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Introduction

Data Assimilation is the problem of merging model predictions with actual mea-
surements of a system to produce an optimal estimate of the current state of
the system and/or predictions of the future state of the system. For exam-
ple, weather forecasters run massive computational models that predict winds,
temperature, etc. As time progresses, it is important to incorporate available
weather observations into the mathematical model. Since these weather obser-
vations are noisy, the problem of incorporating the observations into the model
is inherently statistical in nature.

Data Assimilation is becoming a very hot topic in many areas of science, in-
cluding atmospheric physics, oceanography, and hydrology. In the next few lec-
tures, we’ll introduce Kalman filtering, which is one of the simplest approaches
to data assimilation. The Kalman filter was introduced in a 1960 paper by R.
E. Kalman.

The Model Of The System

Consider a discrete time dynamical system governed by the equation

xk = Axk−1 +Buk−1 + wk−1. (1)

Here, xk, uk−1, and wk−1 are vectors and the subscripts refer to the time steps
rather than indexing elements of the vectors. The state of the system at time
k is given by the vector xk. Deterministic inputs to the system at time k − 1
are given by uk−1. Random noise affecting the system at time k − 1 is given
by wk−1. We’ll assume that wk−1 has a multivariate normal distribution with
mean 0 and covariance matrix Q.

We’ll obtain a vector of measurements zk at time k, where zk is given by

zk = Hxk + vk. (2)

Here vk represents random noise in the observation zk. We’ll assume that vk is
normally distributed with mean 0 and covariance matrix R.
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The matrices A, B, H, Q, and R are all assumed to be known, although the
Kalman filter can be extended to simultaneously estimate these matrices along
with xk. For now, our goal is to estimate xk and predict xk+1, xk+2, . . ., as
accurately as possible given z1, z2, . . ., zk.

The estimate that we will obtain will come in the form of a multivariate
normal distribution with a specified mean x̂k and covariance matrix P̂k. We
will want to measure the “tightness” of this multivariate normal distribution.
A convenient measure of the tightness of an MVN distribution with covariance
matrix C is

trace(C) = C1,1 + C2,2 + . . .+ Cn,n. (3)

trace(C) = V ar(X1) + V ar(X2) + . . .+ V ar(Xn). (4)

Example 1 For example, xk might be a six element vector containing the
position (3 coordinates) and velocity (3 coordinates) of an aircraft at time k.
The vector uk−1 might represent control inputs (thrust, elevator, rudder, etc.)
to the aircraft at time k− 1, and wk−1 might represent the effects of turbulence
on the aircraft. We may be using a very simple radar to observe the aircraft, so
that we get measurements of the position, z, but not the velocity of the aircraft
at each moment in time. These measurements of the aircraft’s position might
also be noisy.

In many cases, the system that we’re interested in is described by a system
of differential equations in continuous time:

x′(t) = Ax(t) +Bu(t). (5)

We can discretize this system of equations using time steps of length ∆t, to get

x(t+ ∆t) = x(t) + ∆tx′(t). (6)

x(t+ ∆t) = x(t) + ∆t(Ax(t) +Bu(t)). (7)

Letting xk = x(t+ ∆t) and xk−1 = x(t), we get

xk = (I + ∆tA)xk−1 + ∆tBuk−1. (8)

In many practical applications of Kalman filtering the mathematical model
of the system consists of an even more complicated system of partial differential
equations. Such systems are commonly discretized using finite difference or
finite element methods. Rather than diving into the details of the numerical
analysis used in discretizing PDE’s, we will simply assume that our problem has
been cast in the form of (1).

The Kalman Filter

We have two sources of information that can help us in estimating the state of
the system at time k. First, we can use the equations that describe the dynamics
of the system. Substituting wk−1 = 0 into (1), we might reasonably estimate

x̂k = Axk−1 +Buk−1 (9)
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A second useful source of information is our observation zk. We might pick x̂k

so as to minimize ‖zk −Hxk‖. There’s an obvious trade-off between these two
methods of estimating xk. The Kalman filter produces a weighted combina-
tion of these two estimates that is optimal in the sense that it minimizes the
uncertainty of the resulting estimate.

