
Introduction to Linear Systems in 

the Time Domain.
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See Aster and Borchers, Time Series Analysis, chapter 1.

Mitch Withers,  Res. Assoc. Prof., Univ. of Memphis
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𝜙X Y

• We will learn signal processing from linear systems perspective.
• For a given x(t), the linear system, 𝜙, transforms it to some output y(t).
• 𝑦 𝑡 = 𝜙 𝑥(𝑡) , where 𝜙 is said to be operating on x to produce y.
• An example is a mass suspended by a spring
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• We will learn signal processing from linear systems perspective.
• For a given x(t), the linear system, 𝜙, transforms it to some output y(t).
• 𝑦 𝑡 = 𝜙 𝑥(𝑡) , where 𝜙 is said to be operating on x to produce y.
• An example is a mass suspended by a spring

• But what happens when the movement of the mass on the spring 
stretches the spring or if it hits some sort of mechanical stop?
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𝜙X Y

• We will learn signal processing from linear systems perspective.
• For a given x(t), the linear system, 𝜙, transforms it to some output y(t).
• 𝑦 𝑡 = 𝜙 𝑥(𝑡) , where 𝜙 is said to be operating on x to produce y.
• An example is a mass suspended by a spring

• But what happens when the movement of the mass on the spring 
stretches the spring or if it hits some sort of mechanical stop?

• è non-linear
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• A child on a swing is another example of a linear system.
• A small push will result in linear motion but a big push may not.
• With a small push the ropes holding the swing remain taught and the motion is 

that of a simple pendulum.  Push a little harder and it swings a proportionally 
longer arc.

• Swinging too high may cause the ropes to no longer be taught.  At that point 
the response of the swing depends on the input which makes it non-linear.

• In other words, the response ∅, of a linear system is independent of the input.
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We will develop tools for analyzing linear systems which allow us to take 
advantage of the linearity.  Conversely,  we can not use these tools on non-
linear systems. 

Properties of a linear system
• superposition
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We will develop tools for analyzing linear systems which allow us to take 
advantage of the linearity.  Conversely,  we can not use these tools on non-
linear systems. 

Properties of a linear system
• superposition

𝜙 𝑥 𝑡 + 𝑦(𝑡) = 𝜙 𝑥(𝑡) + 𝜙 𝑦(𝑡)

 Phi operating on the sum of the inputs is equal to the sum of outputs of 
phi operating individually on the inputs. 
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We will develop tools for analyzing linear systems which allow us to take 
advantage of the linearity.  Conversely,  we can not use these tools on non-
linear systems. 

Properties of a linear system
• Superposition
• Scaling

𝜙 𝛼𝑥(𝑡) = 𝛼𝜙 𝑥(𝑡)

Which is really just a special case of superposition

𝜙 𝛼𝑥(𝑡) = 𝜙 𝑥 𝑡 + 𝑥 𝑡 + 𝑥 𝑡 + ⋯ = 𝛼𝜙 𝑥(𝑡)  

where 𝛼 is an integer in this case. The property is also true with non-integer 
multiples.
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Note that 𝜙 𝛼𝑥(𝑡) = 𝛼𝜙 𝑥(𝑡)  implies 𝜙 0 = 0
That is, 0 input produces 0 output.

Let x(t)=0
 then, 𝜙 𝛼𝑥(𝑡) = 𝜙 𝛼 - 0 = 𝛼𝜙 0
 and, 𝜙 𝛼 - 0 = 𝜙 0
therefor	𝜙 0 = 𝛼𝜙 0
Which is only true if 𝛼 ≡ 1	𝑜𝑟	𝜙 0 = 0
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Note that 𝜙 𝛼𝑥(𝑡) = 𝛼𝜙 𝑥(𝑡)  implies 𝜙 0 = 0
That is, 0 input produces 0 output.

