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Energy and Power Spectra

It is frequently valuable to study the power distribution of a signal in the fre-
quency domain. For example, we may wish to have estimates for how the power
in a signal is distributed with frequency, so that we can quantitatively state
how much power is in a particular band of interest relative to other frequen-
cies. Power peaks and/or troughs across specific frequency ranges may reveal
important information about a physical process. Given a power spectral density
function, the power across any range of frequencies can then be estimated by
integrating such a function over the band of interest.

The simplest such measure of energy (or, with scaling modifications, power)
in a signal as a function of frequency is the energy spectral density, which is
just the square of the spectral amplitude

|Φ(f)|2 = Φ(f)Φ∗(f) . (1)

Applying the convolution theorem, and noting that phase conjugation in the
frequency domain corresponds to reversal in the time domain, this can be rec-
ognized as the Fourier transform of the autocorrelation

Φ(f)Φ∗(f) = F [φ(t) ∗ φ∗(−t)] = F [φ(t) cor φ∗(t)] . (2)

We can thus observe that function which has a sharp and narrow autocor-
relation function will have a broad energy spectral density, while a function
which has a broad autocorrelation function will have a narrow energy spectral
density. This can perhaps be understood better by considering what is in fact
required of a time-domain function for it to have narrow (in the limit, delta-
like) autocorrelation function; the function must change rapidly, so that it does
not resemble itself very much for a small shift from zero lag. For a function to
change rapidly, it must have high frequency energy in its spectrum. Note that,
because the units of a spectrum are u · s = u/Hz, the units of (1) are u2/Hz2,
where u denotes the physical units of φ(t) (e.g., Volts, Amperes, meters/s, etc.).

Many interesting signals, such as those arising from an incessant excitation,
are, practically speaking, unbounded in time or continuous (as opposed to sig-
nals that are limited in time, or transient). If the statistical behavior of the
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signal (we will look at statistical aspects of time series much more later on in
the class) doesn’t change with time, so that the spectral and other properties of
the signal are time-invariant, it is generally referred to as stationary. Examples
where signals can often be considered to be stationary may include seismic, ther-
mal, or electromagnetic noise, tides, winds, temperatures, and currents. Some
signals of interest exhibit strong periodicities (tides, for example) because they
are associated with astronomical or other periodic forcing. Because of their
incessant nature, such signals have infinite total energy

ET = lim
T−>∞

∫ T/2

−T/2

|φ(t)|2 dt = ∞, (3)

so that the Fourier transform of the autocorrelation (2) won’t converge. The
frequency content of such signals may, however, still be examined using power
spectral density, or simply PSD.

Signal power averaged over some interval T is simply the energy (3) normal-
ized by the length of the observation

PT =
1

T

∫ T/2

−T/2

|φ(t)|2 dt =
1

T

∫ ∞
−∞
|φ(t) ·Π(t/T )|2 dt . (4)

As the observation interval T becomes long, this converges to the true signal
power

P = lim
T→∞

PT . (5)

The PSD is defined as

PSD[φ(t)] = lim
T→∞

1

T
ΦT (f) · Φ∗T (f) (6)

where the time series has been windowed by multiplying the time series with a
boxcar function of unit height and length T , so that

ΦT (f) = F [φ(t) ·Π(t/T )] . (7)

Note that dimensional analysis shows that the units of the power spectral density
in (6) are u2/Hz. Further note that that PSDs will be real, symmetric functions
over f for the common case where φ(t) real (and thus has a Hermitian spectrum).
For this reason, as we noted for the complex Hermitian spectrum in considering
the various Fourier symmetry relationships, the power spectra of real functions
are typically plotted only for positive frequencies. Because we can never do
calculations on an infinite-length signal, all PSDs in practice are estimates of P
that we hope approach the ”true” PSD for the continuous and (conceptually)
time-infinite signal that we are studying.

The simplest (but definitely not the best!) way to estimate a PSD is to simply
truncate the data with a T -length rectangular time window extending across a
time interval that we can define as being between −T/2 to T/2. This estimate,
because it seems like the obvious thing to do, has a long history, and it is
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sometimes referred to as a periodogram. To understand the relationship between
the periodogram estimate and the true PSD (6), note that for a rectangular
window of width T and a real-valued time series (which, again, has a Hermitian
spectrum)

PSDperiodogram =
1

T
|ΦT (f)|2 =

1

T
|F [φ(t)Π(t/T )]|2 (8)

Using the convolution theorem, this gives

PSDperiodogram =
1

T
|Φ(f) ∗ sinc(Tf)|2 (9)

where, recall, the Fourier transform of Π(t/T ) is

sinc(Tf) =
sinπTf

πTf
. (10)

Thus, what we obtain in a periodogram estimate is the true PSD of the
process convolved in the frequency domain with the sinc(Tf) function. Figure
1 shows such a periodogram estimate for a sinusoidal process. The underlying
process has a delta function spectrum, with the delta function centered on the
frequency of the sinusouid. However, (9) shows in a broader peak in the PSD
estimate. The spearing effect of the convolution produced a limited spectral
resolution view of the sinusoidal process.

