\ Roots of polynomial are the poles
(where the denominator is 0)

MEMPHIS

N S

How many poles are there?
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2" order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

Ll:() ak (l27Tf)k
\ Roots of polynomial are the poles
(where the denominator is 0)

MEMPHIS
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How many poles are there?

n poles
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2" order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

D(f) =
() r_oar(i2mf)k
\ Roots of polynomial are the poles
(where the denominator is 0)
How many poles are there? How many zeros?
n poles
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—b+Vb2—-4ac

2a

Recall the quadratic equation, ax? + bx + ¢ = 0, has roots at x =

The above equation is a 2" order polynomial.

Our generic linear system characterized by the impulse response, ®(f), has an
mt" order polynomial in the numerator and an nt*order polynomial in the
denominator.

Roots of polynomial are the zeros
.i=obj (i2nf)’ pra (where the numerator is 0)

D(f) =
() r_oar(i2mf)k
\ Roots of polynomial are the poles
(where the denominator is 0)
How many poles are there? How many zeros?
n poles m zeros
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e =0 b;(i2mf)’

r_o ar(i2mf)k

d(f) is the frequency domain response of our linear system described by the
differential equation.

¢(t) = F[@(f)] and y(t) = ¢(t) * x(t)
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A Z;'n=o bj (i27Tf)j
ROk rooar (i2mf)k

d(f) is the frequency domain response of our linear system described by the
differential equation.

¢(t) = F[@(f)] and y(t) = ¢(t) * x(t)

So if we can model our physical system with a differential equation and
determine the weights, a and b, then we can predict the output y, for any
given input x by convolving the input with the impulse response of the
system.
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O(f) = Zg'n:o bj (iZﬂf)j

r_o A (i2mf)k

Now & (f) is the frequency domain response of our linear system described by
the differential equation.

¢(t) = F[@(f)] and y(t) = ¢(t) * x(t)

So if we can model our physical system with a differential equation and
determine the weights, a and b, then we can predict the output y, for any
given input x by convolving the input with the impulse response of the
system.

This is a remarkable result. It says we can model a system,
make a prediction, and then test the expected result against

measured data.
MEMPHIS



Recap

43

For a linear system with impulse response, ¢(t), and a complex sinusoid

input, the output is:

g(t) = P(t) * et = P(f)e?™/t

and

O(f) = Flp ()] = f b(t)e 2y

() = F1D(f)] = j O(F)el2mtdf
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Recap (cont.)

And for a generic differential equation, we can use a complex sinusoid for the
input to solve for the impulse response of the system compactly represented
by poles and zeros.

d"y d"‘ly Y d™x dm™ 1x dlx
Tanta TR +a1d1+a0y bmd_m+bm 1dtm_1+”'+blﬁ+b0x

Let x(t) = ™/t then y(t) = ®(f)e'?™?t

Roots of polynomial are the zeros
Z] Lo bj(i2mf) +«— (where the numerator is 0)

o A (12mf)*
\ Roots of polynomial are the poles
(where the denominator is 0)

DA
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45

A Mechanical Seismometer

Recording
drum

PP IyFis -

S/ Earth
N
MEMPHIS

After Aster and Borchers, Figure 2.1
Seismic Waves




46

K = spring constant

D = dashpot damping

M = seismometer mass

1
(71017 L7 T ol i

¢o = mass equilibrium position
¢(t) = mass position wrt surface of the earth as a function of time.

u(t) = displacement of the surface as a function of time

MEMPHIS




vy
Newton’s second law, F,,, = Ma,,, upward force is positive

Recall Hook’s law, F(x) = —kx

Damping depends on velocity %E(t)
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Newton’s second law, F,,, = Ma,,, upward force is positive
Recall Hook’s law, F(x) = —kx

Damping depends on velocity %E(t)

The force of the spring depends on displacement from equilibrium, &(t) — &,

= 7 Ma
\
T Var * |
—D?—K[f(t) — &l = M@[f(t) + u(t)]
\ Y o Y e ] )
Prery I
Damping force operates Force of the Accele:r\ation is second derivative
in the opposing direction spring. of the mass position

to velocity.

MEMPHIS
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dE(t) d?

_DW_K[f(t)_fo] :Mﬁ[f(t)+u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

MEMPHIS



50

dE(t) d?

_DW_K[f(t)_fo] :Mﬁ[f(t)+u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

—Dz—kz=MZ+ Mu

MEMPHIS



51

dE(t) d?

_DW_K[f(t)_fo] :Mﬁ[f(t)+u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

—Dz —kz=MZ+ Mii ) M7:+Dz+kz=-Mi
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dE(t) d?

_DW_K[f(t)_fo] :Mﬁ[f(t)+u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

—Dz —kz=MZ+ Mii ) M7:+Dz+kz=-Mi

"+D'+K A
Z MZ MZ— u
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d§ (t)

dZ
—DW—K[E(@ — &l = Mﬁ[f(t) +u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

—Dz —kz=MZ+ Mii ) M7:+Dz+kz=-Mi

"+D'+K A
Z MZ MZ— u

Let 2¢ = % === The seismometer damping coefficient.

and wé = % === The natural period of the seismometer.
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d§ (t)

dZ
—DW—K[E(@ — &l = Mﬁ[f(t) +u(t)]

Let z(t) = &(t) — &, and 52 = &(t) = z

—Dz —kz=MZ+ Mii ) M7:+Dz+kz=-Mi

"+D'+K A
Z MZ MZ— u

Let 2 = % == The seismometer damping coefficient.
and w? = % === The natural period of the seismometer.