Let x(t)=0
 then, 𝜙 𝛼𝑥(𝑡) = 𝜙 𝛼 - 0 = 𝛼𝜙 0
 and, 𝜙 𝛼 - 0 = 𝜙 0
therefor	𝜙 0 = 𝛼𝜙 0
Which is only true if 𝛼 ≡ 1	𝑜𝑟	𝜙 0 = 0

This means that 0 input gives 0 output regardless of 𝜙.  
That is 𝜙 doesn’t add energy.
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Many of the systems we study are also time invariant.  That is, the 
response of the system, 𝜙, is constant.  These are linear time invariant 
systems, or LTI.

In some cases we may search for small variations in 𝜙 (searching for 
changes in seismic anisotropy for example) though normally 𝜙 is 
required, or assumed, to be stable over the time period of our study.

LTI
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In most cases, our processes are also causal: there is no output prior to a 
non-zero input.  The the swing for example, does not oscillate before we 
push it.

It is possible to design acausal digital filters.  Some seismic digitizers have 
acausal responses which produce precursors that are artifacts of the digital 
filter.

Causality



13



14

Stability

We also require our systems to be stable. That is,

𝑦 𝑡 = 	𝜙 𝑥 𝑡 < 	∞	𝑓𝑜𝑟	𝑥 𝑡 < 	∞

An idealized mass on a spring with no friction is not stable for a sinusoidal input.
In natural systems, for example a building excited at it’s natural period, the 
response becomes nonlinear rather than infinite.  That is the building will deform 
before reaching oscillations of infinite amplitude.
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Before diving into signal processing, we must first review a few handy 
mathematical functions

A delta function, 𝛿(𝑡), is zero everywhere except where its argument is 0 at 
which point it is ∞.

𝛿 𝑡 = 	 7∞, 𝑡 = 0
0, 𝑡 ≠ 0

t
t=0

∞

This definition of the delta function is not particularly well defined (note the infinity).   
Instead, let’s use a boxcar.
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The boxcar or rectangular function is defined as

Π 𝑡 =
1, 𝑡 <

1
2

0, 𝑡 >
1
2

And we can let the mathematicians debate its value at 1/2

What is the area under the curve of a boxcar?

t=0

1

-1/2 1/2
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(t-2)=0

1

We can translate the rectangle along the t-axis

Π(t-2)

2

1

2
1
2

1
1
2

(t-2)=1/2
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We can modify the width.

1

t=0
t/0.5=1/2

1

-1 1t=0

1

Π
𝑡
2

Π
𝑡
0.5

t=0

t/2=1/2

1

t=0 !
"# !"
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And we can also modify the height so that in general.

𝑓 𝑥 = ℎΠ
𝑥 − 𝑐
𝑏

This boxcar is a function of x.  It has height h, width b, and is centered at c. 

Look for the transition points at $#%
&
= !

'
	→ 𝑥 − 𝑐 = &

'
	→ 𝑥 = &

'
+ 𝑐 
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We can now more rigorously define the delta function using a boxcar.

𝛿 𝑡 = 	 lim
(→*

1
𝜏 Π

𝑡
𝜏

transitions at +
(
= !

'

In the limit as 𝜏 → 0 the box car get’s infinitely narrow and infinitely tall. And 
the area under the curve remains 1.  This leads to the useful property of the 
delta function,

H
#,

,
𝛿(𝑡) 𝑑𝑡 = 1

So that !
(
Π +

(
 has height !

(
 and full width of 𝜏 so it becomes 𝛿(𝑡) in the limit as 𝜏 → 0



21

The sifting property of the delta function.

H
-

&
𝑓 𝑡 𝛿 𝑡 − 𝑡* 𝑑𝑡 = 𝑓 𝑡* , 𝑤ℎ𝑒𝑟𝑒	𝑎 ≤ 𝑡* ≤ 𝑏

It is straight forward to prove this using the boxcar 
definition of the delta function.

a b

f(t)

