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Introduction to Multidimensional and Multichan-
nel Processing

We have now covered most of the basic tools in analyzing one-dimensional time
or spatial series. Many data sets in geophysics and other fields, however, are
inherently multi-dimensional, either because the independent variable is mul-
tidimensional (e.g., a 2-dimensional survey or a 3-dimensional structure) or
because the data itself is a vector quantity (e.g., three-component seismic or
electromagnetic data).

Two or higher dimensional data sets require a multidimensional analysis
technique. Some examples include photographic records, remote sensing data,
or other 2-d images, seismic records from a 2-dimensional array, and gravity
and magnetic surveys. Other signals may be considered multidimensional, with
the two axes being physically different, such as a linear array of seismometers,
where one dimension is temporal and the other is spatial or a two-dimensional
array with a third time dimension. In general, much of one’s intuition developed
from analyzing 1-dimensional systems may be applied, although there are some
very important concepts of 1-dimensional systems which do not apply in more
dimensions.

Let x(n1, n2) be a two-dimensional sequence defined for integer n1 and
n2. Such a 2-d sequence is usually obtained from sampling a continuous 2-
dimensional function. Some examples of 2-d sequences would be the unit im-
pulse:

δ(n1, n2) =

{
1 for n1 = n2 = 0
0 otherwise

(1)

the step function

H(n1, n2) =

{
1 for n1, n2 ≥ 0
0 otherwise

(2)

the exponential

x(n1, n2) =

{
αn1

1 αn2
2 for n1, n2 ≥ 0

0 otherwise
(3)

and the sinusoid
x(n1, n2) = eı2π(f1n1+f2n2) . (4)
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If a system is linear and time invariant, then convolution is a valid concept
in dimensions higher than 1, thus if x(n1, n2) is an input to a two dimensional
system which has an impulse response of φ(n1, n2), then the output is

y(n1, n2) = x(n1, n2)∗φ(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)x(n1−m1, n2−m2)

(5)

=

∞∑
m1=−∞

∞∑
m2=−∞

φ(n1 −m1, n2 −m2)x(m1,m2) (6)

(6) is usually difficult to apply, however, consider a simple case given by (Rabiner
and Gold, 1975), where

φ(n1, n2) = αn1n2 (7)

and

x(n1, n2) =

{
1 for 0 ≤ n1, n2 ≤ 2
0 otherwise

(8)

the response, φ(n1, n2) ∗ x(n1, n2) is thus

y(n1, n2) =

2∑
m1=0

2∑
m2=0

α(n1−m1)(n2−m2) (9)

which, in general must be evaluated term by term for each (n1, n2) where each
term requires 32 = 9 operations. If φ(n1, n2) is separable , i.e., it can be written
as

φ(n1, n2) = g(n1) · f(n2) (10)

then the response can be calculated in terms of consecutive 1-dimensional con-
volutions, as (6) now becomes

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

g(m1)f(m2)x(n1 −m1, n2 −m2) (11)

=

∞∑
m1=−∞

g(m1)

( ∞∑
m2=−∞

f(m2)x(n1 −m1, n2 −m2)

)
(12)

where the term inside of the parentheses is a sequence of 1-d convolutions where
m1 is allowed to range from −∞ to ∞. If the input sequence is also separable,
so that x(n1, n2) = a(n1) · b(n2), then

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

g(m1)f(m2)a(n1 −m1)b(n2 −m2) (13)

=

( ∞∑
m1=−∞

g(m1)a(n1 −m1)

)( ∞∑
m2=−∞

f(m2)b(n2 −m2)

)
(14)
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which is also separable, i.e.,

y(n1, n2) = α(n1) · β(n2) (15)

where α(n1) and β(n2) are 1-dimensional convolutions (14).
As in 1-d systems, sinusoidal inputs play the fundamental functional role in

the Fourier analysis of 2-d systems. This is because 2-dimensional sinusoidal
functions

x(n1, n2) = eı2πf1n1eı2πf2n2 (16)

are eigenfunctions of the 2-d convolution operation. Consider the output of a
system with impulse response φ(n1, n2) to a complex exponential input

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)eı2πf1(n1−m1)eı2πf2(n2−m2) (17)

= eı2πf1n1eı2πf2n2

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)e−ı2πf1m1e−ı2πf2m2 = x(n1, n2)Φ(f1, f2)