The differential equation describing our

then Z + 2{Z + wéz = —ii === linear system, a mechanical
MEMPHIS

seismometer.
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u(t) is the input

: Z+2{7+ wiz = —il
z(t) is the output

u(t) > ¢ 10
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u(t) is the input

; Z+2{7+ wiz = —il
z(t) is the output

Let the input u(t) = e**™t, a complex sinusoid

the complex sinusoid input multiplied by
Then the output z(t) = ®(f)e?™*t the frequency domain impulse response of
the linear system.

12rft

> ¢ > z(t)
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u(t) is the input
; Z+2{7+ wiz = —il
z(t) is the output

Let the input u(t) = e**™t, a complex sinusoid

the complex sinusoid input multiplied by
Then the output z(t) = ®(f)e?™*t the frequency domain impulse response of
the linear system.

ii = (izn.f)zeiZTL'ft = —wletwt

z = iwe' ' d(w) and 7= —w?e'd(w)
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u(t) is the input

: Z+42(z+ wiz = —ii
z(t) is the output

Let the input u(t) = e**™t, a complex sinusoid

the complex sinusoid input multiplied by
Then the output z(t) = ®(f)e?™*t the frequency domain impulse response of
the linear system.

ii = (iznf)zeiant —wletwt

z = iwe' ' d(w) and 7= —w?e'd(w)

2 l(x)tcb(a))_l_zzlwela)tq)(w)_l_wz la)tcb(a)) _wz lwt

MEMPHIS



59

—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

MEMPHIS
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—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

O (w)e'® [-w? + 2{iw + w] = w?el®t
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—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

O (w)e'® [-w? + 2{iw + w] = w?el®t

(1)2

dP(w) =
@ —w? + 2{iw + w?
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—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

D (w)e[—w? + 20w + w?] = w?e'®?

2

w
d(w) =
(@) —w? + 2{iw + w?
2
—w
d(w) =

w? — 2{iw — w?

This is the frequency domain impulse response of our system (aka transfer
function); the transfer function (or response) of the mechanical seismometer.
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—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

D (w)e[—w? + 20w + w?] = w?e'®?

2

w
d(w) =
(@) —w? + 2{iw + w?
2
—w
d(w) =

w? — 2{iw — w?

This is the frequency domain impulse response of our system (aka transfer
function); the transfer function (or response) of the mechanical seismometer.

How many poles are there?
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—w?e'td(w) + 2(iwe'?td(w) + wZe'?td(w) = w?e'®?

D (w)e[—w? + 20w + w?] = w?e'®?

2

w
d(w) =
(@) —w? + 2{iw + w?
2
—w
d(w) =

w? — 2{iw — w?

This is the frequency domain impulse response of our system (aka transfer
function); the transfer function (or response) of the mechanical seismometer.

How many poles are there? How many zeros?

MEMPHIS




65
Imag Recall

» Real

a+ib (a+ib)(c—id) (ac+bd)+i(bc—ad)
c+id (c+id)(c—id) (c? + d?)

We can now find the amplitude response, |®(w)|, and the phase response, 6(w).
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After some algebra we find,

2

|P(w)] = : a2
[(w? — w?)? + 4{2a)2]1/2 (S 7 i w? — w?
The amplitude response. The phase response.
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After some algebra we find,

2

|P(w)] = : and = 2 gl 200
) & 4{2a)2]1/2 0(w) = ™ — tan A7 b7
The amplitude response. The phase response.

We can gain insight into the behavior of this linear system, the seismometer, by
examining the behavior of the impulse response at extremes of high and low
frequencies.

2

w w
lim |[®(w)| = = ~ 1
W W (@) [w* + 402w2] 2 Jw? +4¢
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After some algebra we find,

2

|P(w)] = : and = 2 gl 200
) & 4{2a)2]1/2 0(w) = ™ — tan A7 b7
The amplitude response. The phase response.

We can gain insight into the behavior of this linear system, the seismometer, by
examining the behavior of the impulse response at extremes of high and low
frequencies.

2

w w
lim |P(w)] = 3 ~d
W W [w* + 402w2] 2 Jw? +4¢
—2{w =7
lim 6 (w) zn—tan‘1< i ) = 77 St (—() T
WDWg w w
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2

@ W
lim |[®(w)| = i '
W>Wg [a)4 i 4(20)2]1/2 (1)2 i 4{
—2¢w =)
lim 0(w) ~ m —tan™?! ( g ) =17 —tan~! <_{) ~
WS wg . 2

The seismometer mass is moving perfectly in sync with the input ground motion but
180° out of phase. The frequency is so high making the up and down motion so fast,
that the mass is essentially still from an external reference frame while the rest of the
pendulum moves up and down with the ground motion u(t). Thatis € = —u.

W > Wg

1
gyar oy

MEMPHIS



Now for very low frequencies,

lim |®(w)| = = ey

WLWg 2 .
(1)3 (F — 1) + 4(2 (w_s)
S

70
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Now for very low frequencies,

lim |®(w)| = = ey

WLWg 2 e
(1)3 (F — 1) + 4(2 (w—s)
S

It stops responding at all! Picture moving the frame up and down very slowly.
Move it so slow that the spring never stretches or compresses. So that {(t) = (,,
a constant independent of u(t). That is z(t)=0.

