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In this section of the course, we will work with random variables which are
denoted by capital letters, and which we will characterize by their probability
density functions (pdf) and cumulative density functions (CDF.) We will
use the notation fX(x) for the pdf and FX(a) for the CDF of X. The relation
between the pdf and CDF is

P (X ≤ a) = FX(a) =
∫ a

−∞
fX(x)dx.

Since probabilities are always between 0 and 1, the limit as a goes to negative
infinity of F (a) is 0, and the limit as a goes to positive infinity of F (a) is 1.
Also,

∫∞
−∞ f(x)dx = 1. By the fundamental theorem of calculus, F ′(a) = f(a).

The most important distribution that we’ll work with is the normal dis-
tribution.

P (X ≤ a) =
∫ a

−∞

1√
2πσ2

e−(x−µ)2/2σ2

Unfortunately, there’s no simple formula for this integral. Instead, tables or nu-
merical approximation routines are used to evaluate it. The normal distribution
has a characteristic bell shaped pdf. The center of the bell is at x = µ, and
the parameter σ2 controls the width of the bell. The particular case in which
µ = 0, and σ2 = 1 is referred to as the standard normal random variable.
The letter Z is typically used for the standard normal random variable. Figure
1 shows the pdf of the standard normal.

The expected value or mean value of a random variable X is

E[X] =
∫ ∞
−∞

xf(x)dx.

Note that this integral does not always converge! For a normal random variable,
it turns out that E[X] = µ.

Because E[] is a linear operator,

E[X + Y ] = E[X] + E[Y ]

and
E[sX] = sE[X].
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Figure 1: The standard normal pdf.

The variance of a random variable X is

V ar(X) = E[(X − E[X])2]

V ar(X) = E[X2 − 2XE[X] + E[X]2]

Using the linearity of E[] and the fact that the expected value of a constant is
the constant, we get that

V ar(X) = E[X2]− 2E[X]E[X] + E[X]2

V ar(X) = E[X2]− E[X]2.

For a normal random variable, it’s easy to show that V ar(X) = σ2.
If we have two random variables X and Y , they may have a joint proba-

bility density f(x, y) with

P (X ≤ aandY ≤ b) =
∫ a

−∞

∫ b

−∞
f(x, y)dydx

Two random variables X and Y are independent if they have a joint density
and

f(x, y) = fX(x)fY (y).

If X and Y have a joint density, then the covariance of X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

2



It turns out that if X and Y are independent, then E[XY ] = E[X]E[Y ], and
Cov(X,Y ) = 0. However, there are examples whereX and Y are dependent, but
Cov(X,Y ) = 0. If Cov(X,Y ) = 0, then we say thatX and Y are uncorrelated.

The correlation of X and Y is

ρXY =
Cov(X,Y )√
V ar(X)V ar(Y )

.

The correlation is a sort of scaled version of the covariance that we will make
frequent use of.

Some important properties of V ar, Cov and correlation include:

V ar(X) ≥ 0

V ar(sX) = s2V ar(X)

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

Cov(X,Y ) = Cov(Y,X)

−1 ≤ ρXY ≤ 1

The following example demonstrates the use of some of these properties.
Example 1 Suppose that Z is a standard normal random variable. Let

X = µ+ σZ.

Then
E[X] = E[µ] + σE[Z]

so
E[X] = µ.

Also,
V ar(X) = V ar(µ) + σ2V ar(Z)

V ar(X) = σ2.

Thus if we have a program to generate random numbers with the standard
normal distribution, we can use it to generate random numbers with any desired
normal distribution. The MATLAB command randn generates N(0,1) random
numbers.

The multivariate normal distribution (MVN) is an important joint prob-
ability distribution. If the random variables X1, . . ., Xn have an MVN, then
the probability density is

f(x1, x2, . . . , xn) =
1

(2π)n/2
1√
|C|

e−(x−µ)C−1(X−µ)/2.

Here µ is a vector of the mean values of X1, . . ., Xn, and C is a matrix of
covariances with

Ci,j = Cov(Xi, Xj).
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The multivariate normal distribution is one of a very few multivariate distri-
butions with useful properties. Notice that the vector µ and the matrix C
completely characterize the distribution.

We can generate vectors random numbers according to an MVN distribution
by using the following process, which is very similar to the process for generating
random normal scalars.

1. Find the Cholesky factorization C = LLT .

2. Let Z be a vector of n independent N(0,1) random numbers.

3. Let X = µ+ LZ.

Suppose that X1, X2, . . ., Xn are independent realizations of a random
variable X. How can we estimate E[X] and V ar(X)?

Let

X̄ =
∑n
i=1Xi

n

and

s2 =
∑n
i=1(Xi − X̄)2

n− 1

These estimates for E[X] and V ar(X) are unbiased in the sense that

E[X̄] = E[X]

and
E[s2] = V ar(X).

We can also estimate covariances with

ˆCov(X,Y ) =
∑n
i=1(Xi − X̄)(Yi − Ȳ )

n
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