(18)
where Φ(f1, f2) is the frequency response of the system in two dimensions and
hence defines a 2-d Fourier transform of a 2-d sampled function. The corre-
sponding inverse transformation (see table below) is just

φ(n1, n2) =

∫ 1/2

−1/2

∫ 1/2

−1/2

Φ(f1, f2)eı2πf1n1eı2πf2n2 df1 df2 . (19)

Note that Φ(f1, f2) is periodic in frequency with unit period for both f1 and f2,
as we’d expect for a sampled function

Φ(f1, f2) = φ(f1 + l, f2 +m) (l,m integers) (20)

which is two-dimensional aliasing. If φ(n1, n2) is real, then

Φ(f1, f2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)e−ı2πf1m1e−ı2πf2m2 = Φ∗(−f1,−f2)

(21)
so that Φ(f1, f2) is Hermitian in a 2-d sense.

We now have the tools for performing windowed filter design in 2-dimensions
in a manner entirely analogous to that which we previously examined for 1-d
FIR filters. Consider the perfect low pass filter with a response given by

Φ(f1, f2) =

{
1 for − α ≤ f1 ≤ α,−β ≤ f2 ≤ β
0 otherwise

(22)

taking the inverse Fourier transform gives the n domain series

φ(n1, n2) =

∫ α

−α

∫ β

−β
eı2πf2n2eı2πf1n1df2df1 (23)
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if the frequency response is separable, so is the n domain response, so

φ(n1, n2) =

(∫ α

−α
eı2πf1n1df1

)(∫ β

−β
eı2πf2n2df2

)
(24)

=

(
eı2πf1n1

ı2πn1

)∣∣∣∣α
f1=−α

(
eı2πf2n2

ı2πn2

)∣∣∣∣β
f2=−β

=

(
sin(2παn1)

πn1

)(
sin(2πβn2)

πn2

)
.

(25)
This frequency response and a plot of its corresponding filter weights is shown
on the following page.

Unless we have a physical reason for wishing to treat the n1 and n2 direc-
tions unequally, we would generally want to have a response which is circularly
symmetric in the time and frequency domains. Such a filter is specified by

Φ(f1, f2) =

{
1 f2

1 + f2
2 ≤ f2

max

0 otherwise
(26)

and the corresponding filter weights are obtainable as

φ(n1, n2) =

∫ fmax

−fmax

∫ (f2
max−f

2
1 )1/2

−(f2
max−f2

1 )1/2
eı2πf1n1eı2πf2n2 df2 df1 . (27)

An easy way to evaluate this integral is to note that both the n and frequency
response of the system are circularly symmetric, thus, we can obtain the general
solution by finding φ(n1, 0) and then substituting (n2

1 + n2
2)1/2 for n1.

φ(n1, 0) =

∫ fmax

−fmax

∫ (f2
max−f

2
1 )1/2

−(f2
max−f2

1 )1/2
eı2πf1n1 df2 df1 (28)

=

∫ fmax

−fmax

eı2πf1n1 · 2(f2
max − f2

1 )1/2 df1 (29)

using the polar substitution f1 = fmax sin θ gives

=

∫ π/2

−π/2
2(f2

max − f2
max sin2 θ)1/2eı2πfmaxn1 sin θ · fmax cos θ dθ (30)

= 2f2
max

∫ π/2

−π/2
cos2 θeı2πfmaxn1 sin θdθ (31)

=
2πfmaxJ1(2πfmaxn1)

n1
(32)

where J1 is the first-order Bessel function. Thus

φ(n1, n2) =
2πfmaxJ1(2πfmax(n

2
1 + n2

2)1/2)

(n2
1 + n2

2)1/2
. (33)
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Before proceeding further with the topic of 2-d filtering, we must define a
2-d DFT. The utility of the multidimensional DFT arises for the same reasons
as for 1-d series; it enables us to deal with limited time series (with the added
implication that our sampled signals are now periodic), and it is implementable
with highly efficient FFT routines.