W K Wq

1
gyar oy
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Vert. Disp. Freq. Resp., Various Damping Parameters

R
o
5 ¢/w, = 0.10
3 &/w, = 0.18
iy $/wy, = 0.32
o {/wg, = 0.56
—0 $/wg = 1.00
N $/w, = 1.80
R 2 ¢/w, = 8.20
= {/wg, = 5.60
§..1 $/wy, = 10.0
Moo
0. 3.0
5
&
§ 0
-~ —<0 = 10.0
~ —40 = 5.60
3 -60 = %0
~ -80 - 1.00
= -100 = 0.56
5 —120 = 0.32
D = 0.18
g —140 = 0.10
g —160
g —180
£ 0.0
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Convert our Mechanical Seismometer to an induction output

!
PP ryeEs. -

S/ Earth
N
MEMPHIS

Seismic Waves
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We’re now measuring the mass velocity (z) from a displacement input u(t).

Use the same complex sinusoid input, u(t) = e'®!
The displacement output is still, z = ® 45, (f)e'*

And z = iwe' P45, (f)
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We’re now measuring the mass velocity (z) from a displacement input u(t).

Use the same complex sinusoid input, u(t) = e'®!
The displacement output is still, z = ® 45, (f)e'*

And z = iwe'™t® 40, ()

We'll see later that if ¢(t) * x(t) = y(t), then ®(f) = %

Thus, q)disp(f) = Al and cI)induction(f) = 4D = iwcbdisp(f)

u(w) u(w)
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We’re now measuring the mass velocity (z) from a displacement input u(t).

Use the same complex sinusoid input, u(t) = e'®!
The displacement output is still, z = ® 45, (f)e'*

And z = iwe'™t® 40, ()

We'll see later that if ¢(t) * x(t) = y(t), then ®(f) = %

Thus, q)disp(f) = Al and cI)induction(f) = 4D = iwcbdisp(f)

u(w) u(w)

L w3

D, =
induct (@) 02 — 200w — 0?2
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—iw?3

D, =
induct (@) 02 — 20w — W2

That means that to convert ®(w) to velocity output, we need only multiply by iw;
“add” a zero.
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—iw?3

D, =
induct (@) 02 — 20w — W2

That means that to convert ®(w) to velocity output, we need only multiply by iw;
“add” a zero.

To measure velocity output as a function of velocity input, divide by iw;
remove a zero.

MEMPHIS
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Parseval’s Theorem

The Fourier Transform conserves energy. E o« A?

(0}

() = F1[D(f)] = j O(F)e2mtdf

—Co
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Parseval’s Theorem

The Fourier Transform conserves energy. E o« A?

() = F1[D(f)] = j O(F)e2mtdf

*

¢ () = {F (O]} = {joo CD(f)eiZ”ftdf} Where * is the complex conjugate.
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Parseval’s Theorem

The Fourier Transform conserves energy. E o« A?

() = F1[D(f)] = j O(F)e2mtdf

(0.0)

— 00

¢ () = {F (O]} = U CD(f)eiZ”ftdf} Where * is the complex conjugate.

3 J "o (Pt

MEMPHIS



82

Parseval’s Theorem

The Fourier Transform conserves energy. E o« A?

() = F1[D(f)] = j O(F)e2mtdf

(0.0)

— 00

¢ () = {F (O]} = U CD(f)eiZ”ftdf} Where * is the complex conjugate.

3 J "o (Pt

Energy = [, ¢(t)¢" (t)dt

MEMPHIS
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Parseval’'s Theorem, cont.

The Fourier Transform conserves energy. E o« A?

Energy = [, ¢(t)¢" (t)dt

Sl o:o "0 ( J_O;¢*(f)e‘i2”ftdf> dt

MEMPHIS
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Parseval’'s Theorem, cont.

The Fourier Transform conserves energy. E o« A?

Energy = [, ¢(t)¢" (t)dt

Sl o:o "0 ( J_O;¢*(f)e‘i2”ftdf> dt

= Jo:o o*(f) (f:qb(t)e'””ftdt) af
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Parseval’'s Theorem, cont.

The Fourier Transform conserves energy. E o« A?

Energy = [, ¢(t)¢" (t)dt

Sl o:o 0 ( J_O;¢*(f)e‘i2”ftdf> dt

= J_o:o o*(f) (f:qb(t)e'””ftdt) af

— f O (HD(f)df The sum of the squares in.time is equal
—o to the sum of the squares in frequency.

MEMPHIS
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Parseval’'s Theorem, cont.

The Fourier Transform conserves energy. E o« A?

Energy = [, ¢(t)¢" (t)dt

Sl o:o "0 ( J_O;¢*(f)e‘i2”ftdf> dt

= J_o:o o*(f) (f:qb(t)e'””ftdt) af

— f O (HD(f)df The sum of the squares in.time is equal
—o to the sum of the squares in frequency.

MEMPHIS

The FT conserves energy.

Also a nice way to check your code.
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Properties of the Fourier Transform

The scaling property

Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt
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Properties of the Fourier Transform

The scaling property

Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt

drt

Flp(at)] = j $(2)e 2T/

a
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Properties of the Fourier Transform

The scaling property

Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt

drt

Flp(at)] = j p()e-2nsr/a

a

1 i
:EJ d(D)e " dr
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Properties of the Fourier Transform

The scaling property

Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt

drt

Flp(at)] = j p()e-2nsr/a

a

1 i
:EJ d(D)e " dr

L)
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Properties of the Fourier Transform

The scaling property

Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt

drt

Flgpan] = | gpemrsa=

a
1 i
= EJ d(D)e " dr

|
=——0 (z) If a is negative (flips the integration limits)

a a
MEMPHIS
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Properties of the Fourier Transform

The scaling property
Flp(at)] = j d(at)e P tdt Let t = at, then dt = adt

Flptad] = [ pmeenoa

a

1 i
:EJ d(D)e " dr

| I (f) .Na.rrow.in tis V\{ide.in f (e.g. a delta
|| in time is a cosine in frequency).

