
Data Processing and Analysis

Rick Aster and Brian Borchers

September 27, 2013

Sampled Time Series

Numerical scientific data are commonly organized into series or matrices, i.e.,
sets of spatially or temporally ordered numbers that approximate a continuous
time function (e.g., seismic signals, magnetic observatory data, temperature
variations). In spatial applications, the data commonly consists of a two- or
three-dimensional array of samples (e.g., gravity, magnetic, or structural sur-
veys). These data may be irregularly sampled in space and/or time. Here, we
will consider Fourier theory appropriate to the case where the data are sampled
at regular intervals (or where irregularly sampled data has been interpolated or
otherwise transferred to a regular array of numbers).

Beginning with a continuou function, multiplication by the (uniformly spaced
delta function sequence) shah function, III(t), can be conceptualized as perform-
ing a regular sampling operation for a time series. By ”regular”, we mean that
this operation selects out instantaneous functional values at equally-spaced in-
tervals, 1/r (where r is the sampling rate or sampling frequency), and ignores
continuous function information between the samples. In instrumentation prac-
tice, this type of operation is in practice performed by an analog-to-digital con-
verter (A to D) or digitizer, and the sampled values are stored as series or arrays
of numbers.

To examine what sampling does to the spectral characteristics of an arbitrary
function, we evaluate the Fourier transform of III(t) and apply the frequency-
domain counterpart of the convolution theorem. We will find F [III(t)] by eval-
uating the Fourier transform of a function with a limit that converges to III(t).
One such function is

III(t) =

∞∑
n=−∞

δ(t− n) = lim
τ→0

1

τ
e−πτ

2t2
∞∑

n=−∞
e−π(t−n)

2/τ2

. (1)

Note that (1) consists of a broad Gaussian envelope

e−πτ
2t2 (2)

multiplied by a periodic component

1

τ

∞∑
n=−∞

e−π(t−n)
2/τ2

(3)

1

You may already know that a smooth periodic function has a Fourier series,
which is a line spectrum consisting of equally spaced delta functions (some of
which may have zero amplitude so as to leave holes in the spectrum). The
Fourier series for (3) is

1

τ

∞∑
n=−∞

e−π(t−n)
2/τ2

=

∞∑
n=−∞

e−πτ
2n2

eı2πnt (4)

so that

III(t) = lim
τ→0

e−πτ
2t2

∞∑
n=−∞

e−πτ
2n2

eı2πnt . (5)

Thus,

F [III(t)] = lim
τ→0

∞∑
n=−∞

e−πτ
2n2

F [e−πτ
2t2eı2πnt] (6)

and applying the frequency-domain counterpart of the time shift theorem gives

F [III(t)] = lim
τ→0

∞∑
n=−∞

e−πτ
2n2

F [e−πτ
2t2]|f=f−n . (7)

The Fourier transform of a Gaussian function is

F [e−απt
2

] =

∫ ∞
−∞

e−απt
2−2πıft dt (8)

= e−πf
2/α

∫ ∞
−∞

e−π(αt
2+2ıft−f2/α) dt = e−πf

2/α

∫ ∞
−∞

e−π(α
1/2t+ıf/α1/2)2 dt .

(9)
Substituting ξ = α1/2t+ ıf/α1/2 gives

=
1

α1/2
e−πf

2/α

∫ ∞
−∞

e−πξ
2

dξ =
1

α1/2
e−πf

2/α . (10)

So the Fourier transform of a Gaussian is just another Gaussian! Thus, we have

F [III(t)] = lim
τ→0

1

τ

∞∑
n=−∞

e−πτ
2n2

e−π(f−n)
2/τ2

. (11)

Now we take the limit as τ → 0 and see that (11) converges to the same limit
as (1); the shah is, like the Gaussian, its own Fourier transform

F [III(t)] = III(f) . (12)

Sampling and Aliasing. Consider a sampled time function

ψ(t) = φ(t) · rIII(rt) (13)

2

Figure 1: The Shah function and its Fourier Transform; Fourier Transform of a
Sampled Function (slightly aliased)

3

which is a regularly spaced (intervals of r−1) sequence of delta functions in time
with areas given by the values of φ(t) at those times. Using the convolution and
scaling theorems, we can see that (12) gives (Figure 1)

Ψ(f) = Φ(f) ∗ III(
f

r
) . (14)