1
𝜏 Π

𝑡 − 𝑡*
𝜏

𝑡 = 𝑡*
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The step function

𝐻 𝑡 = 70, 𝑡 < 0
1, 𝑡 > 0

t
t=0

1
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The step function

𝐻 𝑡 = 70, 𝑡 < 0
1, 𝑡 > 0

t
t=0

1

Mathematically,	we	can	define	the	step	function	using	the	delta	function,	

𝐻 𝑡 = H
#,

+
𝛿 𝜏 𝑑𝜏

• Integrate over 𝜏 up to t for all values of t
• For values of t < 0, the integral is 0
• For values of t > 0, the integral is 1
• This results in a function in t, that transitions from 0 to 1 at t=0
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We can shift the step function by 𝑡*

𝐻 𝑡 − 𝑡* = H
#,

+
𝛿 𝜏 − 𝑡* 𝑑𝜏
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We can shift the step function by 𝑡*

𝐻 𝑡 − 𝑡* = H
#,

+
𝛿 𝜏 − 𝑡* 𝑑𝜏

• Again, integrate in 𝜏 space from −∞ to t for all values of t
• For values of t where 𝜏 − 𝑡* < 0, the integral is 0
• Transitions at values of t where 𝜏 − 𝑡* = 0, 𝜏 = 𝑡*

t

𝜏

t-space

𝜏-space
𝛿 𝜏 − 𝑡*

𝐻 𝑡 − 𝑡*

𝑡 = 𝑡*

𝜏 = 𝑡*
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An Impulse Response is the response of a linear system to a delta function aka 
impulse function.

ℎ 𝑡 = 𝜙[𝛿 𝑡 ]   the impulse response of 𝜙
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An Impulse Response is the response of a linear system to a delta function aka 
impulse function.

ℎ 𝑡 = 𝜙[𝛿 𝑡 ]   the impulse response of 𝜙

Recall the sifting property,
𝑓 𝑡* = ∫#,

, 𝑓 𝑡 𝛿 𝑡 − 𝑡* 𝑑𝑡 

Similarly for any t,

𝑓 𝑡 = H
#,

,
𝑓 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏
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An Impulse Response is the response of a linear system to a delta function aka 
impulse function.

ℎ 𝑡 = 𝜙[𝛿 𝑡 ]   the impulse response of 𝜙

Recall the sifting property,
𝑓 𝑡* = ∫#,

, 𝑓 𝑡 𝛿 𝑡 − 𝑡* 𝑑𝑡 

Similarly for any t,

𝑓 𝑡 = H
#,

,
𝑓 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏

If f(t) is an arbitrary input function to 𝜙, then

𝜙 𝑓 𝑡 = 𝜙 H
#,

,
𝑓 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 𝜙f(t) 𝜙[𝑓 𝑡 ]
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Recall the definition of the integral

H
#,

,
𝑓 𝑥 𝑑𝑥 = lim

∆$→*
b
/0#,

,

𝑓(𝑥/)∆𝑥

∆𝑥

𝑥/
f(x

)
x

Let 𝑔 𝑡 = 𝜙 𝑓 𝑡 , then
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Recall the definition of the integral

H
#,

,
𝑓 𝑥 𝑑𝑥 = lim

∆$→*
b
/0#,

,

𝑓(𝑥/)∆𝑥

∆𝑥

𝑥/
f(x

)
x

Let 𝑔 𝑡 = 𝜙 𝑓 𝑡 , then

𝑔 𝑡 = 𝜙 lim
∆(→*

b
/0#,

,

𝑓(𝜏/)𝛿(𝑡 − 𝜏/)∆𝜏
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𝜙 is linear so,

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝜙 𝑓(𝜏/)𝛿(𝑡 − 𝜏/)∆𝜏
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𝜙 is linear so,

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝜙 𝑓(𝜏/)𝛿(𝑡 − 𝜏/)∆𝜏

𝑓(𝜏/) and ∆𝜏 are scalars in t 

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝑓(𝜏/)𝜙 𝛿(𝑡 − 𝜏/) ∆𝜏
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𝜙 is linear so,