MEMPHIS
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Shifting Property

Flp(t —ty)] = f d(t — tg)e 2 tdt Lett =t —t,, then dr = dt

MEMPHIS
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Shifting Property

Flp(t —ty)] = j d(t — ty)e B tdt Lett =t —t,, then dr = dt

Flp(t —to)] = j I P (r)e 2™ -t gg

MEMPHIS
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Shifting Property

Flp(t —ty)] = j d(t — ty)e B tdt Lett =t —t,, then dr = dt

Flp(t —to)] = j I P (r)e 2™ -t gg

— el2mfto j ¢(T)e—i2nfrdT
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Shifting Property
Flp(t —ty)] = j d(t — ty)e B tdt Lett =t —t,, then dr = dt
Flop - t)] = [ p@e 2 dr

— el2mfto j ¢(T)e—i2nfrdT

= eiZthtocD(f)

MEMPHIS
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Shifting Property

Flp(t —ty)] = j d(t — ty)e B tdt Lett =t —t,, then dr = dt

Flop - t)] = [ p@e 2 dr
'S eiantoj ¢(T)e—i2nfrdT
= eiZTL’ftocD(f) —— A phase Sh|ft

MEMPHIS

Table of FT properties.



http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/Fourier_Transform_Properties.pdf

98
Recall even and odd functions.

Even functions, e.g. a cosine, has symmetry such that f(t) = f(—t).
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Recall even and odd functions.

Even functions, e.g. a cosine, has symmetry such that f(t) = f(—t).

Odd functions, e.g. a sine, has symmetry such that f(t) = —f(—t).
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Recall even and odd functions.
Even functions, e.g. a cosine, has symmetry such that f(t) = f(—t).

Odd functions, e.g. a sine, has symmetry such that f(t) = —f(—t).

even - even = even
odd - odd = even
odd - even = odd

MEMPHIS
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Recall even and odd functions.

Even functions, e.g. a cosine, has symmetry such that f(t) = f(—t).

Odd functions, e.g. a sine, has symmetry such that f(t) = —f(—t).

even - even = even
odd - odd = even
odd - even = odd

jeven *0

foddzO

MEMPHIS
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F[I(t)] = Joo M(t)e 2™ tdt

MEMPHIS
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F[I(t)] = Joo M(t)e 2™ tdt

2
— f e—lZTL'ftdt

_1/2

MEMPHIS



104

F[I(t)] = Joo M(t)e 2™ tdt

2
— f e—lZTL’ftdt

_1/2

L
:j i [cos(2mft) — isin(2mft)]dt

_1/2

MEMPHIS
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F[I(t)] = Joo M(t)e 2™ tdt

2
— f e—lZTL’ftdt

1
0

o
= jlz [cos(2mft) — isi)dtft)]dt
" /2

MEMPHIS
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1/2

:f e—iZTL’ftdt
_1/2
] 0
/2
= j [cos(2mft) — iSi)det)]dt
1/2
=J:/mqmﬁ0dt Let u = 2nft, du = 2nfdt
2

MEMPHIS
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1/2

:f e—iZTL’ftdt
il
y 0
/2
= j [cos(2mft) — iSi)det)]dt
i
=J:/mqmﬁ0dt Let u = 2nft, du = 2nfdt
2
d ]? i
= : cos(u) 2nf

MEMPHIS
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1/2

:f e—iZTL’ftdt
il
y 0
/2
= j [cos(2mft) — iSi)det)]dt
i
=J:/mqmﬁ0dt Let u = 2nft, du = 2nfdt
2
nf
p, f”f du - SlaEs
— I8 cos(u) e — onf sinu
—nf
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1/2

:f e—iZTL’ftdt
il
y 0
/2
= j [cos(2mft) — iSi)det)]dt
i
=J:/mqmﬁ0dt Let u = 2nft, du = 2nfdt
2
nf
p, f”f du - SlaEs
— I8 cos(u) e — onf sinu
—nf

1 _ \
o [sin(rf) — sin(—7f)]

MEMPHIS
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1/2

:f e—iZTL’ftdt
il
y 0
/2
= j [cos(2mft) — iSi)det)]dt
i
=J:/mqmﬁ0dt Let u = 2nft, du = 2nfdt
2
nf
p, f”f du - SlaEs
— I8 cos(u) e — onf sinu
—nf

Lf [sin(zf) — sin(—nf)] = Z Sizr;s:f) = sinc(nf)

MEMPHIS

sinc(0) =1
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Sharp edges produce oscillations in the fourier transform. (more on that later)

MEMPHIS
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Pictorial Dictionary of Fourier Transforms (Bracewell pp 411).

http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/
BracewellFTPictorialDictionary.pdf

Please do not distribute the pictorial dictionary beyond this class to
avoid copyright violations.

MEMPHIS


http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/BracewellFTPictorialDictionary.pdf
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Fl6(t)] =7 (recall the sifting property)

b
j f)o(t —ty)dt = f(ty), wherea <ty <b
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Fl6(t)] =7 (recall the sifting property)

b
j f)5(t —ty)dt = f(ty), wherea<ty,<b

F[6(t)] = j 5(t)e B tdt What is ¢, in this case?

