Notes on Kalman Filtering

Brian Borchers and Rick Aster

November 7, 2011

Introduction

Data Assimilation is the problem of merging model predictions with actual mea-
surements of a system to produce an optimal estimate of the current state of
the system and/or predictions of the future state of the system. For exam-
ple, weather forecasters run massive computational models that predict winds,
temperature, etc. As time progresses, it is important to incorporate available
weather observations into the mathematical model. Since these weather obser-
vations are noisy, the problem of incorporating the observations into the model
is inherently statistical in nature.

Data Assimilation is becoming a very hot topic in many areas of science, in-
cluding atmospheric physics, oceanography, and hydrology. In the next few lec-
tures, we’ll introduce Kalman filtering, which is one of the simplest approaches
to data assimilation. The Kalman filter was introduced in a 1960 paper by R.
E. Kalman.

The Model Of The System

Consider a discrete time dynamical system governed by the equation
zp = Axp_1 + Bugp_1 + wi_1. (1)

Here, zy, ur_1, and wy_1 are vectors and the subscripts refer to the time steps
rather than indexing elements of the vectors. The state of the system at time
k is given by the vector zy. Deterministic inputs to the system at time k — 1
are given by ux_1. Random noise affecting the system at time k — 1 is given
by wg_1. We’ll assume that wg_1 has a multivariate normal distribution with
mean 0 and covariance matrix Q).

We’ll obtain a vector of measurements zj, at time k, where 2 is given by

2z, = Hxyp + v, (2)

Here vy, represents random noise in the observation zp. We’ll assume that vy is
normally distributed with mean 0 and covariance matrix R.

The matrices A, B, H, @, and R are all assumed to be known, although the
Kalman filter can be extended to simultaneously estimate these matrices along
with ;. For now, our goal is to estimate xj and predict zpy1, T42, ..., as
accurately as possible given 21, 2o, ..., 2.

The estimate that we will obtain will come in the form of a multivariate
normal distribution with a specified mean) and covariance matrix I:’k. We
will want to measure the “tightness” of this multivariate normal distribution.
A convenient measure of the tightness of an MVN distribution with covariance
matrix C' is

trace(C) = 0171 + 0272 + ...+ Cn,n~ (3)

trace(C) = Var(X1) + Var(Xs) + ... + Var(X,). (4)

Example 1 For example, x; might be a six element vector containing the
position (3 coordinates) and velocity (3 coordinates) of an aircraft at time k.
The vector ug_1 might represent control inputs (thrust, elevator, rudder, etc.)
to the aircraft at time k — 1, and wy_; might represent the effects of turbulence
on the aircraft. We may be using a very simple radar to observe the aircraft, so
that we get measurements of the position, z, but not the velocity of the aircraft
at each moment in time. These measurements of the aircraft’s position might
also be noisy.

In many cases, the system that we’re interested in is described by a system
of differential equations in continuous time:

z'(t) = Ax(t) + Bu(t). (5)

We can discretize this system of equations using time steps of length At, to get
x(t + At) = z(t) + At/ (¢). (6)

x(t+ At) = x(t) + At(Az(t) + Bu(t)). (7)

Letting x) = x(t + At) and xx_1 = x(¢), we get
T = (I+ AtA){Ek,1 + AtBug_1. (8)

In many practical applications of Kalman filtering the mathematical model
of the system consists of an even more complicated system of partial differential
equations. Such systems are commonly discretized using finite difference or
finite element methods. Rather than diving into the details of the numerical
analysis used in discretizing PDE’s, we will simply assume that our problem has
been cast in the form of (1).

The Kalman Filter

We have two sources of information that can help us in estimating the state of
the system at time k. First, we can use the equations that describe the dynamics
of the system. Substituting wi_; = 0 into (1), we might reasonably estimate

Ty = Axp_1 + Bug_1 (9)

A second useful source of information is our observation zx. We might pick Zj
o as to minimize ||z — Hxg||. There’s an obvious trade-off between these two
methods of estimating zj. The Kalman filter produces a weighted combina-
tion of these two estimates that is optimal in the sense that it minimizes the
uncertainty of the resulting estimate.