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝜙 𝑓(𝜏/)𝛿(𝑡 − 𝜏/)∆𝜏

𝑓(𝜏/) and ∆𝜏 are scalars in t 

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝑓(𝜏/)𝜙 𝛿(𝑡 − 𝜏/) ∆𝜏

𝜙 𝛿(𝑡 − 𝜏/)  is the impulse response of the linear system 𝜙

𝑔 𝑡 = lim
∆(→*

b
/0#,

,

𝑓 𝜏/ ℎ(𝑡 − 𝜏/)∆𝜏
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Restoring the integral from the sum,

𝑔 𝑡 = H
#,

,
𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
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Restoring the integral from the sum,

𝑔 𝑡 = H
#,

,
𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 This is convolution, represented with ∗

𝑔 𝑡 = 𝑓(𝑡) ∗ ℎ(𝑡)
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Restoring the integral from the sum,

𝑔 𝑡 = H
#,

,
𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 This is convolution, represented with ∗

𝑔 𝑡 = 𝑓(𝑡) ∗ ℎ(𝑡)

Two important points
1. Convolution is an integral 𝑔 𝑡 = 𝑓 𝑡 ∗ ℎ 𝑡 = ∫#,

, 𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
2. And, if we can model any physical system as a linear system, then we can 

use the impulse response to find the output of the system to any arbitrary 
input by convolving the input with the impulse response
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𝜙f(t) 𝜙[𝑓 𝑡 ]

𝑓 𝑡 ∗ ℎ 𝑡 = H
#,

,
𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 = 𝑔(𝑡)

input Impulse 
response output

convolution
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Recap (because this is important)

The convolution of two functions is defined by the integral

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏
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Recap (because this is important)

The convolution of two functions is defined by the integral

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

And the impulse response of a linear system is,
ℎ 𝑡 = 𝜙 𝛿(𝑡)
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Recap (because this is important)

The convolution of two functions is defined by the integral

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

And the impulse response of a linear system is,
ℎ 𝑡 = 𝜙 𝛿(𝑡)

So that the response of any linear system to an arbitrary input can be found by 
convolving the input with the impulse response,

𝑔 𝑡 = 𝜙 𝑓(𝑡) = 𝑓(𝑡) ∗ ℎ(𝑡)
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Recap (because this is important)

The convolution of two functions is defined by the integral

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

And the impulse response of a linear system is,
ℎ 𝑡 = 𝜙 𝛿(𝑡)

So that the response of any linear system to an arbitrary input can be found by 
convolving the input with the impulse response,

𝑔 𝑡 = 𝜙 𝑓(𝑡) = 𝑓(𝑡) ∗ ℎ(𝑡)

It is common to work with the impulse response, ℎ(𝑡), rather than 
the linear system itself.

(more on that later) 
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Earthquake source, F(t)

Path, p(t)

Site response, s(t)

Instrument response, I(t)𝑆𝑒𝑖𝑠𝑚𝑜𝑔𝑟𝑎𝑚 = 𝐹(𝑡) ∗ 𝑝(𝑡) ∗ 𝑠(𝑡) ∗ 𝐼(𝑡)
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But what exactly is convolution?  Let’s try an example.
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But what exactly is convolution?  Let’s try an example.

Let 𝑓! 𝑡 = Π 𝑡

and 𝑓' 𝑡 = 𝐻(𝑡)𝑒#+

A boxcar function

A decaying exponential
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But what exactly is convolution?  Let’s try an example.

Let 𝑓! 𝑡 = Π 𝑡

and 𝑓' 𝑡 = 𝐻(𝑡)𝑒#+

A boxcar function

A decaying exponential

𝑔 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

= H
#,

,
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏
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𝑔(𝑡) = H
#,

,
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

We’re integrating over 𝜏 and in 𝜏 − 𝑠𝑝𝑎𝑐𝑒 t is a constant, so let’s consider 𝑓'(−𝜏)
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𝑔(𝑡) = H
#,

,
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

We’re integrating over 𝜏 and in 𝜏 − 𝑠𝑝𝑎𝑐𝑒 t is a constant, so let’s consider 𝑓'(−𝜏)

The original 𝑓' was a decaying exponential so 𝑓'(−𝜏) is the same exponential, in 𝜏, 
flipped left-to-right.

