Notes on Random Processes

Brian Borchers and Rick Aster

October 25, 2011

A Brief Review of Probability

In this section of the course, we will work with random variables which are
denoted by capital letters, and which we will characterize by their probability
density functions (pdf) and cumulative density functions (CDF.) We will
use the notation fx(x) for the pdf and Fx(a) for the CDF of X. Here, the
subscript X tells us which random variable’s pdf or CDF we’re working with.
The relation between the pdf and CDF is

P@g@:&@:[ﬁhmw. (1)

Since probabilities are always between 0 and 1, the limit as a goes to negative
infinity of F(a) is 0, and the limit as a goes to positive infinity of F'(a) is 1.
Also, [*_ f(x)dz = 1. By the fundamental theorem of calculus, F'(a) = f(a).

The most important distribution that we’ll work with is the normal dis-
tribution.
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Unfortunately, there’s no simple formula for this integral. Instead, tables or nu-
merical approximation routines are used to evaluate it. The normal distribution
has a characteristic bell shaped pdf. The center of the bell is at x = u, and
the parameter o2 controls the width of the bell. The particular case in which
w =0, and 02 =1 is referred to as the standard normal random variable.
The letter Z is typically used for the standard normal random variable. Figure
1 shows the pdf of the standard normal.
The expected value of a random variable X is

e~ (@=m)?/20% g (2)
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Note that this integral does not always converge!

For a normal random variable, it turns out (after a bit of work to evaluate
the integral) that E[X] = pu.
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Figure 1: The standard normal pdf.

We'll often work with random variables that are functions of other random
variables. If X is a random variable with pdf fx(z) and g() is a function, then
g(X) is also a random variable, and

By = [ g(orfxlade @
Because integration is a linear operator,
E[X +Y] = E[X] + E[Y] (5)
and
E[sX] = sE[X]. (6)

The variance of a random variable X is
Var(X) = E[(X — E[X])?] (7)

Var(X) = E[X? - 2XE[X] + E[X)] (8)

Using the linearity of F[] and the fact that the expected value of a constant is
the constant, we get that

Var(X) = E[X? — 2E[X|E[X] + E[X]? (9)
Var(X) = E[X?] — E[X]?. (10)

For a normal random variable, it’s relatively easy to show that Var(X) = o2.



If we have two random variables X and Y, they may have a joint proba-
bility density f(z,y) with

a b
P(X <aandY <b) = [ [ flz,y) dy dx (11)

Two random variables X and Y are independent if they have a joint density
and

flxy) = fx (@) fr (y)- (12)

If X and Y have a joint density, then the covariance of X and Y is
Cov(X,Y)=E[(X — E[X))(Y — E[Y])] = E[XY] — E[X]E[Y]. (13)

It turns out that if X and Y are independent, then E[XY] = E[X]E[Y], and
Cov(X,Y) = 0. However, there are examples where X and Y are dependent, but
Cov(X,Y)=0. If Cov(X,Y) = 0, then we say that X and Y are uncorrelated.
The correlation of X and Y is
Cov(X,Y)

pxy = Var(X)Var(Y)' 1)

The correlation is a sort of scaled version of the covariance that we will make
frequent use of.
Some important properties of Var, Cov and correlation include:

Var(X) >0 (15)

Var(sX) = s*Var(X) (16)

Var(X +Y) =Var(X) +Var(Y) +2Cov(X,Y) (17)
Cov(X,Y) = Cov(Y, X) (18)

~1<pxy <1 (19)

The following example demonstrates the use of some of these properties.
Example 1 Suppose that Z is a standard normal random variable. Let

X=pu+oZ (20)

Then
E[X] = Bl + 0E[Z) (21)
E[X] = p. (22)

Also,
Var(X) = Var(u) + o*Var(Z) (23)
Var(X) = o> (24)



Thus if we have a program to generate random numbers with the standard
normal distribution, we can use it to generate random numbers with any desired
normal distribution. The MATLAB command randn generates N(0,1) random
numbers.

Suppose that Xy, X, ..., X, are independent realizations of a random
variable X. How can we estimate F[X]| and Var(X)?
Let "y
x =z (25)
n
and "o oy
2 = Zi=1( i ) (26)
n—1

These estimates for E[X] and Var(X) are unbiased in the sense that
FIX] = E[X] (21)
and
E[s*] = Var(X). (28)

We can also estimate covariances with

(X -X)(Yi-Y)

Cov(X,Y) =

Random Vectors

In digital signal processing we’ve been dealing with signals, represented in dis-
crete time by vectors. Thus it’s important to be able to work with random
variables that are vectors. We’ll consider random vectors of the form

Xy
Xo
X=1 . (30)