We’ll begin the estimation process with an initial guess for the state of
the system at time 0. Since we want to keep track of the uncertainty in our
estimates, we’ll have to specify the uncertainty in our initial guess. We describe
this by using a multivariate normal distribution

zo ~ N (o, Py). (10)

In the prediction step, we are given an estimate Zp_; of the state of the
system at time k£ — 1, with associated covariance matrix P,_1. We substitute
the mean value of wg_; = 0 into (1) to obtain the estimate

T, = AZp_1+ Bup_1. (11)

The minus superscript is used to distinguish this estimate from the final estimate
that we get after including the observation zi. The covariance of our new
estimate is

P = Cou(zy). (12)
pk_ = Cov(AZg—1 + Bug—1 + wg—1). (13)

The Buy_; term is not random, so its covariance is zero. The covariance of
wy_1 is Q. The covariance of AZj_; is A Cov(r_1)AT. Thus

P; = ACou(ip-1)AT + Q. (14)
Py = AP, AT + Q. (15)
We could simply repeat this process for z1, x2, If no observations of the

system are available, that would be an appropriate way to estimate the system
state.
In the update step, we modify the prediction estimate to include the obser-
vation.
Ty =T —i—Kk(Zk—H,@;) (16)
= — KkH)éi'; + Ky zg. (17)
Here the factor K} is called the Kalman gain. It adjusts the relative influence
of 2z, and £, . We will soon show that

Ky =P HY(HP H + R)™* (18)

is optimal in the sense that it minimizes the trace of P,
The covariance of our updated estimate is

Py, = Cou(@y,). (19)

Py = Cov((I — KpH)iy, + Kizi). (20)
Py = (I - KxH)P, (I — K .H)T + KpCov(z) K} (21)
Since Cov(z) = R,
Py = (I - KyH)P_ (I — K, H)" + K RK[. (22)
This simplifies to
Py =P, — K HP, — P HTK] + Ky(HP; HO) K] + KyRKE. (23)
P, =P, — K HP, — P, H'K] + Ky(HP; HT + R)K} . (24)

We want to minimize the trace of Py. Using vector calculus, it can be shown
that

P R R
Otrace(P) _ —2(HP,)T + 2K, (HP, H” + R). (25)
0K,
Setting the derivative equal to 0,
—2(HP,)" + 2K, (HP; H” + R) = 0. (26)
Ky = (HP)'(HP;H" + R)~. (27)
Ky =P H'(HP;H" + R)~". (28)

Using this optimal Kalman gain, b, simplifies further.

P.=P —KyHP — P H'K! + Ky(HP_ H" + R) K. 29
k k k k k k

Py =P, — PgHY(HP H" + R)"'HP, —
P HY(PHT(HP; HT + R)™1)T+
PeHY(HP, HT + RN (HP, H + R) (P H'(HP; HT + R)™1)T (30)
Py=P; - P HY'(HP H" + R)"'HP, (31)
Py =(I- KyH)P, . (32)
The algorithm can be summarized as follows. For k=1, 2, ...,
1. Let &, = AZp_1 + Bug_1.
2. Let P = AP, AT + Q.
3. Let Ky = P, HT(HP HT + R)~".
4. Let &y = 45, + Ki(z — Hap).

5. Let P, = (I — KxH) P, .

In practice, we may not have an observation at every time step. In that case,
we can use predictions at each time step and compute updates steps whenever
observations become available.

Example 2 In this example, we’ll consider a system governed by the second
order differential equation

y"(t) + 0.01y'(t) + y(t) = sin(2t) (33)
with the initial conditions y(0) = 0.1, ¢'(0) = 0.5.

We must first use a standard trick to convert this second order ordinary
differential equation into a system of two first order differential equations. Let

z1(t) = y(t) (34)

and
z2(t) = y'(1). (35)

The relation between x4 (t) and x2(¢) is
2 (t) = 22(t). (36)
Also, (33) becomes
xh(t) = —x1(t) — 0.01z2(t) + sin(2t). (37)

This system of two first order equations can be written as

2'(t) = Az(t) + Bu(t) (38)
where 0 .
A= { -1 —0.01 } ’ (39)
B= { é (1) } , (40)
and

u(t) = { Sin(%()) } . (41)

This system of differential equations will be discretized using (8) with time
steps of At = 0.01. At each time step, the state vector will be randomly
perturbed with N (0, @), noise, where

0.0005 0.0
@= { 0.0 0.0005] ' (42)
We will observe 1 () once per second (every 100 time steps.) Thus
H=[1 0]. (43)

Our observations will have a variance of 0.0005.
For the initial conditions we will begin with the estimate

e[

and covariance

Py — [0.5 0.0] (45)

0.0 0.5

Figure 1 shows the true state of the system. Figure 2 shows the estimate
of the system state using only prediction steps. The dotted lines in this plot
are one standard-deviation error bars. The initial uncertainty in z(t) is due to
uncertainty in the initial conditions. Later, this uncertainty increases due to
the effect of noise on the state of the system.