Sampling thus simply replicates the Fourier transform of φ(t), Φ(f), along
the frequency axis at ±nr. These copies are referred to as aliases. If Φ(f) is
band-limited to having its energy in the frequency interval (−fmax, fmax) and
if fmax ≤ r/2, then these aliases will not overlap. This is a crucial observation;
it implies that φ(t) is fully recoverable from the sampled series via an inverse
Fourier transform across one of the aliases

φ(t) = F−1[Ψ(f)Π(f/r)] (15)

or (using the convolution theorem) as the convolution

φ(t) = ψ(t) ∗ r sinc(rt) . (16)

This remarkable result, that a continuous band-limited function can be fully
recovered from time series sampled at a rate of r > 2fmax (so that the aliases
don’t overlap!), leads to the definition of the Nyquist frequency

fN = 2fmax (17)

the minimum frequency at which we must sample for information to be recovered
without corruption from a sampled time series. Thus, if we wish to sample a
signal that has appreciable power up to 100 Hz, we must sample using a rate of
at least fN = 200 Hz. One way of intuitively appreciating the Nyquist frequency
concept is that it takes slightly more than two samples per period to accurately
characterize a sinusoid.

As can be seen from (14) that, if the sampling rate r is less than 2fmax = fN ,
(as in Figure 1), then the sampled times series aliases will overlap and corrupt
each other, a condition called undersampling. Applying (16) to try and recover
φ(t) in this case will produce a distorted recovered function. This undersam-
pling distortion is called aliasing, and such a time series is referred to as being
aliased. If we aren’t interested in the higher frequency content in a signal, we
can eliminate aliasing problems by removing the higher-frequencies from the
data (using low-pass filtering) prior to sampling so that the signal contains a
negligible amount of energy at frequencies near and above fN/2. This type
of presampling, low-pass filter is called an antialias filter. In data acquisition
systems, antialiasing is sometimes practically accomplished by drastically over-
sampling the data at the analog input and then filtering and decimating the
signal digitally to produce an unaliased signal at a lower, desired sampling rate.
This eliminates the need for variable analog antialiasing electronics for the lower
sampling rates.

It is important to understand in detail what happens if we undersample data.
First, note that we never satisfy (17) exactly, because all real data sets are time

4

or space limited and thus can never be truly band-limited to ±r/2 (fortunately,
we can get close in this regard in practical cases). One way to see this is to
note that ”perfect” low-pass filtering is unobtainable, as the impulse response
of a perfect low-pass filter (one with a frequency response of Π(f/fmax)) is
the acausal sinc function, which has non-zero values from t = −∞ to t = ∞.
Consider the distorted spectrum, Φa(f), resulting from the influence of the two
nearest frequency-domain aliases, which are centered at f = ±r (Figure 1)

Φa(f) = Φ(f) + Φ(f − r) + Φ(f + r) . (18)

If φ(t) is real, then Φ(f) is Hermitian, so that

Φa(f) = Φ(f) + Φ∗(r − f) + Φ∗(r + f) . (19)

The contribution to the aliased signal from the second two terms is just what one
would get by adding complex-conjugated versions of the spectrum which have
been “folded” in the frequency domain at f = ±r/2. Note that the actual char-
acter of corruption of the original signal depends on the specific characteristics
of Φ(f). The greatest distortion will occur if there is sufficient high-frequency
energy above f = r/2 so that even the lower frequency components of Φa(f)
(19) will be significantly different than those of Φ(f). A time domain sign of
danger in a sampled data set would be the occurrence of lots of terms with
alternating signs, as this is an indication that there is significant energy at or
above f = r/2.

As an example of aliasing which could occur in practice, consider an under-
sampled voltage that is contaminated by an f0 = 60 Hz AC sinusoidal noise

n(t) = A cos(2π · 60t) . (20)

To prevent aliasing of n(t), we would have to sample at a rate greater than
r ≥ fN = 2f0 = 120 Hz. If we instead sampled at a lesser rate, the delta
function spectrum of the noise component

na(t) = n(t) · rIII(rt) (21)

would have, in the central alias bracketing f = 0, its frequencies mapped to
f = ±(r − 60) Hz. As an extreme case, if we sampled at half of the Nyquist
frequency, (60 Hz), the 60 Hz energy in n(t) would be mapped to zero frequency
– producing a zero frequency component in the retrieved function. We can see
why this is by looking back in the time domain and noting that this corresponds
to sampling a sinusoid once per period, so that all such samples will have iden-
tical value. The specific value would depend on the phase relationship between
the sampling function and n(t); if the samples are centered on zero time and
n(t) is a cosine, then we would recover a maximum zero-frequency signal of
amplitude A. Aliasing thus puts true signal into different frequency ranges.
This behavior occurs because, for signal frequencies higher than the Nyquist
frequency, sampling and recovery is a nonlinear process.