MEMPHIS
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Fl6(t)] =7 (recall the sifting property)

b
j f)o(t —ty)dt = f(ty), wherea <ty <b

F[6(t)] = j 5(t)e B tdt Sifts values of e "™/t gt t = 0.

MEMPHIS
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Fl6(t)] =7 (recall the sifting property)

b
j f)5(t —ty)dt = f(ty), wherea<ty,<b

F[6(t)] = j 5(t)e B tdt Sifts values of e "™/t gt t = 0.

What is the amplitude as a function of ?
Fl6()] =1 Remember z=a+ib.
What is the phase?

MEMPHIS
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Fl6(t)] =7 (recall the sifting property)

b
j f)5(t —ty)dt = f(ty), wherea<ty,<b

F[6(t)] = j 5(t)e B tdt Sifts values of e "™/t gt t = 0.

What is the amplitude as a function of ?
Fl6()] =1 Remember z=a+ib.
What is the phase?

F1[1] = 7 F-1[1] = 6(t)

MEMPHIS
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Hermetian Property

If a complex function has even symmetry for the real part (e.g. a cosine) and odd
symmetry in the imaginary part (e.g. a sine), then it is said to be Hermetian.
Mathematically, ¢*(t) = ¢ (—t).

MEMPHIS
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Hermetian Property

If a complex function has even symmetry for the real part (e.g. a cosine) and odd
symmetry in the imaginary part (e.g. a sine), then it is said to be Hermetian.

Mathematically, ¢*(t) = ¢ (—t).

If ¢(t) is purely real (no non-zero imaginary components), then its Fourier
Transform, ®(f), is Hermetian.

MEMPHIS
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Hermetian Property

If a complex function has even symmetry for the real part (e.g. a cosine) and odd
symmetry in the imaginary part (e.g. a sine), then it is said to be Hermetian.

Mathematically, ¢*(t) = ¢ (—t).

If ¢(t) is purely real (no non-zero imaginary components), then its Fourier
Transform, ®(f), is Hermetian.

This is very useful since many functions we use (e.g. seismograms) are purely
real in the time-domain. It is also why the spectrum in seismology is frequently
shown as one-sided; one can take advantage of the symmetry to reconstruct the
other half.
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Hermetian Property

If a complex function has even symmetry for the real part (e.g. a cosine) and odd
symmetry in the imaginary part (e.g. a sine), then it is said to be Hermetian.

Mathematically, ¢*(t) = ¢ (—t).

If ¢(t) is purely real (no non-zero imaginary components), then its Fourier
Transform, ®(f), is Hermetian.

This is very useful since many functions we use (e.g. seismograms) are purely
real in the time-domain. It is also why the spectrum in seismology is frequently
shown as one-sided; one can take advantage of the symmetry to reconstruct the
other half.

If ¢,(t) is Hermetian, then ¢, (t) * ¢, (t) = P, (t) * P, (t)
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Hermetian Property

If a complex function has even symmetry for the real part (e.g. a cosine) and odd
symmetry in the imaginary part (e.g. a sine), then it is said to be Hermetian.

Mathematically, ¢*(t) = ¢ (—t).

If ¢(t) is purely real (no non-zero imaginary components), then its Fourier
Transform, ®(f), is Hermetian.

This is very useful since many functions we use (e.g. seismograms) are purely
real in the time-domain. It is also why the spectrum in seismology is frequently
shown as one-sided; one can take advantage of the symmetry to reconstruct the
other half.

If ¢,(t) is Hermetian, then ¢, (t) * ¢, (t) = P, (t) * P, (t)

And if both ¢; and ¢, are Hermetian, then ¢, (t) x ¢,(t) = ¢, (t) *x P (t).

MEMPHIS
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

o joo joo 1 (D) P, (t — 1) e 2t drdt
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

o joo joo 1 (D) P, (t — 1) e 2t drdt

= j_oo b1 (7) (j_oo ¢, (t — T)e"iZ”ftdt> dt
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

= joo joo ¢1 (D), (¢t — 7) e 2™t drdt

= ¥ % _ 1\ p—i2mft Recall the shifting
j_oo(,bl(r) (j_oogbz(t T)e dt) dt s

Flp (t — )] = @(fe ™"
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

= joo joo ¢1 (D), (¢t — 7) e 2™t drdt

= ¥ % _ 1\ p—i2mft Recall the shifting
j_oo(,bl(r) (j_oogbz(t T)e dt) dt s

= j $1(0) (B2(F)e~27)dr

MEMPHIS



. g 128
Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

= joo joo ¢1 (D), (¢t — 7) e 2™t drdt

= ¥ % _ 1\ p—i2mft Recall the shifting
j_oo(,bl(r) (j_oogbz(t T)e dt) dt s

= j $1(0) (B2(F)e~27)dr

- ( | ¢1(r>e-i2ﬂffdr) 5 (f)
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Convolution and the Fourier Transform

Flds (6) * ()] = j ( j ¢1(r>¢2(t—r)dr>e i2nft g

= joo joo ¢1 (D), (¢t — 7) e 2™t drdt

= ¥ % _ 1\ p—i2mft Recall the shifting
j_oo(,bl(r) (j_oogbz(t T)e dt) dt s

= j $1(0) (B2(F)e~27)dr

- ( | ¢1(r>e-i2ﬂffdr) 5 (f)