A periodic signal in two dimensions satisfies

x(n1, n2) = x(n1 +m1N1, n2 +m2N2) (34)

where (N1, N2) are the periods of the 2-d signal (in samples) along the two grid
axes and

(m1,m2) integers (35)

As in one dimension, such 2-d signals can be decomposed into a linear combina-
tion of a finite number of exponential basis functions which have periods which
are submultiples of (N1, N2). Thus,

x(n1, n2) =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X(k1, k2)eı2πn1k1/N1eı2πn2k2/N2 (36)

where X(k1, k2) is the 2-d DFT of x(n1, n2). The corresponding DFT is there-
fore

X(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)e−ı2πn1k1/N1e−ı2πn2k2/N2 . (37)

Noe that we could also define a 2-d z transform

x(z1, z2) =

∞∑
n1=−∞

∞∑
n2=−∞

x(n1, n2)z−n1
1 z−n2

2 (38)

and a corresponding inverse z transform (with contours c1 and c2)

x(n1, n2) =
1

(ı2π)2

∫
c1

∫
c2

X(z1, z2)zn1−1
1 zn2−1

2 dz1 dz2 . (39)

A general 2-d digital filter is thus characterizable by a difference equation

y(n1, n2) =

p∑
i=−p

q∑
j=−q

αijx(n1 − i, n2 − j)−
r∑

i=−r

s∑
j=−s

βijy(n1 − i, n2 − j) (40)

where i and j are not both zero in the second summation, and we have made
the constant coefficients symmetric about y(0, 0). This has a z transform given
by

Y (z1, z2) =

∑p
i=−p

∑q
j=−q βijz

−i
1 z−j2∑r

i=−r
∑s
j=−s αijz

−i
1 z−j2

(41)

where α00 = 1 has poles and zeros in a 4-dimensional space defined by the real
and imaginary parts of z1 and z2. Evaluating stability for such filters is difficult,
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Figure 1: A 2-dimensional sampled function and its DFT
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primarily because one cannot, in general, factor the 2-dimensional numerator
and denominator to obtain a simple view of the zero and pole frequencies. As
a result of this property (or non-property) of higher-dimensional polynomials,
the cascade of two stable IIR filters may not even be stable! (this issue is still a
current research topic). Because of these difficulties, we will primarily concern
ourselves with FIR higher-dimensional filters here (this is the case where there
are no poles and thus no potential stability problems).

The two dimensional function shown in Figure (1) could be applied as an
FIR filter to effect low-pass filtering by the use of the convolution theorem
(direct manipulation of the DFT) or via convolution with a corresponding kernel
in two dimensions. However, this filter is anisotropic in the (k1, k2) plane,
in the sense the wavenumber components along the diagonals will experience
different filtering than along the k1 or k2 directions, and the filtering in k1 and
k2 directions has different cutoff wavenumbers. Consider, instead, a circularly
symmetric, low-pass filter case defined by the ideal response (Figure 2), which
has the transfer function

Φ(f1, f2) =

{
1 f2

1 + f2
2 ≤ 1/4

0 otherwise
(42)

from (33), we know that the corresponding filter weights are given by

w(n1, n2) =

{
πfmaxJ1((π/2)(n2

1 + n2
2)1/2)

2(n2
1 + n2

2)1/2 (43)

Taking a N by N -point rectangular window (a simple truncation of the 2-d
series) produces a filter with a frequency response

W (f1, f2) =

(N−1)/2∑
n1=−(N−1)/2

(N−1)/2∑
n2=−(N−1)/2

w(n1, n2)e−ı2πn1f1e−ı2πn2f2 (44)

where (f1, f2) is normalized to the Nyquist interval, so that both frequencies
span (−1/2, 1/2).

As in the 1-d case, we can improve the ripple features of the filtering by
applying a windowing function with better spectral leakage characteristics than
the 2-dimensional rectangular window implied by simply convolving with a trun-
cated w(n1, n2). As we usually wish our window to be circularly symmetric in
the (f1, f2) and (n1, n2) planes, we can take a window function, ŵ, from 1-
dimensional analysis and substitute the radius in (n1, n2)-space for n to obtain
a circularly symmetric 2-dimensional window

w(n1, n2) = ŵ(n2
1 + n2

2)1/2 . (45)

As in 1-d processing, the Kaiser-Bessel window is a good candidate for a win-
dowing function due to its low spectral leakage. An N by N , 2-d Kaiser-Bessel
window is

w(n1, n2) =
I0

[
2π
√

1− (n2
1 + n2

2)/N2)
]

I0(2π)
(46)
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Figure 2: A 2-dimensional ideal lowpass filter response.