The loss of resolution caused by the convolution in (9) is undesirable, and we
typically want to minimize and characterize it. As convolution is essentially a
smoothing operation (recall that variances add when we convolve two functions,
thus increasing their spread), our windowed estimate in (9) is a blurred image
of the true spectrum. In the periodogram case, this blurring takes the specific
form of convolution with a sinc function because we chose an (abrupt) boxcar
data truncation on the ±T/2 interval, and the Fourier transform of the boxcar
function is a sinc. The sinc function’s slow ((Tf)−1) fall-off and oscillatory
side lobes are easily improved by modifying the estimation method, and the
periodogram should thus never be used in practice except for quick and dirty
estimates of the PSD.

The smearing of spectral resolution due to the convolution of the true spec-
trum with the Fourier transform of the windowing function is called spectral
leakage, as the frequency domain convolution in (9) causes power from sur-
rounding frequencies to “leak” into the estimate at any particular frequency. In
its simplest form, spectral leakage in the periodogram will make the PSD esti-
mate for a function that is really a sinusoid of frequency f have the appearance
of sinc functions centered on the true frequencies (±f) of the continuous signal,
rather than the true delta functions.

Spectral leakage can be reduced by increasing T , so that the Fourier trans-
form of the windowing function becomes reciprocally (by a factor of 1/T ) nar-
rower. However, for statistical reasons involving the variance of the estimate
that we will not elaborate on here, this is still a poor way to estimate the PSD.
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Figure 1: A Periodogram Estimate of a Pure Sinusoidal Process

4



A better way to reduce spectral leakage, at the cost of eliminating the statistical
contributions of data near the endpoints of the data series, is to window with
a smoother time function than the boxcar that has a Fourier transform that is
more delta-like by some measure. For example, consider the Bartlett or Parzen
window

Λ(2t/T ) = 4/T 2 (Π(2t/T ) ∗Π(2t/T )) (11)

which is a unit height triangle function spanning the interval −T/2 to T/2.
Λ(2t/T ) is easily seen by the convolution theorem to have a Fourier transform
given by the sinc function squared

F [Λ(2t/T )] = 4/T 2F [Π(2t/T ) ∗Π(2t/T )] = sinc2(fT/2) (12)

which falls off asymptotically as (Tf)−2 and is positive everywhere (although it
is still oscillatory; Figure 2).

The formulation of various data windows such as the Parzen window has
historically formed a rich are of research (if not a veritable cottage industry) in
signal processing, and numerous function are in common usage (may of which
can be readily generated using various MATLAB functions in the signal pro-
cessing toolbox). The general tradeoff in window selection arises between the
width of the main lobe of the leakage function and the rate of decay away from
the center frequency. A few examples of commonly used windows and their
corresponding spectral leakage properties when they are applied to a true sinu-
soidal signal (which, again, has a ”true” delta function PSD), are shown in the
following figures.

An interesting issue in spectral estimation that arises from the use of win-
dows is the “throwing out” of data resulting from tapering near the data segment
endpoints. The result is that we are downweighting information and thus in-
creasing the statistical uncertainty of the PSD estimate. For long, stationary
time series, one straightforward and widely-applied method of addressing this
issue is to evaluate a suite of either overlapping or nonoverlapping spectral es-
timates for a host of window locations, and to subsequently average them and
calculate statistical bounds on the mean estimate. The most commonly used
technique along these lines is called Welch’s Method (see the pwelch function in
the MATLAB signal processing toolbox).

An elegant, more computationally-intensive, and increasingly widely utilized
method of estimating spectra (see the pmtm function in MATLAB’s signal pro-
cessing toolbox) is multitaper spectral estimation (e.g., Thomson, proc. IEEE
V. 70, No 9, September 1982). In multitaper spectral estimation, a family of
statistically independent spectral estimates is obtained from a signal using an
orthogonal set of windows on the estimation interval that are referred to as
prolate spheroidal tapers (Figure 6).