5

Fourier Theory in Discrete Time. In analyzing sampled time series, it is
more practical to work in discrete (rather than continuous) time or space. As
previously mentioned, essentially all practical data analysis schemes are imple-
mented on computers, which do not process functions per se, but instead operate
on discrete ordered sets of numbers. A 1-dimensional ordered set of numbers is
called a sequence , which we will typically represent in subscript notation

xn(n ∈ integers) . (22)

The discrete time equivalent of the delta and step functions are the Kronecker
delta

δn−m ≡ δn,m =

{
1 (n = m)
0 (n 6= m)

(23)

and its associated discrete step function

Hn−m =

{
1 (n ≥ m)
0 (n < m)

(24)

In the discrete time domain, summation supplants integration, so that the
delta/step relationship integral relationship in continuous time becomes

Hn−l =

n∑
k=−∞

δk−l . (25)

Analogously, convolution in the discrete world (e.g., in MATLAB) is a summa-
tion operation

xn ∗ yn =

∞∑
k=−∞

xkyn−k (26)

where the y index is reversed in the summation index, k, which fills in for its
continuous counterpart, τ .

To investigate how Fourier concepts apply to sequences, consider the re-
sponse of a linear discrete-time system (with an infinite-length impulse response
sequence xn) to a unit-amplitude, complex sinusoidal signal, sn:

gn =

∞∑
k=−∞

xksn−k =
∞∑

k=−∞

xke
2πıf(n−k) (27)

= eı2πfn
∞∑

k=−∞

xke
−ı2πfk ≡ X(f)eı2πfn (28)

where X(f) is the Fourier transform of xn (keep in mind that xn is a sequence,
not a continuous function). We can unify the Fourier transform definitions for
continuous and discrete functions using the sifting property of the delta function

X(f) ≡ F [xn] = F [rIII(rt)x(t)] = rF [
∞∑

n=−∞
δ(rt− n)x(t)] (29)

6

= r

∫ ∞
−∞

∞∑
n=−∞

δ(rt− n)x(t)e−ı2πftdt = r

∞∑
n=−∞

x(n/r)e−ı2πfn/r . (30)

The spectrum of (30) is continuous and periodic in the frequency domain,
(with a spectral period of r). This periodicity reflects the spectral aliasing effects
of sampling discussed earlier. It is usually most convenient to take r = 1, in
which case the spectrum is normalized with respect to the Nyquist frequency
and we need only concern ourselves with a unit Nyquist interval −1/2 ≤ f ≤ 1/2
to capture all of the information in xn (provided that we sample rapidly enough
so that the spectral aliases are non-overlapping)

X(f) =

∫ ∞
−∞

∞∑
n=−∞

δ(t− n)x(t)e−ı2πftdt =

∞∑
n=−∞

x(n)e−ı2πfn . (31)

The original sequence can be recovered using the inverse Fourier transform,
where we restrict the range of integration to the Nyquist interval

xn =

∫ 1/2

−1/2
X(f)eı2πfn df . (32)

The Discrete Fourier Transform. (31) and (32) form a transform pair, but
not a very useful or symmetric one, as the time sequence is infinite and the
spectrum is continuous. You might imagine (and you would be right), that
X(f), being band limited to the Nyquist interval, could be completely specified
by some sequence in the frequency domain. In this case, we would have a
transform pair where both the time and frequency domain representations are
discrete, and that could be used in practical situations to analyze data.

To construct such a transform pair, consider a periodic sequence, xn, where
the period is N samples. For the moment, assume that the sequence is sampled
at a sampling rate of r = 1– we will discuss other sampling rates later. Because
of its periodicity, every component of xn of the form e2πikn/N must also be
N -sample periodic. These periodic components must therefore have frequencies
f = k/N , where k is some integer. Because our sequence is sampled at rate
r = 1, frequencies outside of the range 0 ≤ r ≤ 1 would be aliased. Thus it’s
unnecessary to include frequencies k/N for k outside of the range from 0 to
N − 1.