𝑓'(𝜏) 

𝑓'(−𝜏) 
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𝑔(𝑡) = H
#,

,
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

We’re integrating over 𝜏 and in 𝜏 − 𝑠𝑝𝑎𝑐𝑒 t is a constant, so let’s consider 𝑓'(−𝜏)

The original 𝑓' was a decaying exponential so 𝑓'(−𝜏) is the same exponential, in 𝜏, 
flipped left-to-right.

𝑓'(𝜏) 

𝑓'(−𝜏) 

Then 𝑓' 𝑡 − 𝜏  is 𝑓' flipped left-to-right 
and shifted by 𝑡. So we must consider 
the value of the integral (the area 
under the curve) for all values of t (or 
shifts) from −∞ to ∞.
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

Large negative t
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

less negative t
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

Non-zero overlap, integral is area under the curve
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

positive values of t
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Steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

Large positive values of t
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Our example functions have discontinuities so we need to split the 
integration into three cases. 

Case I) 𝑡 < − !
'

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0
𝑡 = 𝜏

Where is 𝑡 = − !
'
 ?

𝜏 = −
1
2 𝜏 = +

1
2
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Our example functions have discontinuities so we need to split the 
integration into three cases. 

Case I) 𝑡 < − !
'

𝜏 = 0
𝜏

𝑡 − 𝜏 = 0

𝑔3 𝑡 = H
#,

#!'
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

Integrating over the non-zero portion of the step function

= H
#,

#!'
0 - 1 - 𝑒# +#( 𝑑𝜏 = 0

Technically, we would need to piecewise integrate from −∞ to +∞  but one or the 
other function is 0 over the entire interval for shifts of 𝑡 < − !

'
.
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Case II) − !
'
< 𝑡 < !

'

𝑡 − 𝜏 = 0

𝜏 = 0

Again, we technically need to 
integrate over the entire interval 
from −∞ to +∞, but we’ll get the 
same result integrating over just 
the portion with non-zero 
overlap. 

𝜏

𝜏
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Case II) − !
'
< 𝑡 < !

'

𝑡 − 𝜏 = 0

𝜏 = 0

Again, we technically need to 
integrate over the entire interval 
from −∞ to +∞, but we’ll get the 
same result integrating over just 
the portion with non-zero 
overlap. 

Integrate from here

To here

𝑔33 𝑡 = H
?

?
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏 What are the limits of the integration?

𝜏

𝜏
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Case II) − !
'
< 𝑡 < !

'

𝑡 − 𝜏 = 0

𝜏 = 0

Again, we technically need to 
integrate over the entire interval 
from −∞ to +∞, but we’ll get the 
same result integrating over just 
the portion with non-zero 
overlap. 

Integrate from here

To here

𝑔33 𝑡 = H
#!'

+
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏 = H

#!'

+
𝑒#(+#()𝑑𝜏 = 𝑒#+H

#!'

+
𝑒(𝑑𝜏

𝜏

𝜏
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Case II) − !
'
< 𝑡 < !

'

𝑡 − 𝜏 = 0

𝜏 = 0

Again, we technically need to 
integrate over the entire interval 
from −∞ to +∞, but we’ll get the 
same result integrating over just 
the portion with non-zero 
overlap. 

Integrate from here

To here

𝑔33 𝑡 = H
#!'

+
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏 = H

#!'

+
𝑒#(+#()𝑑𝜏 = 𝑒#+H

#!'

+
𝑒(𝑑𝜏

= 𝑒#+ m𝑒(

𝜏 = −
1
2

𝑡

= 𝑒#+ 𝑒+ − 𝑒#
!
' = 𝑒#+5+ − 𝑒# +5!' = 𝑒* − 𝑒# +5!' = 1 − 𝑒#(+5

!
')

𝜏

𝜏
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Case III)

Over what interval do we need to integrate?
From where to where?

𝜏

𝜏

𝑔333 𝑡 = H
?

?
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

𝑡 >
1
2



65

Case III)

Over what interval do we need to integrate?
From where to where?