In multitaper spectral estimation individual spectra obtained from the pro-
late spheroidal tapers are combined in a weighted sum to produce a spectral
estimate with leakage that is approximately limited to some specified frequency
band, ±W . Specifically, for a specified time-bandwidth product, NW , the mul-
titapers are the Fourier Transforms of solutions, Uk, to the frequency-domain
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Figure 2: A Bartlett or Parzen window estimate of a pure sinusoidal process
spectrum.
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Figure 3: A Welch window estimate of a pure sinusoidal process spectrum.
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Figure 4: A Hann window estimate of a pure sinusoidal process spectrum.
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Figure 5: A Kaiser-Bessel window estimate of a pure sinusoidal process.
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Figure 6: Prolate Spheroidal Taper Functions (0 ≤ k ≤ 4;NW = 4).
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Figure 7: Fractional energy leakage outside of f = (−W,W ) for the first five
multitapers (NW = 4).

eigenvalue-eigenfunction equation∫ W

−W

sinNπ(f − f ′)
sinπ(f − f ′)

Uk(N,W ; f ′) df ′ = λk(N,W ) · Uk(N,W ; f) . (13)

where the λk are eigenvalues (the first 2NW of which are close to one), and
N is the discrete length of the taper sequence (this is a discrete formulation
for spectral estimation on sampled time series, which we shall discuss next
shortly. The integral in (13) is a convolution in the frequency domain between
the Uk and the Dirichlet kernel, a function that arises frequently in discrete
Fourier analysis because it is the Fourier transform of the sampled counterpart
of the boxcar function (more on this later). Solutions to (13) form an orthogonal
family of functions which have the greatest fractional energy concentration in the
frequency interval (−W,W ). The eigenvalues in (13) are measures of the degree
to which spectral leakage is confined to (−W,W ). Spectral leakage becomes
increasingly worse for higher-order tapers, with the energy leakage being given
approximately as

1− λk ≈
√

2π

k!
(8c)k+1/2e−2c (14)

where c = πNW . Figure 7 shows the fractional leakage for the first five multi-
tapers.

Because of the appreciable leakage of the higher order tapers the lowest few
(typically six or so, depending on the values of N and W ) are typically used in
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Figure 8: Prolate spheroidal taper spectral estimate (k = 0; NW = 4).

practice. Figures 8 through 12 show the five lowest order multitaper estimates
for NW = 4 for the example sine wave signal used in the earlier figures. Figure
13 shows the multitaper estimate obtained by averaging them. The leakage
function displayed in Figure 13 approximates a frequency boxcar of width 2W .

An example geophysical application of the PSD is to quantify the background
noise characteristics of seismic stations, so as to gauge, for example, how they
compare to known very quiet sites, and to assess what frequency bands good
or bad for signal detection. This is of considerable importance both for earth-
quake and Earth structure studies and for estimating detection thresholds for
clandestine events (e.g., nuclear tests). Figure 14 shows PSD estimates for a
fairly quiet IRIS broadband seismic station in the Tien Shan mountains near
Ala Archa, Kyrgyzstan, at periods ranging from 0.1 to 103 s (about 17 min-
utes). The bounding curves are empirically-based high- and low-noise extremal
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Figure 9: Prolate spheroidal taper spectral estimate (k = 1; NW = 4).
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Figure 10: Prolate spheroidal taper spectral estimate (k = 2; NW = 4).
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Figure 11: Prolate spheroidal taper spectral estimate (k = 3; NW = 4).
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Figure 12: Prolate spheroidal taper spectral estimate (k = 4; NW = 4).
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Figure 13: Prolate spheroidal taper average spectral estimate (0 ≤ k ≤ 4;
NW = 4).

models for broadband stations. Noise at short periods is dominated by cultural
(man-made), wind, and other rapidly varying environmental effects. The promi-
nent noise peaks near 7 and 14 seconds are globally observed and are generated
by ocean waves. The long-period power is higher on the horizontal sensors
as opposed to the vertical sensors because they are sensitive to tilt caused by
barometric, thermal, or other long-period noise sources. The peak near 1.6 s is
unusual and may represent microseismic wave noise from the nearby Issyk Kul,
one of the largest high-altitude alpine lakes in the world.

As a final indication of the great utility of the PSD, the Figure (15) shows
processed PSDs from a broadband seismometer (Guralp CMG-3Tb) located
in a 255-m deep borehole in the polar icecap near the South Pole. A great
many of 1-hour data length, 50% overlap, PSDs using a hamming taper, were
calculated from the month of May, 2003, and the resulting individual PSDs
were used to assemble an empirical probability density function for the signal
characteristics at he station The bifurcation of the high frequency noise is caused
by intermittent periods where tractors are moving snow near the station. Pink
misty areas concentrated around 1 and 20 s are PSDs that include teleseismic
earthquake signals. At short periods this is among the quietest stations on
Earth.
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Figure 14: Earth Acceleration Power Spectral Density for background noise
at the Ala Archa IRIS/IDA station as a function of period. Z, N , E refer
to vertical, north, and east seismometer components. Curves labeled NM are
the empirical noise model bounds of Peterson (1994) denoting to extremal PSD
values from stations installed around the world. The reference (0 db) level is
(1 m/s2)2/Hz. PSD estimates were obtained using Welch’s method.
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Figure 15: Quiet South Pole (QSPA) Global Seismic Network Station, power
spectral density probability density plot
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