for n2
1 + n2

2 ≤ N2 and
w(n1, n2) = 0 (47)

for n2
1 + n2

2 > N2, where I0(x) is the modified Bessel function of the first kind
and 0th order. The response of the Kaiser-Bessel windowed low pass filter is
superior in smoothness and in attenuation (reduction of spectral leakage) to the
rectangular window, as shown in the plots on the following pages.
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Figure 3: A 64 by 64 truncated FIR realization of the ideal low pass filter
response.
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Figure 4: A Kaiser Bessel window in 2 dimensions.
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Figure 5: A 64 by 64 Kaiser Bessel-windowed FIR realization of the ideal low
pass filter response.
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Frequency-Wavenumber Filtering

We next consider some aspects of filtering in a two-dimensional system where
the two-dimensions do not have the same units. Consider a linear array of
seismometers or antennae deployed in the x̂ direction with a constant spacing.
Signals from such an array can be displayed in a 2-dimensional record section,
where we have t as the ordinate and channel number, or x, as the abscissa (or
vice-versa). The response of such a system to a traveling, sinusoidal plane wave
of frequency f0

φ(t, x) = eı2πf0(t−x/v0) (48)

where v0 is the apparent phase velocity of the wave across the array, is of
particular interest, as such signals impinge upon the array at specific angles
given by

θ = sin−1(c/v0) (49)

where c is the true wave velocity in the medium and θ is the angle between the
planar wavefront and the x̂ direction. Thus, when θ = 0, the apparent phase
velocity v0 = ∞, as the wavefront strikes all of the sensors simultaneously.
Conversely, when θ = 90, v0 = c, as the plane wave is propagating directly
along the array axis (in the x̂ direction).

If we arrange the data in (t, x)-space to form a 2-dimensional array (prac-
tically speaking, we may have to resample the traces to form an evenly-spaced
array in the sampled case), we can take a 2-d Fourier transform of (48) as

Φ(f, k) =

∫ ∞
−∞

∫ ∞
−∞

φ(t, x)e−ı2πfteı2πxf/v dt dx =

∫ ∞
−∞

∫ ∞
−∞

φ(t, x)e−ı2πfteı2πkx dt dx

(50)
where the wavenumber (or spatial frequency) is, here, defined as the reciprocal
length

k = 1/λ = f/v . (51)

The f − k transform of the plane wave evaluated using (48)) is thus∫ ∞
−∞

∫ ∞
−∞

eı2πf0te−ı2πxk0e−ı2πfteı2πxk dt dx = δ(f − f0, k − k0) (52)

so that every traveling sinusoidal wave of a given frequency and wavenumber in
(x, t)-space maps to a delta function in (f, k)-space!

Note that we have chosen a mixed exponential sign convention for the f −
k transform, where the frequency portion has a minus sign in the exponent,
consistent with our previous convention for 1- and 2-dimensional transforms,
but the wavenumber transform exponent has a plus sign. We do this so that
waves propagating towards increasing x for increasing t (like 48) will map into
the first quadrant of the f−k plane. Of course there are three other conventions
of exponent signs which could be chosen here.

In f − k space, arbitrary signals of a given apparent phase velocity, v0 are
specified by (51), so that such signals lie along lines which intersect the f − k
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origin and have slopes of v0 in an f vs. k presentation. Now suppose that we
wish to selectively resolve waves within a range of apparent velocities. This
procedure is called beam forming, as it was first developed in radar and radio
transmission applications. In seismological applications, because of Snell’s law,
the horizontal phase velocity of a signal remains constant throughout a given
ray path in a horizontally homogeneous medium. Thus, beam forming using
seismic array data selectively examines waves which turn within a particular
depth range (as our array is generally deployed horizontally). For a simple 1-
d array of sensors we can preferentially extract signals with a specific phase
velocity above some cutoff value, v0, by using a filter with an f − k response
given by

Y (f, k) =

{
1 − |f |/v0 ≤ k ≤ |f |/v0

0 otherwise
(53)

It’s instructive to examine the impulse response of (e.g., Kanasewich, 1975),
given by the inverse f − k transform

y(t, x) =

∫ ∞
−∞

∫ ∞
−∞

Y (f, k)eı2πfte−ı2πkx dk df . (54)