Convolution in the time

= &, ()P, (f) domain is multip!ication ir_1 the
frequency domain (and vice
versa).
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Differentiation

d oy 1 adif e
PO =GN = 5 | erensi
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Differentiation

d e A= M
PO =GN = 5 | erensi

(0 0] 6 ) (0 0] i
= [ leprelaf = | opizremras

— 00

MEMPHIS



Differentiation

d aw, d [* -
PO =GN = 5 | erensi

i .
J S5l S Rege i

Fi2nfo(f)]

joo d(f)i2nfe?™tdf

— 00

132
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Differentiation

d e A= M
PO =GN = 5 | erensi

(0 0] 6 ) (0 0] i
= [ leprelaf = | opizremras

— 00

= FHi2nfo(f)]

d
F [Eqb(t)] = F[F[i2nfo(f)]] = i2rfo(f)
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Differentiation

d e, I
PO =GN = 5 | erensi

(0 0] 6 ) (0 0] i
= [ leprelaf = | opizremras

— 00

= F7'i2nf®(f)]
d
F [Eqb(t)] = F[F[i2nfo(f)]] = i2rfo(f)

Differentiation in the time domain is multiplication by f in the

frequency domain. (a high pass filter)
MEMPHIS
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It can be shown, with considerably more work, that integration in the time
domain is, more or less, division in the frequency domain. (a low pass filter)
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It can be shown, with considerably more work, that integration in the time
domain is, more or less, division in the frequency domain. (a low pass filter)

U P(z )d] q)(f) d(f)j ¢(t)dt
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It can be shown, with considerably more work, that integration in the time
domain is, more or less, division in the frequency domain. (a low pass filter)

U P(z )d] q)(f) d(f)j ¢(t)dt

The “+c” in the integral, or
the DC offset in ¢ (t).
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It can be shown, with considerably more work, that integration in the time
domain is, more or less, division in the frequency domain. (a low pass filter)

U P(z )d] q)(f) d(f)j ¢(t)dt

The “+c” in the integral, or
the DC offset in ¢ (t).

Note the integral is unstable because of division by f.

MEMPHIS
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We wish to model, as a LTI system, the equilibrium elastic response of a
loaded buoyant crust.

Pc  thin plate

elastic+buoyant

l Pm  bouyant mantle
response
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We wish to model, as a LTI system, the equilibrium elastic response of a
loaded buoyant crust.

____________ load
h ()1 m

Pc  thin plate

elastic+buoyant
response

l Pm  bouyant mantle
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We wish to model, as a LTI system, the equilibrium elastic response of a
loaded buoyant crust.

____________ load
h ()1 m

Pc  thin plate

elastic+buoyant
response

l Pm  bouyant mantle

net topography h(x) = h;(x) + w(x)

MEMPHIS
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The downward force of the load is balanced by the upward buoyant force of
the mantle plus the crustal rigidity resisting flexure.

The physics has already been done by Turcotte and Schubert (1982),

DV*w(r) = p(r)
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The downward force of the load is balanced by the upward buoyant force of
the mantle plus the crustal rigidity resisting flexure.

The physics has already been done by Turcotte and Schubert (1982),

DV*w(r) = p(r)

E = Young’s modulus
T = crustal thickness
v = poisson’s ratio

ET3

12(1-v?2)

D = flexural rigidity =
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The downward force of the load is balanced by the upward buoyant force of
the mantle plus the crustal rigidity resisting flexure.

The physics has already been done by Turcotte and Schubert (1982),

DV*w(r) = p(r)

E = Young’s modulus
T = crustal thickness
v = poisson’s ratio

ET3

12(1-v?2)

D = flexural rigidity =

w(r) = deflection of the plate (or crust)

p(r) = upward force (load + buoyancy)
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Assume 1-d, r - x DV*w(x) = p(x)
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Assume 1-d, r - x DV*w(x) = p(x)

load height

“
p(x) = —pgh;(x) + B(x)

load bouyant
force force
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Assume 1-d, r - x DV*w(x) = p(x)

Plate height (downward flex is

load height negative height).
7
p(x) = —prghi(x) + B(x) B(x) = —pmgw(x)
load bouyant
force force
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Assume 1-d, r - x DV*w(x) = p(x)

Plate height (downward flex is

load height negative height).
/“
p(x) = —prghi(x) + B(x) B(x) = =pmgw(x)
load bouyant
force force Note that B(x) is opposite of the direction

of w(x) hence negative. When the
flexure, w(x), is down (-), the buoyant
force B(x) is up (+).
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Assume 1-d, r - x DV*w(x) = p(x)

load height

<
p(x) = —pgh;(x) + B(x)

load bouyant
force force

p(x) = —pghi(x) — prgw(x)

Plate height (downward flex is
negative height).

B(x) = —pmgw(x)
Note that B(x) is opposite of the direction
of w(x) hence negative. When the

flexure, w(x), is down (-), the buoyant
force B(x) is up (+).
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Assume 1-d, r - x DV*w(x) = p(x)

Plate height (downward flex is

load height negative height).
4
p(x) = —prghi(x) + B(x) B(x) = =pmgw(x)
load bouyant
force force Note that B(x) is opposite of the direction

of w(x) hence negative. When the
flexure, w(x), is down (-), the buoyant
force B(x) is up (+).

p(x) = —pghi(x) — prgw(x)

04w (x) s

ox* 12(1 — v2) = —g(pihi(x) + pmw(x))
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04w (x)
dx*

D + ppgw(x) = —prgh;(x)

This is the differential equation that models our linear system.