𝜏

𝜏

𝜏 = +
1
2𝜏 = −

1
2

𝑔333 𝑡 = H
?

?
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏

𝑡 >
1
2
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Case III)

Over what interval do we need to integrate?
From where to where?

𝜏

𝜏

𝑔333 𝑡 = H
#!'

!
'
Π 𝜏 𝐻(𝑡 − 𝜏)𝑒#(+#()𝑑𝜏 = 𝑒#+H

#!'

!
'
𝑒( 𝑑𝜏 = 𝑒#+ 𝑒 6! ' − 𝑒# 6! '

𝑡 >
1
2
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So the full answer requires all three cases and is an incomplete answer without 
the interval over which each piece is valid

Case I) 𝑔3 𝑡 = 0,

Case II) 𝑔33(𝑡) = 1 − 𝑒#(+5 ⁄! "),

Case III) 𝑔333 𝑡 = 𝑒#+ 𝑒 ⁄! " − 𝑒# ⁄! " , 𝑡 >
1
2

𝑡 < −
1
2

−
1
2 < 𝑡 <

1
2
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Recap of steps in convolving 𝑓! with 𝑓':

1. Flip 𝑓' left-to-right
2. Shift 𝑓' to −∞
3. Multiply 𝑓!with the flipped and shifted 𝑓'
4. Integrate
5. Repeat from step 2 for all values of t

A convolution animation (c/o Harald Pleym: https://www.hpleym.no/

http://www.ceri.memphis.edu/people/mwithers/CERI7106/other/paper264.gif
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Recall convolution from last time

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

1. Flip 𝑓' 
2. Advance 𝑓' for all values of t from −∞ to +∞
3. For every t, multiply and integrate over 𝜏  
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Recall convolution from last time

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

1. Flip 𝑓' 
2. Advance 𝑓' for all values of t from −∞ to +∞
3. For every t, multiply and integrate over 𝜏  

Correlation is mathematically similar to convolution w/o the flip.

𝑐 𝑡 = 𝑓! 𝑡 ⋆ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝜏 − 𝑡 𝑑𝜏
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Recall convolution from last time

𝑐 𝑡 = 𝑓! 𝑡 ∗ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝑡 − 𝜏 𝑑𝜏

1. Flip 𝑓' 
2. Advance 𝑓' for all values of t from −∞ to +∞
3. For every t, multiply and integrate over 𝜏  

Correlation is mathematically similar to convolution w/o the flip.

𝑐 𝑡 = 𝑓! 𝑡 ⋆ 𝑓' 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝜏 − 𝑡 𝑑𝜏

Note that the argument for 𝑓' needs to be 𝜏 − 𝑡 not 𝑡 + 𝜏 to preserve the direction of 
the shift from left to right, where 𝜏 − 𝑡 = 0.
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Using our previous example but with correlation.

Let 𝑓! 𝑡 = Π 𝑡

and 𝑓' 𝑡 = 𝐻(𝑡)𝑒#+

A boxcar function

A decaying exponential
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Using our previous example but with correlation.

Let 𝑓! 𝑡 = Π 𝑡

and 𝑓' 𝑡 = 𝐻(𝑡)𝑒#+

A boxcar function

A decaying exponential

c 𝑡 = 𝑓! 𝑡 ⋆ 𝑓' 𝑡 = ∫#,
, 𝑓! 𝜏 𝑓' 𝜏 − 𝑡 𝑑𝜏

= H
#,

,
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏
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Using our previous example but with correlation.

Let 𝑓! 𝑡 = Π 𝑡

and 𝑓' 𝑡 = 𝐻(𝑡)𝑒#+

A boxcar function

A decaying exponential

c 𝑡 = 𝑓! 𝑡 ⋆ 𝑓' 𝑡 = ∫#,
, 𝑓! 𝜏 𝑓' 𝜏 − 𝑡 𝑑𝜏

= H
#,

,
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

Again have to split the calculation into three parts because of the 
discontinuities.
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Case I)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

Condition for t for this case?

𝑐3 𝑡 = H
?