Of course, in practical situations, x and t are both discrete variables, so that, for
unit time sampling interval, ∆t = 1 and unit spatial sampling interval, ∆x = 1

y(n∆t, (m+1/2)∆x) = y(n,m+1/2) =

∫ 1/2

−1/2

∫ 1/2

−1/2

Y (f, k)eı2πfne−ı2πk(m+1/2) dk df

(55)
where we have assumed that there are an even number of receivers in the array,
so that the half-integer spatial index, m + 1/2 gives a symmetric deployment
relative to the x origin. Evaluating the integral over k for Y (f, k) gives

∫ 1/2

−1/2

eı2πfn
(
e−ı2πk(m+1/2)

−ı2π(m+ 1/2)

)∣∣∣∣∣
|f |/v0

k=−|f |/v0

df (56)

=
1

π(m+ 1/2)

∫ 1/2

−1/2

eı2πfn sin(2π(m+ 1/2)|f |/v0) df (57)

=
2

π(m+ 1/2)

∫ 1/2

0

cos 2πfn sin(2π(m+ 1/2)f/v0) df (58)

using unity apparent velocity as the cutoff value for the sake of illustration gives

v0 = ∆x/∆t = 1 (59)

so that

y(n,m+ 1/2) =
2

π(m+ 1/2)

∫ 1/2

0

sin(2πf(m+ 1/2)) cos(2πfn) df . (60)
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Because, for m2 6= n2,∫
sin(mx) cos(nx)dx =

−cos(m− n)x

2(m− n)
− cos(m+ n)x

2(m+ n)
+ C (61)

we have

y(n,m+1/2) =
2

π(m+ 1/2)

(
−cos(2πf(n+m+ 1/2))

4π(n+m+ 1/2)
− cos(2πf(−n+m+ 1/2))

4π(−n+m+ 1/2)

)∣∣∣∣1/2
0

(62)

=
2

π(m+ 1/2)
× (63)(

−cos(π(n+m+ 1/2))

4π(n+m+ 1/2)
− cos(π(−n+m+ 1/2))

4π(−n+m+ 1/2)
+

1

4π(n+m+ 1/2)
+

1

4π(−n+m+ 1/2)

)
.

(64)
As m and n are integers, the cosine terms are zero, so that

y(n,m+ 1/2) =
1

2π2(m+ 1/2)

(
1

(n+m+ 1/2)
+

1

(−n+m+ 1/2)

)
(65)

or

y(n,m+ 1/2) =
1

π2 [(m+ 1/2)2 − n2]
. (66)

As is usual in FIR filter design problems, the weights are nonzero for large
indices (n and m) and we are forced into a truncation procedure to produce
a finite set of filter weights. As in our previous examples, the Kaiser Bessel
window provides a good choice for truncating the 2-d weights. Rectangular and
Kaiser-Bessel windowed realizations of the velocity filter (66) for 64 channels of
64 sample data are shown on the following page.
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Figure 6: A rectangular-widowed velocity filter.

As the 3-d perspective plots make it difficult to see the x− t domain impulse
response, we also show a plot of the impulse response traces for 16 traces of 64
samples. Each time series in the impulse response consists of a simple convolving
kernel. The response of the filter, r(n,m+ 1/2) to an arbitrary input, φ(n,m+
1/2), is thus given by the 2-d convolution of (66) with the input traces

r(n,m+ 1/2) =

N∑
i=1

M/2−1∑
j=−M/2

φ(i, j + 1/2)y(n− i,m+ 1/2− j) (67)

r(n, 1/2) is thus obtainable by convolving each time series in the input with the
corresponding time series in the impulse response (66), followed by a summation
(stack) of the resultant M convolutions all m.

A particularly simple f − k filter has weights given by

y(n,m) = δ(n = 0) (68)

The m = 0 output of such a filter is just a zero-lag stack of the input traces. The
f − k impulse response of such a system is just the Discrete Fourier transform
of y(n,m)

Y (ν, µ) =

N−1∑
n=0

M−1∑
m=0

δ(n = 0)e−ı2πνn/Neı2πµm/M (69)
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Figure 7: A Kaiser-Bessel-windowed velocity filter.
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where our frequency-wavenumber indices are the integers (ν, µ).

=

M−1∑
m=0

eı2πµm/M =
1− eı2πµ

1− eı2πµ/M
(70)

which has the amplitude response given by the Dirichlet kernel

|Y (ν, µ)| = sin(πµ)

sin(πµ/M)
(71)

which is independent of the Nyquist-normalized frequency, ν. The t − x and
f − k plots are shown on the following page. The zero-lag stack, then, acts like
a low pass filter in k and a high pass filter in v, so that waves with large k (short
wavelengths) and low v (less vertical ray paths) will be attenuated, while those
with small k (long wavelengths) will be relatively unaffected.