We’ll begin the estimation process with an initial guess for the state of
the system at time 0. Since we want to keep track of the uncertainty in our
estimates, we’ll have to specify the uncertainty in our initial guess. We describe
this by using a multivariate normal distribution

x0 ∼ N(x̂0, P̂0). (10)

In the prediction step, we are given an estimate x̂k−1 of the state of the
system at time k − 1, with associated covariance matrix P̂k−1. We substitute
the mean value of wk−1 = 0 into (1) to obtain the estimate

x̂−k = Ax̂k−1 +Buk−1. (11)

The minus superscript is used to distinguish this estimate from the final estimate
that we get after including the observation zk. The covariance of our new
estimate is

P̂−k = Cov(x̂−k ). (12)

P̂−k = Cov(Ax̂k−1 +Buk−1 + wk−1). (13)

The Buk−1 term is not random, so its covariance is zero. The covariance of
wk−1 is Q. The covariance of Ax̂k−1 is A Cov(x̂k−1)AT . Thus

P̂−k = ACov(x̂k−1)AT +Q. (14)

P̂−k = AP̂k−1A
T +Q. (15)

We could simply repeat this process for x1, x2, . . .. If no observations of the
system are available, that would be an appropriate way to estimate the system
state.

In the update step, we modify the prediction estimate to include the obser-
vation.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (16)

x̂k = (I −KkH)x̂−k +Kkzk. (17)

Here the factor Kk is called the Kalman gain. It adjusts the relative influence
of zk and x̂−k . We will soon show that

Kk = P̂−k H
T (HP̂−k H

T +R)−1 (18)

is optimal in the sense that it minimizes the trace of P̂k.
The covariance of our updated estimate is

P̂k = Cov(x̂k). (19)
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P̂k = Cov((I −KkH)x̂−k +Kkzk). (20)

P̂k = (I −KkH)P̂−k (I −KkH)T +KkCov(zk)KT
k . (21)

Since Cov(zk) = R,

P̂k = (I −KkH)P̂−k (I −KkH)T +KkRK
T
k . (22)

This simplifies to

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T )KT
k +KkRK

T
k . (23)

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T +R)KT
k . (24)

We want to minimize the trace of P̂k. Using vector calculus, it can be shown
that

∂trace(P̂k)
∂Kk

= −2(HP̂−k )T + 2Kk(HP̂−k H
T +R). (25)

Setting the derivative equal to 0,

−2(HP̂−k )T + 2Kk(HP̂−k H
T +R) = 0. (26)

Kk = (HP̂−k )T (HP̂−k H
T +R)−1. (27)

Kk = P̂−k H
T (HP̂−k H

T +R)−1. (28)

Using this optimal Kalman gain, P̂k simplifies further.

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T +R)KT
k . (29)

P̂k = P̂−k − P̂
−
KH

T (HP̂−k H
T +R)−1HP̂−k −

P̂−k H
T (P̂−KH

T (HP̂−k H
T +R)−1))T +

P̂−KH
T (HP̂−k H

T +R)−1(HP̂−k H
T +R)(P̂−k H

T (HP̂−k H
T +R)−1)T (30)

P̂k = P̂−k − P̂
−
k H

T (HP̂−k H
T +R)−1HP̂−k (31)

P̂k = (I −KkH)P̂−k . (32)

The algorithm can be summarized as follows. For k = 1, 2, . . .,

1. Let x̂−k = Ax̂k−1 +Buk−1.

2. Let P̂−k = AP̂k−1A
T +Q.

3. Let Kk = P̂−k H
T (HP̂−k H

T +R)−1.

4. Let x̂k = x̂−k +Kk(zk −Hx̂−k ).

5. Let P̂k = (I −KkH)P̂−k .
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In practice, we may not have an observation at every time step. In that case,
we can use predictions at each time step and compute updates steps whenever
observations become available.

Example 2 In this example, we’ll consider a system governed by the second
order differential equation

y′′(t) + 0.01y′(t) + y(t) = sin(2t) (33)

with the initial conditions y(0) = 0.1, y′(0) = 0.5.
We must first use a standard trick to convert this second order ordinary

differential equation into a system of two first order differential equations. Let

x1(t) = y(t) (34)

and
x2(t) = y′(t). (35)

The relation between x1(t) and x2(t) is

x′1(t) = x2(t). (36)

Also, (33) becomes

x′2(t) = −x1(t)− 0.01x2(t) + sin(2t). (37)