The sequence can thus be completely characterized across one of its periods
via the expansion

xn =
1

N

N−1∑
k=0

Xke
2πikn/N = IDFT(Xk) . (33)

The normalization factor 1/N is not strictly required, but is included at this
point to conform with standard conventions. Equation (33) defines our inverse
discrete Fourier transform. The corresponding forward transform is

Xk =

N−1∑
n=0

xne
−2πikn/N = DFT(xn) . (34)

7

To verify this transform pair, we can begin with (33) and apply the forward
transform to both sides of the equation

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
n=0

N−1∑
k=0

Xke
ı2πkn/Ne−ı2πnm/N . (35)

Interchanging the order of summation gives

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

Xk

N−1∑
n=0

eı2πn(k−m)/N . (36)

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

Xk

N−1∑
n=0

(
eı2π(k−m)/N

)n
. (37)

Now, consider the innermost sum

N−1∑
n=0

(
eı2π(k−m)/N

)n
. (38)

Recall that the sum of a finite geometric series is given by

1 + r + r2 + . . .+ rN−1 =
1− rN

1− r
r 6= 1 . (39)

When r = 1, the sum is simply N . When k −m is a multiple of N , then

eı2π(k−m)/N = 1 (40)

and
N−1∑
n=0

(
eı2π(k−m)/N

)n
=

N−1∑
n=0

1n = N . (41)

When (the integer) k −m is not a multiple of N , eı2π(k−m)/N is not equal to
one, and

N−1∑
n=0

(
eı2π(k−m)/N

)n
=

1−
(
eı2π(k−m)/N

)N
1− eı2π(k−m)/N

. (42)

But (
eı2π(k−m)/N

)N
= eı2π(k−m) = 1 (43)

so,
N−1∑
n=0

(
eı2π(k−m)/N

)n
=

1− 1

1− eı2π(k−m)/N
= 0 . (44)

Thus
N−1∑
n=0

(
eı2π(k−m)/N

)n
=

{
N (k −m) is a multiple of N
0 otherwise

(45)

8

We are only interested in integer values of k and m between 0 and N − 1. Thus
k −m will only be a multiple of N when k −m = 0, and

N−1∑
n=0

(
eı2π(k−m)/N

)n
= Nδk,m . (46)

Returning to our original sum, and using the above result,

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

XkNδk,m (47)

which reduces to
N−1∑
n=0

xne
−i2πnm/N = Xm . (48)

This derivation shows that DFT(IDFT(Xk)) = Xk. Similarly, it can now be
easily confirmed that IDFT(DFT(xn)) = xn. An example DFT/IDFT pair is
shown in Figure 3.

It is easy to see that the Discrete Fourier Transform of an N -periodic se-
quence also produces an N -periodic sequence

Xm+N =

N−1∑
n=0

xne
−i2πn(m+N)/N (49)

or

Xm+N = e−i2πN/N
N−1∑
n=0

xne
−i2πnm/N . (50)

Since e−i2π = 1,

Xm+N =

N−1∑
n=0

xne
−i2πnm/N = Xm. (51)

The k = 0 term of the DFT is just N times the average value of xn, while
the N -periodicity of the DFT implies that

XN−k =

N−1∑
n=0

xne
−ı2πn(N−k)/N =

N−1∑
n=0

xne
ı2πnk/N = X−k . (52)

Thus, the N periodicity here implies that the upper portion of the (N even) DFT
sequence, N/2 ≤ k ≤ N − 1, contains negative frequency spectral information,
corresponding to −N/2 ≤ k ≤ −1 (Figure 4), while the lower portion contains
positive frequency spectral information. If we wish to display an N -point DFT
spectral sequence centered on the zero-frequency component (as we are used to
picturing continuous Fourier transforms) we must therefore plot the DFT for
−N/2 ≤ k ≤ (N/2)−1 (or −(N −1)/2 ≤ k ≤ (N −1)/2 for N odd) rather than

9

Figure 2: Amplitude of (38) as a function of k −m for N = 12.

10

Figure 3: An example (N = 64) DFT.

11

Figure 4: DFT frequency-index mapping.

12

0 ≤ k ≤ N − 1, taking into account the above mapping. In MATLAB, there is
an fftshift command that performs this rearrangement of the DFT coefficients.