Consider now what happens if we stack the time series with some time lag,
∆, imposed between the channels, so that the impulse response is now

y(n,m) = δ(n+ ∆m). (72)

Such a system is called a phased array and has many applications in geophysics,
optics, and electromagnetics (e.g., RADAR). The f − k response then becomes

Y (ν, µ) =

N−1∑
n=0

M−1∑
m=0

δ(n+ ∆m)e−ı2πνn/Neı2πµm/n (73)

=

M−1∑
m=0

eı2πν∆m/Neı2πµm/M (74)

for the symmetric case N = M , we have

=

M−1∑
m=0

eı2πm(ν∆+µ)/N (75)

which gives the amplitude response

|Y (ν, µ)| = sin(π(ν∆ + µ))

sin(π(ν∆ + µ)/M)
(76)

which is shown on the following page for ∆ = 1, along with the response of the
unlagged series. Rotating the impulse response in the t − x domain has thus
simply rotated the Fourier Transform by the same angle (in this case, 45◦). We
now know how to modify the velocity filter to enclose some other hourglass-
shaped swath of the f − k plane – we simply must impose a linear lag between
the initial time traces to rotate the response function to the desired angle.

An important application of phased arrays is to receive or transmit narrow
frequency band energy preferentially from a small range of azimuths. Consider
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a linear hydrophone array trailed from a ship with an array element spacing of
∆x = 30 m and a length of 3600 m (M = 121 elements in all). If such an array
is receiving energy from a narrow-band source (so that we are only interested
in a small range of frequencies), we can calculate the width of the main lobe of
the Dirichlet kernel response if we know the sound speed (about 1500 m/s in
water).

For a f1 = 50 Hz source, the wavelength is thus about 30 m. The f − k
response of the streamer for stacked traces is

|Y (ν, µ)| = sin(πµ)

sin(πµ/M)
(77)

where we can convert a general discrete f−k transform to a function of Nyquist-
normalized wavenumber, k, and Nyquist-normalized frequency, f , using the
transformations

µ = Mk/ks (78)

ν = Nf/fs (79)

where ks is the spatial sampling frequency

ks = 1/(∆x) = 1/30 m−1 (80)

and fs is the time sampling frequency to obtain

|Y (f, k)| = sin(Mπk/ks)

sin(πk/ks)
. (81)

The first zero of this function occurs at k = k1, defined by

sin(Mπk1/ks) = 0 (k1 6= 0) (82)

or where
k1 = ks/M ≈ 2.75× 10−4 m−1 (83)

which occurs at a plane wave emergence angle of

θ = sin−1(c/v1) = sin−1(ck1/f1) = sin−1(1500 · 2.75× 10−4/50) ≈ 0.47◦ (84)

(corresponding to a phase lag of 2π between the first and last hydrophones) so
that the total width of the main lobe is ±θ, or about 1◦. The second major
maximum occurs when the contributions of the plane wave are again in phase
at all of the receivers, where k = ks and

θ = sin−1(cks/f1) = sin−1(1500/(30 · 50)) = 90◦. (85)

If frequency is doubled to f2 = 100 Hz, then the wavelength is halved, and the
main lobe becomes narrower, with the first zero now occurring at

θ = sin−1(ck1/f2) = sin−1(1500 · 2.75× 10−4/100) ≈ 0.24◦ . (86)

The second major maximum now occurs at only

θ = sin−1(cks/f2) = sin−1(1500 · 2/(60 · 100)) = 30◦. (87)

so that the main beam has become narrower, but we now have a second maxi-
mum to contend with at 30◦ from normal incidence.
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Figure 8: A linear array response as a function of incident angle.
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Frequency-Wavenumber Filtering with 2-dimensional
arrays

Next, we consider data from a 2-dimensional array of instruments. Again, we
can decompose incident energy into a superposition of traveling waves, but we
now have an additional spatial dimension to contend with because our signals
now have two spatial dimensions.