This system of two first order equations can be written as

x′(t) = Ax(t) +Bu(t) (38)

where

A =
[

0 1
−1 −0.01

]
, (39)

B =
[

1 0
0 1

]
, (40)

and

u(t) =
[

0
sin(2t)

]
. (41)

This system of differential equations will be discretized using (8) with time
steps of ∆t = 0.01. At each time step, the state vector will be randomly
perturbed with N(0, Q), noise, where

Q =
[

0.0005 0.0
0.0 0.0005

]
. (42)

We will observe x1(t) once per second (every 100 time steps.) Thus

H =
[

1 0
]
. (43)
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Our observations will have a variance of 0.0005.
For the initial conditions we will begin with the estimate

x̂0 =
[

0
0

]
(44)

and covariance

P̂0 =
[

0.5 0.0
0.0 0.5

]
. (45)

Figure 1 shows the true state of the system. Figure 2 shows the estimate
of the system state using only prediction steps. The dotted lines in this plot
are one standard-deviation error bars. The initial uncertainty in x(t) is due to
uncertainty in the initial conditions. Later, this uncertainty increases due to
the effect of noise on the state of the system.

Figure 3 shows the Kalman filter estimates including observations of x1(t)
once per second. Although the initial uncertainty is quite high, the Kalman
filter quickly “learns” the actual state of the system and then tracks it quite
closely. Each circle on the x1(t) plot represents an observation of the system.
Notice that when an observation is obtained the Kalman estimate “jumps” to
incorporate the new observation. Also note that although we only observe x1(t),
the Kalman filter also manages to track x2(t). This happens because the system
of differential equations connects x1(t) and x2(t). Figure 4 shows the true state
of the system and the Kalman filter estimate on the same plot.

Figure 5 shows the differences between the system state and the simple pre-
diction. Figure 6 shows the difference between the system state and the Kalman
prediction. Notice that the Kalman filter produced much tighter estimates of
both x1(t) and x2(t) using only a few observations of x1(t).
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Figure 1: Plot of the system state x(t).
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Figure 2: Estimate of x(t) using prediction steps only.
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Figure 3: Kalman estimates of the x1(t) and x2(t).

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

t

x 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

t

x 2(t
)

 

 
xtrue
xpredk

Figure 4: Kalman estimate versus the true values of x1(t) and x2(t).
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Figure 5: Difference between the system state and prediction estimate.
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Figure 6: Difference between the system state and Kalman estimate.
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The Extended Kalman Filter

The Extended Kalman Filter (EKF) extends the Kalman filtering concept to
problems with nonlinear dynamics. Our new equation for the time evolution of
the system state will be of the form

xk = f(xk−1, uk−1, wk−1) (46)

where wk−1 is a random perturbation of the system. This time, we’ll assume
that wk−1 has a multivariate normal distribution with mean 0 and covariance
matrix Qk−1. That is, the covariance is allowed to be time dependent.

Our new measurement model will be

zk = h(xk, vk) (47)

where vk is a multivariate normal N(0, Rk) noise vector.
The prediction step is a straight forward generalization of what we have

previously done in the Kalman filter.

x̂−k = f(x̂k−1, uk−1, 0). (48)

We’ll also introduce a new notation for the predicted observation

ẑ−k = h(x̂−k , 0). (49)

In general, for a nonlinear function f , x̂−k will not have a multivariate normal
distribution. However, we can reasonably hope that f(x, u, w) will be approxi-
mately linear for relatively small changes in x and w, so that x̂−k will be at least
approximately normally distributed.

We linearize f(x, u, w) around (x̂k−1, uk−1, 0) as

f(x, u, w) = f(x̂k−1, uk−1, 0) +Ak−1(x− x̂k−1) +Wk−1(w − 0) (50)

where A and W are matrices of partial derivatives of f with respect to x and w.
Note that since uk−1 is assumed to be known exactly, we don’t need to linearize
in the u variable. The entries in Ak−1 and Wk−1 are given by

Ai,j,k−1 =
∂fi(x̂k−1, uk−1, 0)

∂xj
. (51)

Wi,j,k−1 =
∂fi(x̂k−1, uk−1, 0)

∂wj
. (52)

Using this linearization, we end up with an approximate covariance matrix for
x̂−k ,

P̂−k = Ak−1P̂k−1A
T
k−1 +Wk−1Qk−1W

T
k−1. (53)

Similarly, we can linearize h(). Let

Hi,j,k =
∂hi(x̂−k , 0)

∂xj
. (54)
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Vi,j,k =
∂hi(x̂−k , 0)

∂vj
. (55)

Now, let
ê−xk

= xk − x̂−k (56)

and
ê−zk

= zk − ẑ−k . (57)

We don’t actually know xk, but we do expect xk− x̂−k to be relatively small.
Thus we can use our linearization of f() to derive an approximation for ê−xk

.