?
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

What are the limits of integration?
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Case I)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

𝑡 < −
1
2

𝑐3 𝑡 = H
# 6! '

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏
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Case I)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

𝑡 < −
1
2

𝑐3 𝑡 = H
# 6! '

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

= H
# 6! '

6! '
𝑒#((#+) 𝑑𝜏 = 𝑒+H

# 6! '

6! '
𝑒#( 𝑑𝜏 = −𝑒+ m𝑒#(

𝜏 = − '1 2

'1 2
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Case I)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

𝑡 < −
1
2

𝑐3 𝑡 = H
# 6! '

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

= H
# 6! '

6! '
𝑒#((#+) 𝑑𝜏 = 𝑒+H

# 6! '

6! '
𝑒#( 𝑑𝜏 = −𝑒+ m𝑒#(

𝜏 = − '1 2

'1 2

𝑐3 𝑡 = −𝑒+𝑒# 6! ' + 𝑒+𝑒 6! ' = 𝑒 +5 6! ' − 𝑒 +# 6! ' , 𝑤ℎ𝑒𝑟𝑒	𝑡 < −
1
2
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Case II)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2 𝜏 = +

1
2

𝑐3 𝑡 = H
?

?
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

Conditions for t?

What are the limits of integration over 𝜏?
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Case II)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2 𝜏 = +

1
2

−
1
2 < 𝑡 <

1
2

𝑐3 𝑡 = H
+

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏
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Case II)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2 𝜏 = +

1
2

−
1
2 < 𝑡 <

1
2

𝑐3 𝑡 = H
+

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

= H
+

6! '
𝑒#((#+) 𝑑𝜏 = 𝑒+H

+

6! '
𝑒#( 𝑑𝜏 = −𝑒+ m𝑒#(

𝜏 = 𝑡

'1 2
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Case II)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2 𝜏 = +

1
2

−
1
2 < 𝑡 <

1
2

𝑐3 𝑡 = H
+

6! '
Π 𝜏 𝐻(𝜏 − 𝑡)𝑒#((#+)𝑑𝜏

= H
+

6! '
𝑒#((#+) 𝑑𝜏 = 𝑒+H

+

6! '
𝑒#( 𝑑𝜏 = −𝑒+ m𝑒#(

𝜏 = 𝑡

'1 2

𝑐33 𝑡 = −𝑒+𝑒# 6! ' + 𝑒+𝑒#+ = 1 − 𝑒 +# 6! ' , 𝑤ℎ𝑒𝑟𝑒	 −
1
2 < 𝑡 <

1
2
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Case III)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

Conditions for t?
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Case III)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

𝑡 >
1
2

𝑐333 𝑡 = 0, 𝑤ℎ𝑒𝑟𝑒	𝑡 >
1
2
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Case III)

𝜏 − 𝑡 = 0

𝜏

𝜏

𝜏 = −
1
2

𝜏 = +
1
2

𝑡 >
1
2

𝑐333 𝑡 = 0, 𝑤ℎ𝑒𝑟𝑒	𝑡 >
1
2

Again, the complete answer has three parts each of which has conditions of t 
over which it is valid.  Without the discontinuities, we could do the correlation 
in a single integration.
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Autocorrelation is correlation of a function with itself

c 𝑡 = 𝑓! 𝑡 ⋆ 𝑓! 𝑡 = ∫#,
, 𝑓! 𝜏 𝑓! 𝜏 − 𝑡 𝑑𝜏

• Convolution is used to “run” input signals through a linear system using 
the impulse response (or transfer function). 

• Correlation is often used to test similarity between two functions (e.g. 
pattern matching).
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Autocorrelation is correlation of a function with itself

c 𝑡 = 𝑓! 𝑡 ⋆ 𝑓! 𝑡 = ∫#,
, 𝑓! 𝜏 𝑓! 𝜏 − 𝑡 𝑑𝜏

• Convolution is used to “run” input signals through a linear system using 
the impulse response (or transfer function). 

• Correlation is often used to test similarity between two functions (e.g. 
pattern matching).