hi —>—> W
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04w (x)
dx*

D + ppgw(x) = —prgh;(x)

This is the differential equation that models our linear system.

hi —>—> W

4w (x)
i dx*

D + pmgW(x)] = F|—pgh;(x)]
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04w (x)
dx*

D + ppgw(x) = —prgh;(x)

This is the differential equation that models our linear system.

hi —>—> W

04
F [ aviix) D+ pmgW(x)] = Fl—p1gh(x)]
64
e avfch) +Pmg - FIW@)] = —pig - Fll ()]
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Note that,

(0.0)

b (x) = F1[d(k)] = f ® (k) e 27k

— 00

oK) = Flp(x)] = j b (x)e 2Ty
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Note that,

(0.0)

b (x) = F1[d(k)] = f ® (k) e 27k

— 00

oK) = Flp(x)] = j b (x)e 2Ty

k is spatial frequency, k = 1/,
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Note that,
d(x) = Fdk)] = foodb(k)e””"xdk

oK) = Flp(x)] = j b (x)e 2Ty

k is spatial frequency, k = 1/,

2T

Wavenumber, k* = 2rk = 3 (f - k = freq

156

. - wavenumber)
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Note that,
d(x) = Fdk)] = foodb(k)e””"xdk

oK) = Flp(x)] = j b (x)e 2Ty

k is spatial frequency, k = 1/,

2T

Wavenumber, k* = 2rk = 5 (f - k = freq. - wavenumber)

Not unlike w = 2nf
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L [64W(x)

5pi | T Pmd Flw)l = —pig - Flh(x)]

D(2nik)*W (k) + prngW (k) = —pgH, (k)
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2*w(x)
D-F [ + pmg - Flw(x)] = —p1g - Flh;(x)]

0x*
D(2nik)*W (k) + prngW (k) = —pgH, (k)

W (k) = crustal deformation response in the spatial frequency domain.
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2*w(x)
D-F [ + pmg - Flw(x)] = —p1g - Flh;(x)]

0x*
D(2nik)*W (k) + prngW (k) = —pgH, (k)

W (k) = crustal deformation response in the spatial frequency domain.

. = gpH (o) —gpiH, (k)
W(k) — A 4 " . 4
pmg + D(2mik) D (2mik)
pmg |1+
PmY
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2*w(x)
D-F [ + pmg - Flw(x)] = —p1g - Flh;(x)]

0x*
D(2nik)*W (k) + prngW (k) = —pgH, (k)

W (k) = crustal deformation response in the spatial frequency domain.

Wk) = —gpH, (k) s —gpH, (k)
pmg + D(2mik)* D(2mik)*
pPmg |1+
Pmd
Pl/

o8 Pm
= Y 16m4k*D

1+———

9Pm
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Pl/
Lol Pm Pi
W(k) = —Hi (k) ——F¢ apap Woare (k) = W(0) = —H;(0) —
1+ 9p Pm
m
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Pl/
Lol Pm Pi
W(k) = —Hi (k) ——F¢ apap Woare (k) = W(0) = —H;(0) —
1+ 9p Pm
m

W (k) is the response of the crust
to load H, (k)

hy(x) w—l () [— ()
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P1 /Pm

W) = i) —g
9Pm
y(x) ] (X)) [ 1 ()
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Winax (k) = W(0) = —Hl<0>5—l

m

W (k) is the response of the crust
to load H, (k)

If H;(k) = 1, then h;(x) = 6(x)
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P1 /Pm

W) = ~Hi) —g
9Pm
hy(x) w—l () [— ()
Wy SRR
Q(k)‘?yﬂk)"l_k16n4k40
9Pm
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Winax (k) = W(0) = —Hl<0>5—l

m

W (k) is the response of the crust
to load H, (k)

If H;(k) = 1, then h;(x) = 6(x)

The impulse response of the system.
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—py NGy [¢](¢]11 ) <K 1w narrow
/Pm e > 1 dominates
. 16m*k*D
9Pm

Qk) =

1

MEMPHIS



167

0L/ I s> 1 . M191dItY A K | e narrow

i dominates
Q(k) = o 16m*k*D
9Pm I« 1 ey POUYANCY ) sy | ey Wide
dominates
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—Pi /Pm

Qk) = T
1+16T[kD

9Pm

Let a* = 8m
D

168

ey, [191IILY ) K | w— Narrow
fe>> 1 dominates

I < 1 e DOUYANCY ) oo | b \yidle

dominates
—P —P1
N Y pm g /Pm
O g (252 + 16m*k*) D st 1emtiy
gpm\ D 9Pm
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—Pi /Pm

Qk) = T
1+16T[kD

9Pm

Let a* = 8m
D
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ey, [191IILY ) K | w— Narrow
fe>> 1 dominates

I < 1 e DOUYANCY ) oo | b \yidle

dominates
—P —P1
N Y pm g /Pm
O g (252 + 16m*k*) D st 1emtiy
gpm\ D 9Pm
_~P1 9Pm 1

pm D a*+ (2uk)*
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—Pi /Pm

Qk) = T
1+16T[kD

9Pm

Let a* = 8m
D
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ey, [191IILY ) K | w— Narrow
fe>> 1 dominates