Formulas for the DFT and its inverse can be written more compactly in
terms of

wN = ei2π/N . (53)

The DFT can be written as

Xm =

N−1∑
n=0

xnw
−mn
N . (54)

The inverse DFT becomes

xn =
1

N

N−1∑
k=0

Xkw
kn
N . (55)

The DFT and its inverse can also be written in matrix form as
x0
x1
x2
...

xN−1

 =
1

N

1 1 1 · · · 1

1 wN w2
N · · · wN−1N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 wN−1N w
2(N−1)
N · · · w

(N−1)(N−1)
N

X0

X1

X2

...
XN−1

(56)

and
X0

X1

X2

...
XN−1

 =

1 1 1 · · · 1

1 w−1N w−2N · · · w
−(N−1)
N

1 w−2N w−4N · · · w
−2(N−1)
N

...
...

...
. . .

...

1 w
−(N−1)
N w

−2(N−1)
N · · · w

−(N−1)(N−1)
N

x0
x1
x2
...

xN−1

(57)

In the language of linear algebra, this shows that the DFT is a change of basis
formula. It’s also easy to show that the DFT basis is an orthogonal basis.

A summary of the discrete and continuous Fourier transform pairs defined
here is given in Table 1. Here, (C , D) denote continuous or discrete and (P
, A) denote periodic or aperiodic. Continuous periodic functions are assumed
periodic on the unit interval and discrete periodic functions have period N .

There are many results for the DFT that are analogous to results for the
continuous Fourier transform. For example, the time shift theorem for the DFT
is

DFT[xn−n0
] =

N−1∑
n=0

xn−n0
e−ı2πkn/N (58)

DFT[xn−n0
] =

N−n0−1∑
l=−n0

xle
−ı2πk(l+n0)/N (59)

13

φ(t) Φ(f) Transform Forward Transform Inverse Transform

C, A C, A Fourier Transform Φ(f) =
∫∞
−∞ φ(t)e−ı2πftdt φ(t) =

∫∞
−∞ Φ(f)eı2πftdf

C, P D, A Fourier Series Φk =
∫ 1/2

−1/2
φ(t)e−ı2πktdt φ(t) =

∑∞
k=−∞ Φke

ı2πkt

D, A C, P F.T. of a Sampled function Φ(f) =
∑∞
n=−∞ φne

−ı2πfn φn =
∫ 1/2

−1/2
Φ(f)eı2πfndf

D, P D, P DFT Φk =
∑N−1
n=0 φne

−ı2πkn/N φn = 1
N

∑N−1
k=0 Φke

ı2πkn/N

Table 1: Four Discrete and Continuous Fourier Transform Pairs.

DFT[xn−n0] = e−ı2πkn0/N
N−n0−1∑
l=−n0

xle
−ı2πkl/N (60)

because of the periodicity of xl, we can shift the summation limits to obtain

DFT[xn−n0] = e−ı2πkn0/N
N−1∑
l=0

xle
−ı2πkl/N (61)

or
DFT[xn−n0

] = e−ı2πkn0/NXk . (62)

Parseval’s theorem for the DFT is

N−1∑
n=0

|xn|2 =

N−1∑
n=0

xnx
∗
n (63)

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
n=0

N−1∑
k=0

Xke
ı2πkn/N

N−1∑
l=0

X∗l e
−ı2πln/N (64)

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
n=0

N−1∑
k=0

N−1∑
l=0

XkX
∗
l e
ı2πn(k−l)/N . (65)

Evaluating the sum over n first, using (46) gives

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
k=0

N−1∑
l=0

XkX
∗
l Nδk,l (66)

which gives
N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2 . (67)

Many properties of the continuous Fourier transform also apply to the DFT,
but we must be careful, as the DFT applies to a periodic sequence, and not to

14

a finite series surrounded by an infinite number of zeros, as we might at first be
tempted to conceptualize from our experience with continuous time series.

A very important application of the DFT is in implementing the discrete
counterpart of the convolution theorem. Suppose we are given xn and yn, what
series has the DFT Zk = XkYk?

zn =
1

N

N−1∑
k=0

XkYke
ı2πkn/N . (68)

zn =
1

N

N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

xle
−ı2πlk/Nyme

−ı2πmk/Neı2πkn/N . (69)

zn =
1

N

N−1∑
l=0

xl

N−1∑
m=0

ym

N−1∑
k=0

eı2πk(n−m−l)/N . (70)

The innermost sum is zero whenever n−m− l is not a multiple of N by (38),
so we get

zn = IDFT[XkYk] =

N−1∑
l=0

xl yn−l (71)

where it is understood that zn is N -periodic, as are xn and yn.
Because the functions that we manipulate with the DFT and IDFT are

periodic, and because the length of a convolution will be greater than or equal
to the maximum length of its two constituent series (and equal only in the case
where one is a Kronecker delta function), it is possible to get perhaps unexpected
effects when applying (71).