When testing the similarity between two functions using correlation (or 
autocorrelation) it is common to normalize so that the result is −1 < 𝑎 𝑡 < 1.

𝐴 𝑡 = H
#,

,
𝑓! 𝜏 𝑓' 𝜏 − 𝑡 𝑑𝜏

a 𝑡 = 8(+)
∫#$
$ :! ( :" ( ;(

Total energy in denominator (more on that later)
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• A(t=0) is said to be the correlation coefficient at 0 lag.  
• Or the max A(t) is given for t-lag (or lead depending on whether max 

A(t) is + or -).  
• A(t) max is at t=0 for autocorrelation (though there may be multiple 

peaks or maxima depending on the function).
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• A(t=0) is said to be the correlation coefficient at 0 lag.  
• Or the max A(t) is given for t-lag (or lead depending on whether max 

A(t) is + or -).  
• A(t) max is at t=0 for autocorrelation (though there may be multiple 

peaks or maxima depending on the function).

𝑓! 𝑡 ⋆ 	𝑓! 𝑡 = 𝛿(𝑡)

Can you explain why?

If 𝑓!(𝑡) is a purely random function,
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Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?
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Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏 Let 𝑢 = 𝜏 − 𝑡,  then 𝑑𝑢 = 𝑑𝜏



92

Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏 Let 𝑢 = 𝜏 − 𝑡,  then 𝑑𝑢 = 𝑑𝜏

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝑢 + 𝑡 𝑔 𝑢 𝑑𝑢
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Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏 Let 𝑢 = 𝜏 − 𝑡,  then 𝑑𝑢 = 𝑑𝜏

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝑢 + 𝑡 𝑔 𝑢 𝑑𝑢

= H
#,

,
𝑔(𝑢)𝑓 𝑢 + 𝑡 𝑑𝑢
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Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏 Let 𝑢 = 𝜏 − 𝑡,  then 𝑑𝑢 = 𝑑𝜏

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝑢 + 𝑡 𝑔 𝑢 𝑑𝑢

= H
#,

,
𝑔(𝑢)𝑓 𝑢 + 𝑡 𝑑𝑢

≠ H
#,

,
𝑔 𝑢 𝑓 𝑢 − 𝑡 𝑑𝑢 = 𝑔 𝑡 ⋆ 𝑓 𝑡
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Does correlation obey the commutative property?

𝑓 𝑡 ⋆ 𝑔 𝑡 = 𝑔 𝑡 ⋆ 𝑓(𝑡)?

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏 Let 𝑢 = 𝜏 − 𝑡,  then 𝑑𝑢 = 𝑑𝜏

𝑓 𝑡 ⋆ 𝑔 𝑡 = H
#,

,
𝑓 𝑢 + 𝑡 𝑔 𝑢 𝑑𝑢

= H
#,

,
𝑔(𝑢)𝑓 𝑢 + 𝑡 𝑑𝑢

≠ H
#,

,
𝑔 𝑢 𝑓 𝑢 − 𝑡 𝑑𝑢 = 𝑔 𝑡 ⋆ 𝑓 𝑡

No, in general correlation does not obey the commutative property.

𝑓 𝑡 ⋆ 𝑔 𝑡 ≠ 𝑔 𝑡 ⋆ 𝑓(𝑡), so be careful
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Cummutative: 𝑓 𝑡 ⋆ 𝑔 𝑡 ≠ 𝑔 𝑡 ⋆ 𝑓(𝑡)

It can similarly be shown that 

Distributive: 𝑓 𝑡 ⋆ 𝑔 𝑡 + ℎ 𝑡 = 𝑓 𝑡 ⋆ 𝑔 𝑡 + 𝑓 𝑡 ⋆ ℎ(𝑡)

Associative: 𝑓 𝑡 ⋆ 𝑔 𝑡 ⋆ ℎ 𝑡 ≠ 𝑓 𝑡 ⋆ 𝑔 𝑡 ⋆ ℎ(𝑡)

Though these may all be true in some cases with appropriate symmetry.
e.g. if 𝑓 𝑢 + 𝑡 = 𝑓(𝑢 − 𝑡).


