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In this lecture we’ll discuss the problem of optimally filtering noise from
a signal. The Wiener filter was developed by Norbert Wiener in the 1940’s.
Although the filter can be derived in either continuous or discrete time, we’ll
derive a simple discrete time version of the filter.
Suppose that a noise sequence Ny is added to a signal Sy to produce a noisy
signal Z.
Zy = Sk + Np. (1)

We'll assume that both the signal and noise are covariance stationary, known
means and covariances, and that the means are 0 (this is easy to arrange by
subtracting out any nonzero mean.)

We want to filter out the noise and produce an estimate X}, such that E[(S,—
X})?] is minimized. We'll consider FIR filters of the form

Xe=agZr +a1Zk_ 1+ ...+ amZi_m. (2)

The minimization problem is

min f(a) = B[(Sk — Ni)?]. (3)
We can rewrite f(«) as
f(a@) = E[(Sk — (a0 Zk + a1 Z—1 + ... + 0 Zp—m)) . (4)
flea) = E[S} - QZaiSkaﬂ' + Z Zaiag‘Zkﬂ-Zk,j]. (5)
i=0 i=0 j=0
f(a) = E[Si] - QZ aiE[Ska—i] + Z ZOL@OZjE[Zk_izk_j}. (6)
i=0 i=0 j=0
f(a) = E[S?] — 2aTv + o' Ta (7)
where
v; = E[SkZk—i] i =0,1,2,...,m (8)
and
E,j :E[Zk_iZk_j] Z,] :0,1,2,...,m. (9)



To minimize f(«) and obtain the optimal filter weights a*, we solve the
equation

Vf(a®)=0. (10)
—2v 4 2Ta* = 0. (11)
Ta* =w. (12)
Since
Zy = Sk + Ng, (13)
ElZy_iZk_;) = E[(Sk—i + Nk—i)(Sk—; + Nie—;)]. (14)
ElZy_iZy—_;) = E[Sk—iSk—;] + E[Sk—iNg—;] + E[Nk_iSk—;] + E[Nk,lNk,d]S.)

Since S and N are independent, the SN cross terms are 0, and
E[Zk,iZk,j] = E[Sk,iSk,j] + E[Nk,iNk,j]. (16)

Since S and N are covariance stationary and mean 0,

EZy—iZy—5) = 7Vs,ji—j| + IN,Ji—j]- (17)
Thus

Ti; = s )i—j| T IN,Ji—j|- (18)

Similarly,
V; = E[Ska_i]. (19)
v; = B[Sk (Sk—i + Ng—i)]- (20)
v; = E[SkSk—i] + E[SkNg—i]- (21)
Ui = 78S,i- (22)

Once we've found T' and v, we can simply solve T'a® = v to obtain the optimal
filter coefficients.
Next, we’ll consider the expected value and variance of the filtered estimate
Xi.
E[Xy] = ElaiZk+ ...+ o) Z—m). (23)

But E[Zy_; =0fori=0,1,...,m. So
E[X,] = 0. (24)

Thus X}, is an unbiased estimate of Sy.
The variance of the estimate is

E[(Sy — X)?] = f(a*) = E[S?] + a*Tv + o T Ta*. (25)

This allows us to put an uncertainty on our filtered estimate of Sy.
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Figure 1: The original signal.

The basic idea can be extended further to predicting future values of S.
Consider the problem of predicting Sky;. This time, we minimize E[(Sk4; —
Xy+1)?], where

Xpri =y + ...+ amZi—m- (26)

By the same method as before, we find that the optimal filter coefficients o*
are the solution to Ta® = v, where v has changed to

v; = E[Sk+le_i]. (27)

The special structure of the T matrix makes it possible to efficiently solve
the Ta = v systems of equations. Using an algorithm developed by Durbin and
Levinson, this system can be solved in O(m?) time instead of the O(m3) time
required by conventional Guassian elimination/factorization methods.

The following example shows how Wiener filtering can be used to substan-
tially reduce the noise in a signal. In this example, we begin with a signal
shown in Figure 1 that has most of its energy at low frequencies. The signal
with added white noise is show in Figure 2. After constructing an optimal
Wiener filter with m = 10, we filtered the noisy signal to get the result shown
in Figure 3. Because the original signal had a spectrum with most of its energy
at low frequencies and the noise has equal energy at all frequencies, the Wiener
filter ends up filtering out high frequencies. The low frequency components of
the signal are very well recovered. Some of small high frequency features in the
original signal or smoothed away by the Wiener filter.
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The original signal with white noise added.
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Figure 3: The filtered result.
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