Suppose we convolve two aperiodic series xn and ym in the time domain
to obtain the serial product (this is what the MATLAB conv function does).
Further suppose that x and y have N and M contiguous non-zero terms, re-
spectively. The convolution is then

zn = xn ∗ yn =

∞∑
l=−∞

xl yn−l (72)

and will then have N +M − 1 significant terms, bracketed by zeros.
What happens if we use the discrete convolution theorem to convolve the

two functions? Here it is important to again keep in mind that the convolution
theorem for discrete series corresponds to a convolution of periodic sequences.
We must therefore take the period (i.e., the DFT size, L) to be longer than
N +M − 1, otherwise there will not be room to squeeze the N +M − 1-length
convolution result into an L-periodic result. We must therefore be careful to
pad sequences with a suitable numbers of zeros to accurately mirror (72) using
DFT techniques.

If L < N +M − 1, we get generally undesirable wraparound effects and the
result will be different from the serial product, especially in its tails. Because of

15

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
184−point Bartlett Function, 256−point series

g n

50 100 150 200 250
0

10

20

30

40

50

60

70

N

D
FT

−1
[D

FT
(g

n) ⋅
 D

FT
(g

n)]

Figure 5: Wraparound in an N = 256-point Circular Convolution.

this wraparound, (71) strictly applies to what is referred to as cyclic, or circular
convolution (Figure 5). One way to avoid wraparound is to pad functions with
zeros (e.g., Figure 6).

Why bother to use (71) rather than (72) to evaluate convolutions? A major
incentive arises because of a set of computer algorithms which first emerged
in the mid 1960’s (e.g., Cooley and Tukey, “An Algorithm for the Machine
Computation of Complex Fourier Series”, Math. Comput. , 19 , April, 1965).
These Fast Fourier Transform or FFT algorithms evaluate the DFT, but in a
much faster manner than the straightforward application of (48). Because large
DFT’s can be efficiently calculated using the FFT algorithm, it is much more
efficient to evaluate a convolution by computing two DFT’s, multiplying them,
and then taking the inverse transform of the result, rather than by evaluating
the serial product.

We will derive an FFT algorithm for the special case in which N = 2p is
a power of 2. Similar ideas are used in algorithms that can work with more
general values of N . Given a fixed input sequence xn, Let

p(z) = x0 + x1z + . . .+ xN−1z
N−1 . (73)

Then the DFT of x is

X =

p(w0

N)
p(w−1N)
p(w−2N)

...

p(w
−(N−1)
N)

 (74)

16

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1
184−point Bartlett Function, 512−point series

g n

50 100 150 200 250 300 350 400 450 500
−20

0

20

40

60

80

N

D
FT

−1
[D

FT
(g

n) ⋅
 D

FT
(g

n)]

Figure 6: Same convolution as Figure 5, except with 256-point zero padding to
eliminate wrap-around and thus emulate a noncircular convolution.

where wN = eı2π/N .
We could use Horner’s rule to evaluate the polynomial p(z), which gives

p(z) = ((· · · (xN−1z + xN−2)z + xN−3)z + . . .+ x1)z + x0 . (75)

Evaluating p(z) in this way requires N − 1 complex multiplications and N − 1
complex additions. Computing the entire vector X takes N evaluations of p(z),
so computing the DFT in this manner takes 2N2 − 2N = O(N2) operations.

The FFT algorithm takes advantage of the fact that we are evaluating p(z)
only at powers of w−1N . We begin by breaking apart the even and odd powers
in p(z). Let

peven(z) =

N−1∑
n=0 n even

xnz
n
2 (76)

and

podd(z) =

N−1∑
n=0 n odd

xnz
n−1
2 (77)

Then
p(z) = peven(z2) + zpodd(z2) . (78)

For example, if N = 8, then

p(z) = x0 + x1z + . . .+ x7z
7, (79)

17

peven(z) = x0 + x2z + x4z
2 + x6z

3, (80)

and
podd(z) = x1 + x3z + x5z

2 + x7z
3. (81)