Xn
where the individual random variables X; are assumed to have a joint probability

density function.
The expected value of a random vector is

E[X,]
E[X,]
p=E[X] = : . (31)
E[X,)]
The covariance matrix of X is
C =Cov(X) = E[XX"] - E[X|E[X]". (32)



Since

Xi1X: X1 X XiXs - XiX,
X0 X1 XoXo XoX3 -0 XoX,
xxT = . . . . : : (33)
Ci,j = E[XlXJ] — E[XZ]E[XJ] = OOU(Xi,Xj). (34)
We will also work with the correlation matrix
Cov(X;, X,
P = ov(Xi, X;) (35)

\/CO’U(XZ',Xi)\/CO’U(Xj,Xj) ’

Just as with scalar random variables, the expected value and covariance of
a random vector have many useful properties. In deriving these properties we
have to be somewhat careful, since matrix multiplication is not commutative.
Thus

E[AX] = AE[X], (36)
but

E[X A] = E[X]A, (37)

An analogous result to Var(sX) = s>Var(X) is that
Cov(AX) = E[(AX)(AX)T] — E[AX|E[AX]T. (38)
Cov(AX) = E[AXXTAT] - AEIX|E[X]|T AT, (39)
Cov(AX) = AE[XXT|AT — AE[X|E[X]T AT, (40)
Cov(AX) = A(E[XXT] - E[X|E[X]")AT. (41)
Cov(AX) = ACou(X)AT. (42)

Recall that a symmetric matrix A is positive semidefinite (PSD) if 27 Az > 0,
for all z. Also A is positive definite (PD) if 27 Az > 0, for all nonzero .

Corresponding to the property that Var(X) > 0, we find that the covariance
matrix C of a random variable is always positive semidefinite. To show this, let

W=mX1+...anX, =aTX. (43)
Then
Var(W) = E[(W — EW])(W — EIW])T] (44)
Var(W) = E[(W — EW])(W — EW])T] (45)
Since
W —EW]=ao"z—ap, (46)
Var(W) = Ela” (@ - p)(@ — 1" a] (47)
Var(W) = o' E[(x — p)(x — p)"]a (48)
Var(W) = a’Ca (49)



But Var(W) > 0. Thus a’Ca > 0, for every vector a, and C is positive
semidefinite.

We can estimate F[X] and Cov(X) from a sample of random vectors drawn
from the distribution. Suppose that the columns of an n by m matrix X are m
random vectors drawn from the distribution. Then we can estimate

ZTIL::l le]
EIX;] m == —= (50)
or ¥
e
F X~ — 51
X]~ 2, (51)
where e is the vector of all ones. We can also estimate that
b o d
Cov(X) =~ — upt. (52)

The Multivariate Normal (MVN) Distribution

The multivariate normal distribution (MVN) is an important joint proba-
bility distribution. If the random variables X1, ..., X,, have an MVN, then the
probability density is

1 1 T 1
- - = - (X*H)/Z. 53
f(‘rlax27 737”) (27‘_)”/2 me ( )
Here p is a vector of the mean values of Xy, ..., X,, and C is a matrix of
covariances with
Ci,j = CO’U(Xi,Xj). (54)

The multivariate normal distribution is one of a very few multivariate distri-
butions with useful properties. Notice that the vector g and the matrix C
completely characterize the distribution.

We can generate vectors of random numbers according to an MVN distri-
bution by using the following process, which is very similar to the process for
generating random normal scalars.

1. Find the Cholesky factorization C'= LLT.
2. Let Z be a vector of n independent N(0,1) random numbers.
3. Let X =p+ LZ.

To see that X has the appropriate mean and covariance matrix, we’ll com-
pute them.

EX|=E[up+ LZ) = p+ E[LZ] = p+ LE[Z] = p. (55)
Cov[X] = E[(X — u)(X — )] = E[(LZ)(L2)"]. (56)
Cov[X| = LE[ZZ"|LT = LIL" = LL" = C. (57)



Covariance Stationary processes

A discrete time stochastic process is a sequence of random variables Z7,
Zs, .... In practice we will typically analyze a single realization z1, 2z, ..., 2,
of the stochastic process and attempt to estimate the statistical properties of
the stochastic process from the realization. We will also consider the problem
of predicting z,,1 from the previous elements of the sequence.

We will begin by focusing on the very important class of stationary stochas-
tic processes. A stochastic process is strictly stationary if its statistical prop-
erties are unaffected by shifting the stochastic process in time. In particular, this
means that if we take a subsequence Zx1, ..., Zk+m, then the joint distribution
of the m random variables will be the same no matter what k is.