I < 1 e DOUYANCY ) oo | b \yidle

dominates
—P —P1
N Y pm g /Pm
O g (252 + 16m*k*) D st 1emtiy
gpm\ D 9Pm
_~P1 9Pm 1

pm D a*+ (2uk)*

_—9p 1
D a*+ (2nk)?
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q(x) = F—l[Q(k)] — *gplj s pl2mkx g,
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q(x) = F—l[Q(k)] — *gplj s pl2mkx g,

a
k% is even, isin(2mkx) is odd even - odd = odd j odd =0
-a
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q(x) = F—l[Q(k)] — *gplj s pl2mkx g,

a
k% is even, isin(2mkx) is odd even - odd = odd j odd =0
-a

O —gp; J‘x’ cos(2mkx)

D o at + (2mk)*
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q(x) = F—l[Q(k)] — *gplj e DT pi2mkx .

a
k% is even, isin(2mkx) is odd even - odd = odd j odd =0
-a

O —gp; J‘x’ cos(2mkx)

D o at + (2mk)*

from tables

q(x) = ~V2gp e T2 [sin <M> + cos (M)]

4a3D 2 B
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q(x) = _ﬁ%l)z e~alxl/V2 lsin <%> + cos <%>]

Given an arbitrary crustal load, h;(x), w(x) = q(x) * h;(x), and

h(x) = hy(x) + w(x) = hy(x) + q(x) * hy(x)
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Deflection of a Buoyant Plate, o« = 1
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Figure 6: Response of a Buoyant, Rigid Plate to an Spatial Impulse Load
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Figure 3.28 A bathymetric profile across the Hawaiian archipelago.

Turcotte and Schubert, Geodynamics 2" Edition, page 222.

MEMPHIS



X(w)

Feedback

Lo da L T T S

:

: ®,(w) - Y(w)

: D, (w)

:

|

: !

|

! @ ACRE P oy

:

|

R . e
Drp(w)
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> Y(w)

MEMPHIS



179
Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Z(w) = X(w) — P2 (w)Y (w)
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Y(w)
®, (w)

Z(w) = X(w) — P2 (w)Y (w) = X(w) = Pz(w)Y (w)
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Y(w)
®, (w)

Z(w) = X(w) — P2 (w)Y (w) = X(w) = Pz(w)Y (w)

Y (w) = (X(w) — @2 (0)Y (0))®1(w)
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Y(w)
®, (w)

Z(w) = X(w) — P2 (w)Y (w) = X(w) = Pz(w)Y (w)

Y (w) = (X(w) — @2 (0)Y (0))®1(w)

Y((U)(l + &, (a))CDZ(a))) = X(w)P;(w)
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Y(w)
®, (w)

Z(w) = X(w) — P2 (w)Y (w) = X(w) = Pz(w)Y (w)

Y (w) = (X(w) — @2 (0)Y (0))®1(w)

Y((U)(l + &, (a))CDZ(a))) = X(w)P;(w)

Y(w) _ ¢, (w)
X(@) 1+ (0)P;(w)

= @rp(w)
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Y(w)
@, (w)

Y(w) = Z(w) P (@) =— 7(w) =

Y(w)
®, (w)

Z(w) = X(w) — P2 (w)Y (w)

Y (w) = (X(w) — @2 (0)Y (0))®1(w)

Y((U)(l + &, (a))CDZ(a))) = X(w)P;(w)

Y(w) _ ¢, (w)
X(@) 1+ (0)P;(w)

= @rp(w)

The current input affects future output.

In practice, there will be slight delays, or phase shifts.
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= X(w) = Pz(w)Y (w)
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®; (w)
14+ P (w)P,(w)

Opp(w) =

—w?

Let &, be a mechanical seismometer, ®,(w) = AR

Let &, be a constant, ®,(w) = a
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®; (w)
1+ @y (w)Pz(w)

Opp(w) =

—w?

Let &, be a mechanical seismometer, ®,(w) = AR

Let &, be a constant, ®,(w) = a

—w?/(w? — 2ilw — w?)
1—aw?/(w? — 2ilw — w?)

Drp(w) =

187
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®; (w)
1+ @y (w)Pz(w)

Opp(w) =

—w?

Let &, be a mechanical seismometer, ®,(w) = AR

Let &, be a constant, ®,(w) = a

—w?/(w? = 2ilw — w?) —w?
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Drp(w) =

1—aw?/(w? — 2ilw — w?) L (1 - a)w? — 2ilw — w?
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®; (w)
1+ @y (w)Pz(w)

Opp(w) =

—w?

Let &, be a mechanical seismometer, ®,(w) = AR

Let &, be a constant, ®,(w) = a

—w*/(@* 5 i) —w?
1—aw?/(w? - 2ilw —w?) (1-a)w?—2ilw— w?

Orp(w) =

i{+ |(1-a)w§-72 . .
The poles are now wg, = \/ : instead of w, = i{ + w§ — 2

1-x
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®; (w)
14+ P (w)P,(w)

Opp(w) =

—w?

Let @, be a mechanical seismometer, @, (w) = ——; >
w==-2i{w—w$

Let &, be a constant, ®,(w) = a

—w*/(@* 5 i) —w?
1—aw?/(w? - 2ilw —w?) (1-a)w?—2ilw— w?

Drp(w) =

i{+ |(1-a)w§-72 . .
The poles are now wg, = \/ : instead of w, = i{ + w§ — 2

1-x

So we essentially lower the "corner” of the seismometer by about /(1 — a).
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Figure 12: Phase and Velocity responses of some modern seismograph systems :
used in PASSCAL, GSN, and other networks, ¢/o the Incorporated Research \AEMPHIS
Institutions for Seismology (IRIS).
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https://www.passcal.nmt.edu/content/instrumentation/sensors/sensor-comparison-chart

Nominal Sensor Responses
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