Then
peven(z2) + zpodd(z2) = x0 + x1z + . . .+ x7z

7 . (82)

By using this decomposition of p(z), we only need to evaluate z at even
powers of wN . Because of the periodicity of the powers of wN , there are only
N/2 points at which we have to evaluate the polynomial. For example, when
N = 8, we need to evaluate p(z) for

z = w0
N , w

−1
N , . . . , w−7N , (83)

after removing multiples of ei2π, the squares of these eight numbers are

z2 = w0
N , w

−2
N , w−4N , w−6N , w0

N , w
−2
N , w−4N , w−6N . (84)

Note that the even powers of wN repeat twice. Thus we only need to evaluate
peven and podd at 4 points.

Let TN be the number of arithmetic operations needed to evaluate the N
point DFT. In other words, TN is the number of arithmetic operations needed

to evaluate an Nth degree polynomial p(z) at w0
N , w−1N , . . ., w

−(N−1)
N . By using

our formula, we can reduce this to 2 evaluations of polynomials of degree N/2
at N/2 points plus N multiplications and N additions. Thus

TN = 2TN/2 + 2N . (85)

We won’t find an explicit solution to this recurrence relation. However, we can
easily compute a table of values of TN for small values of N that are powers
of 2. Table 2 shows operations counts for the naive algorithm and our FFT
algorithm. Clearly, the FFT becomes much more efficient as N gets larger. In
fact, it can be shown that the growth of TN is O(N logN), while the growth of
HN is O(N2). For long signals with thousands or millions of samples, the FFT
is vastly more efficient than the naive algorithm.

Computation of the convolution of two sequences of length N takes O(N2)
time by direct evaluation of the convolution formula. If we use the convolution
theorem for the DFT, then we can do the job by zero padding the sequences to
length 2N , computing two FFT’s of length 2N , performing 2N multiplications,
and then doing an inverse FFT of length 2N . Since

T2N = 2TN + 4N ≤ 6TN , (86)

T2N is O(N logN). Thus the entire FFT convolution process takes O(N logN)
operations.

If we do not have large aliasing effects, so that the sampled sequence, xn,
adequately characterizes some near-band-limited continuous function in the real
world, φ(t), then the DFT of the sequence xn is just the spectrum of φ(t),

18

N HN TN
2 4 4
4 24 16
8 112 48

16 224 128
32 960 320
64 3972 768

Table 2: Operation counts for DFT by the naive algorithm (HN) and FFT
algorithm (TN .)

sampled at the N equally-spaced frequency points. As we go to finer and finer
sampling, we expect our calculated spectrum to approach the true spectrum,
Φ(f). One way to help see that this is true (in a somewhat nonrigorous way)
by considering the DFT when N becomes large.

It’s instructive to investigate the convergence of the DFT to the Fourier
Transform. Consider a discrete function defined by the N -point sequence, xn.
Taking the N -point DFT, where we’ll take N to be odd, N = 2M + 1, we get

Xk =

M∑
n=−M

xne
−ı2πkn/N (87)

Heuristically in the limit as N approaches infinity (finer and finer sampling), n
remains discrete, but the function becomes aperiodic (we might conceptualize
that it occupies the entire number line) and k thus become continuous (Table
4.1). The Fourier transform is thus

X(f) ≡
M∑

n=−M
xne
−ı2πfn . (88)

As a special case, consider the discrete rectangle function

Πn =

{
1 for |n| ≤M
0 for |n| > M

(89)

Taking the Fourier Transform of (89), where N = 2M + 1, we get

Π(f) =

M∑
n=−M

e−ı2πfn = eı2πfM
2M∑
n=0

e−ı2πfn (90)

= eı2πfM
1− e−ı2π(2M+1)f

1− e−ı2πf
=

sin(Nπf)

sin(πf)
≡ D(f) (91)

Expressions of the form of (91) are a discrete, periodic analogue to the sinc
function, occur frequently in discrete Fourier theory (e.g., in the kernel of the

19

multitaper eigenfunction equation we noted in discussing power spectra. Such
functions are commonly referred to as Dirichlet kernels. When N is large, the
numerator of (91) oscillates much more rapidly than the denominator. Making
the substitution y = Nf , (91) indeed then approaches the sinc function:

lim
N→∞

D(f) = lim
N→∞

sin(πy)

sin(πy/N)
=

sin(πy)

πy/N
= N sinc y . (92)

20