In practice, we're often only interested in the means and covariances of the
elements of a time series. A time series is covariance stationary, or second
order stationary if its mean and its autocovariances (or autocorrelations) at
all lags are finite and constant. For a covariance stationary process, the auto-
covariance at lag m is v, = Cov(Zy, Zk+m). Since covariance is symmetric,
Y—m = Ym. The correlation of Zy and Zj,, is the autocorrelation at lag m.
We will use the notation p,, for the autocorrelation. It is easy to show that

_

o (58)

Pk

The autocovariance and autocorrelation matrices

The covariance matrix for the random variables 7, ..., Z, is called an auto-
covariance matrix.

Yo 71 Y2 -+ Un—1
Fn — At Yo Mo Yn—2 (59)
-1 Tn-2 --- M 7o
Similarly, we can form an autocorrelation matrix
1 P1 P2 - Pn-1
p=| M Lproooo pn2 | (60)
Pn—1 Pn-2 --- pP1 1
Note that
T, =0%P,. (61)

Since the autocovariance matrix is a covariance matrix, it is positive semidefi-
nite. It’s easy to show that the autocorrelation matrix is also positive semidefi-
nite.

An important example of a stationary process that we will work with occurs
when the joint distribution of Zy, ..., Zpy, is multivariate normal. In this
situation, the autocovariance matrix I';, is precisely the covariance matrix C' for
the multivariate normal distribution.



Estimating the mean, autocovariance, and auto-
correlation
Given a realization zg, 2o, ..., zny_1, of a stochastic process, how can we estimate

the mean, variance, autocovariance and autocorrelation?
We will estimate the mean by

Yo' 2
7= = - . 62
7= 2 (62
We will estimate the autocovariance at lag k with
| N1
k= 3 > (2= 2)(zi4k — 2). (63)
j=0

Here we have used the convention that z; is a periodic sequence to get z; 4y in
cases where j +k > N — 1.

Note that cg is an estimate of the variance, but it is not the same unbiased
estimate that we used in the last lecture. The problem here is that the z;
are correlated, so that the formula from the last lecture no longer provides an
unbiased estimator. The formula given here is also biased, but is considered to
work better in practice.

We will estimate the autocorrelation at lag k with

Ck

(64)
€o

Ty =

The following example demonstrates the computation of autocorrelation and
autocovariance estimates.

Example 2 Consider the time series of yields from a batch chemical process

given in Table 1. The data is plotted in Figure 2. These data are taken from p

31 of Box, Jenkins, and Reinsel. Read the table by rows. Figure 3 shows the

47 164 | 23 | 71 | 38 | 64 | 55 | 41 | 59 | 48
711 35|57 |40 | 58 | 44 | 80 | 55 | 37 | T4
51 | 57 | 50 | 60 | 45 | 57 | 50 | 45 | 25 | 59
50 | 71| 56 | 74 | 50 | 58 | 45 | 54 | 36 | 54
48 | 55 | 45 | 57 | 50 | 62 | 44 | 64 | 43 | 52
38 | 59 | 55 |41 | 53 |49 | 34 | 35| 54 | 45
68 | 38 | 50 | 60 | 39 | 59 | 40 | 57 | 54 | 23

Table 1: An example time series.

estimated autocorrelation for this data set. The fact that r; is about -0.4 tells
us that whenever there is a sample in the data that is well above the mean,
it is likely to be followed by a sample that is well below the mean, and vice



versa. Notice that the autocorrelation tends to alternate between positive and
negative values and decays rapidly towards a noise level. After about k& = 6,
the autocorrelation seems to have died out.
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Figure 2: An example time series.

Just as with the sample mean, the autocorrelation estimate 7y is a random
quantity with its own standard deviation. It can be shown that

oo

1
Var(rg) =~ — Z (pqz; + PotkpPo—k — 4PkPopPo—k + 2p12;p%)' (65)
n vV=—00
The autocorrelation function typically decays rapidly, so that we can identify a
lag g beyond which ry is effectively 0. Under these circumstances, the formula

simplifies to
1 q
Var(rg) = ﬁ(l + 22_:1;)5), k>q. (66)

In practice we don’t know p,, but we can use the estimates r, in the above
formula. This provides a statistical test to determine whether or not an auto-
correlation 7y, is statistically different from 0. An approximate 95% confidence
interval for ry is rp 4+ 1.96 * /Var(rg). If this confidence interval includes 0,
then we can’t rule out the possibility that rj really is 0 and that there is no
correlation at lag k.

Example 3 Returning to our earlier data set, consider the variance of our
estimate of r¢. Using ¢ = 5, we estimate that Var(rg) = .0225 and that the
standard deviation is about 0.14. Since r¢ = —0.0471 is considerably smaller
than the standard deviation, we will decide to treat rj as essentially 0 for k£ > 6.
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Figure 3: Estimated autocorrelation for the example data.
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The spectrum and autocorrelation

In continuous time, the spectrum of a signal ¢(t) is given by

PSD(f) = |®(f)] = 2(f)2(f)".