ê−xk
= f(xk−1, uk−1, wk−1)− f(x̂k−1, uk−1, 0). (58)

By the linearization,

ê−xk
≈ Ak−1(xk−1 − x̂k−1) + εk (59)

where εk accounts for the effect of the random wk−1. The distribution of εk is
N(0,Wk−1Qk−1W

T
k−1). Similarly,

ê−zk
= h(xk, vk)− h(x̂−k , 0). (60)

By the linearization this is approximately

ê−zk
≈ Hê−xk

+ ηk (61)

where ηk has an N(0, VkRkV
T
k ) distribution.

Ideally, we could update x̂−k to get xk by

xk = x̂−k + ê−xk
. (62)

Of course, we don’t know ê−xk
, but we can estimate it. Let

êxk
= Kk(zk − ẑ−k ) (63)

where Kk is a Kalman gain factor to be determined. Then let

x̂k = x̂−k + êxk
. (64)

By a derivation similar to our earlier derivation of the optimal Kalman gain for
the linear Kalman filter, it can be shown that the optimal Kalman gain for the
EKF is

Kk = P̂−k H
T
k (HkP̂

−
k H

T
k + VkRkV

T
k )−1. (65)

Using this optimal Kalman gain, the covariance matrix for the updated estimate
x̂k is

P̂k = (I −KkHk)P̂−k . (66)
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The EKF algorithm can be summarized as follows. For k = 1, 2, . . .,

1. Let x̂−k = f(x̂k−1, uk−1, 0).

2. Let P̂−k = Ak−1P̂k−1A
T
k−1 +Wk−1Qk−1W

T
k−1.

3. Let Kk = P̂−k H
T
k (HkP̂

−
k H

T
k + VkRkV

T
k )−1.

4. Let x̂k = x̂−k +Kk(zk − h(x̂−k , 0))).

5. Let P̂k = (I −KkHk)P̂−k .

The Ensemble Kalman Filter

A fundamental problem with the EKF is that we must compute the partial
derivatives of f() so that they’re available for computing the covariance matrix
in the prediction step. An alternative approach involves using Monte Carlo
simulation. In the Ensemble Kalman Filter (EnKF), we generate a collection
of state variables according to the MVN distribution and time k = 0, and then
follow the evolution of this ensemble through time.

In the following, we’ll assume that our system state evolves according to

xk = f(xk−1, uk−1, wk−1) (67)

and that our observation model is

zk = Hxk + vk. (68)

As in the extended Kalman filter, we predict xk with

x̂−k = f(x̂k−1, uk−1, 0). (69)

Instead of using partial derivatives of f() to estimate P̂−k , we’ll use Monte
Carlo simulation. Suppose that we’re given a collection of random state vectors
at time k − 1, x̂i

k−1, i = 1, 2, . . . ,m. For each random state vector, we can
generate a random N(0, Qk−1) vector wi

k−1, and then update the vector with

x̂i,−
k = f(x̂i

k−1, uk−1, w
i
k−1), i = 1, 2, . . . ,m. (70)

Now, we can estimate the covariance matrix P̂−k from the vectors x̂i,−
k . Let C

be this estimate of P̂−k .
At time k, we obtain a new observation zk, which is assumed to include

MVN N(0, R) noise. By adding N(0, R) noise to zk, we obtain an ensemble of
simulated observations, zi

k, i = 1, 2, . . . ,m.
Next, we update our ensemble of solutions with

x̂i
k = x̂i,−

k + CHT (HCHT +R)−1(zi
k −Hx̂

i,−
k ). (71)

This is simply the Kalman filter update, but using the estimated covariance
matrix C, and the Monte Carlo simulated observations zi

k. Finally, we can use
the ensemble of states x̂i

k, i = 1, 2, . . . ,m to estimate the mean state, x̂k, and
the covariance P̂k.
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