A particular wave field sampled by a two-dimensional array can be decom-
posed into plane waves

φ(t, x, y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ(f, kx, ky)eı2πfte−ı2πkxxe−ı2πkyy df dkx dky (88)

where kx and ky are the wavenumbers in the x and y directions and Φ(kx, ky, f)
is a 3-dimensional frequency-wavenumber spectrum. A particular plane wave
propagates at an azimuth, φ, specified by

φ = tan−1(ky/kx) (89)

kx and ky are thus not independent, but are related by the Pythagorean theorem

k2
x + k2

y = f2/v2. (90)

The f − k spectrum of a 2-dimensional time signal is thus

Φ(f, kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φ(t, x, y)e−ı2πfteı2πkxxeı2πkyydtdxdy (91)

and its discrete counterpart is

Φ(ν, µx, µy) =

N−1∑
n=0

L−1∑
l=0

M−1∑
m=0

φ(l, n,m)e−ı2πnν/Neı2πlµx/Leı2πmµy/M . (92)

As in the case of an ideal 1-dimensional array, we can (theoretically at least)
calculate a frequency-wavenumber spectrum from real data using (92) to deter-
mine the nature of the incident energy in terms of a plane wave decomposition.
Unfortunately, this is not usually the case in seismology, particularly at high fre-
quencies, as spatial heterogeneity induces scattering which fragments the wave-
front near the array, reducing the signal coherence from sensor to sensor. One
can improve the situation somewhat by introducing station corrections (e.g.,
Aki and Richards, Theoretical Seismology, p. 610), so that the wavefront is best
reconstructed (this procedure is analogous to the adaptive optical techniques
used in modern large telescopes).
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Upward and Downward Continuation of Remotely
Sensed Data

Consider a point mass, m, located at the origin, which produces a gravitational
field

~g(r̂) =
−mGr̂
r2

=
−mG(xx̂+ yŷ + zẑ)

(x2 + y2 + z2)3/2
(93)

where G is Newton’s gravitational constant. At a general position (x, y, z), the
vertical (z component) of the gravity field will thus be

gz = ẑ · ~g =
−mGz

(x2 + y2 + z2)3/2
(94)

The integral of gz over the xy plane is∫ ∞
−∞

∫ ∞
−∞

gz dx dy = −mGz
∫ ∞
−∞

∫ ∞
−∞

(x2 + y2 + z2)−3/2 dx dy (95)

= −2πmGz

∫ ∞
0

r dr

(z2 + r2)3/2
(96)

= −2πmGz

(
−1

(z2 + r2)1/2

)∣∣∣∣∞
0

= −2πmG (97)

which, interestingly, does not depend on z. If we take the output of our system
to be the vertical field at z = 0, then we clearly have a delta function at the
origin with a magnitude given by (94), as the field has no vertical component
except exactly at the origin. Next consider a surface at a height h above the xy
plane. The vertical field there is just

gz(h) = − h

2π(x2 + y2 + h2)3/2
= − h

2π(r2 + h2)3/2
(98)

where we have normalized the response by (94). As field quantities obey super-
position and linearity, vertical field measurements of a general field obtained at
an arbitrary height z = h are thus specified by the 2-dimensional convolution
of (98) with the field at z = 0.

We can examine the frequency response of this filter by taking the Fourier
transform of (98)

g(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

h

2π(x2 + y2 + h2)3/2
e−ı2πkxxe−ı2πkyy dx dy (99)

which can be solved to obtain

g(kx, ky) = e−2πh(k2x+k2y)1/2 (100)

which is the frequency response of the upward continuation filter. Note that
(100) is thus a low pass filter – as we move away from the (z = 0) plane, we
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loose the high frequencies in our survey. Conversely, if we wish to extrapolate
downwards to the earth’s surface, we need to implement the (unstable) inverse
filter, g−1(kx, ky). This 2-dimensional deconvolution can be achieved in a sta-
ble way by a regularized (e.g., 2-d water level) deconvolution in the frequency
domain.

Multi-dimensional filtering in MATLAB

Basic filtering operations can be done with the functions filter2 and conv2. There
are also 2-dimensional DFT operations (fft2 and ifft2), as well as a routine (fftn
and ifftn) for arbitrary dimensionality. 2-dimensional FIR filter design pro-
grams are also available using the windowing and frequency sampling methods
(fwind1/fwind2, fsamp2, respectively) in the image processing toolbox. This
toolbox also has two-dimensional functions (fspecial) and many, many other
useful functions for operating on 2-dimensional arrays.
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