Since

v)= [ olea

vy = [T oty

Let 7 = —t. Then dr = —dt, and

o=

(f)"
Thus

H(—7)* e 2T dr,

= Flo(-)].

PSD(f) = F[¢(t)] F [p(—1)"],

or by the convolution theorem,

PSD(f)=F [¢(t) * ¢(—t)"] = F [autocorr ¢(t)].
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We can derive a similar connection in discrete time between the periodogram
and the autocovariance. Given a N-periodic sequence z,, the autocovariance is

| V=1
en= 2 3 (2 = 2)(zjan — 2). (74)
j=0
N-1 N—
N Z ZjZj4n — Z . (75)
j=0 j=0
Since
1 Nl
z= N Z 24 (76)
j=0
> zizim — N2 | (77)
j_
Now, we’ll compute the DFT of ¢,.
N—-1 ‘
Cm _ Z Cn6727mnm/N. (78)
n=0
Nl fN-1 ‘
Cm _ Z J]i;rn o 22 6727rznm/N. (79)
n=0 \ j=0
By our “technical result”,
N—-1 _
Z _226727rmm/N — —NEQCSm. (80)
n=0
When m = 0, e~ 277/N = 1 50 we get
NoIN-1
Co= It ) N2 (81)
N
n=0 j=0
Since
NoIN-1
J jiﬁ n — Nz2, (82)
n=0 j=0
Co=0 (83)

When m # 0, things are more interesting. In this case,

N—1N-1 yin
— Z Z J‘Z</v+n€727rznm/N. (84)
n=0 j=0

11



N—-1N-1

1 )
Cm = i Z Z 2j 25 pe 2T/ (85)
n=0 j=0
1 N-1 N-1
Cm = N Z 2; Z 2j e 2minm/N, (86)
j=0  n=0
1 N-1 N-1
C,, = N Z Zje+27rmm/N Z Zj+ne—2ﬂ'7,(3+n)m/N. (87)
7=0 n=0

Using the fact that z is real we get,

N-1 N-1

_ * _+2migm /N . —27mi(j+n)m/N
Cpm = N jz:: zret / ;::0 2jyme 2ritnm/N (88)
1 N-1 N
Cy, = N :n ; Zj+n€72ﬂl(']+n)m/N, (89)

Using the fact that z is N-periodic, we get

A (90)
Note that because ¢, is symmetric, C,, is real. Also note that the right hand
side of this equation is always nonnegative. This means that C,, > 0. It turns
out that C,, > 0 is equivalent to the autocovariance matrix being positive
semidefinite.

Thus knowing the spectrum of z is really equivalent to knowing the auto-
covariance, ¢, or its DFT, C. In practice, the sample spectrum from a short
time series is extremely noisy, so it’s extremely difficult to make sense of the
spectrum. On the other hand, it is much easier to make sense of the autocor-
relation function of a short time series. For this reason, the autocorrelation is
more often used in analyzing shorter time series.

Example 4 Figure 4 shows the periodogram for our example data. It’s
very difficult to detect any real features in this spectrum. The problem is
that with a short time series you get little frequency resolution, and lots of
noise. Longer time series make it possible to obtain both better frequency
resolution (by using a longer window) and reduced noise (by averaging over
many windows.) However, if you're stuck with only a short time series, the first
few autocorrelations may be more informative than the periodogram.

Generating Correlated Gaussian Noise
The connection between the autocovariance and spectrum also provides us with

another way to generate random Gaussian noise with specified autocovariance.
In this approach, introduced by Shinozuka and Jan (1972), we start with a

12
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Figure 4: Periodogram of the sample time series.

desired autocovariance ¢, compute the DFT C,,, and then use (90) to get a
real, nonnegative square root, Z,,. We could simply invert this to obtain a real
sequence z,. However, this sequence wouldn’t be random. Shinozuka’s clever
idea was to compute Z,,, and then apply random phases to each of the Z,,
components, while keeping the sequence Z,, Hermitian. To do this, we multiply
Zi, by e and multiply Z_;, by e~ %, where 6}, is uniformly distributed between
0 and 27w. We can then invert the discrete Fourier transform to get a random
sequence z, with exactly the required autocovariances.

An important advantage of this spectral method for generating correlated
Gaussian noise is that it does not require computing and storing the Cholesky
factorization of the autocovariance matrix. This makes the generation of long
(millions of points) sequences or 2-D or 3-D random fields computationally
tractable.
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