Figure 3 shows the Kalman filter estimates including observations of x; (t)
once per second. Although the initial uncertainty is quite high, the Kalman
filter quickly “learns” the actual state of the system and then tracks it quite
closely. Each circle on the x;(t) plot represents an observation of the system.
Notice that when an observation is obtained the Kalman estimate “jumps” to
incorporate the new observation. Also note that although we only observe x1(t),
the Kalman filter also manages to track x2(t). This happens because the system
of differential equations connects x4 (t) and z2(t). Figure 4 shows the true state
of the system and the Kalman filter estimate on the same plot.

Figure 5 shows the differences between the system state and the simple pre-
diction. Figure 6 shows the difference between the system state and the Kalman
prediction. Notice that the Kalman filter produced much tighter estimates of
both x1(t) and x2(t) using only a few observations of x1(t).

X0
o
T

Figure 1: Plot of the system state x(t).

45 50

0 5 10 15 20 25 30 35 40 45 50

Figure 2: Estimate of z(t) using prediction steps only.

xpredkz(t)

Figure 3: Kalman estimates of the z1(¢) and za(t).

xtrue
— — —xpredk

Figure 4: Kalman

50
t

estimate versus the true values of 1 (t) and zo(¢).

1 T
_ 05f
g,
<
N
g o
=
o
5
g
-0.5
a ‘ ‘
0 5 10
1
_ o5p
g or
°
3
s
g
-0.5
-1 L L L
0 5 10 15

Figure 5: Difference between the system state and prediction estimate.

xpredkl(t)Axl(t)

40 45 50

Figure 6: Difference between the system state and Kalman estimate.

The Extended Kalman Filter

The Extended Kalman Filter (EKF) extends the Kalman filtering concept to
problems with nonlinear dynamics. Our new equation for the time evolution of
the system state will be of the form

oy = f(Th—1,Uk—1, Wr—1) (46)

where wg_1 is a random perturbation of the system. This time, we’ll assume
that wg_1 has a multivariate normal distribution with mean 0 and covariance
matrix Qx_1. That is, the covariance is allowed to be time dependent.

Our new measurement model will be

2k = h(wg, vx) (47)

where vy, is a multivariate normal N (0, Ry) noise vector.
The prediction step is a straight forward generalization of what we have
previously done in the Kalman filter.

Lf?; = f(ii'kfl,ukfl,()). (48)
We'll also introduce a new notation for the predicted observation
2, = h(z,,0). (49)

In general, for a nonlinear function f, ,” will not have a multivariate normal
distribution. However, we can reasonably hope that f(x,u,w) will be approxi-
mately linear for relatively small changes in x and w, so that z,, will be at least
approximately normally distributed.

We linearize f(x,u,w) around (Zx—_1,ur—_1,0) as

[z, u,w) = f(Zr-1,ur-1,0) + Apg—1(x — Tp—1) + Wy—1(w - 0) (50)

where A and W are matrices of partial derivatives of f with respect to x and w.
Note that since ug_1 is assumed to be known exactly, we don’t need to linearize
in the u variable. The entries in Ax_7 and Wj_; are given by

Ofi(&r—1,up—1,0)

j
0 i Tp_ s U — ,0
Wijk—1= fil kalwk L) (52)
j

Using this linearization, we end up with an approximate covariance matrix for
Z,,
Pk_ = Ak—lpk—lAgfl + Wk_le_kaT,l. (53)

Similarly, we can linearize h(). Let

Ohi(i ,0)

Hijp=
gk
3xj

(54)

10

Ohi(dy ,0)

Vijk = (55)
J 3vj
Now, let
é;k =X — .i']; (56)
and
€ = 2k — 2y - (57)

We don’t actually know xy, but we do expect x; — 2, to be relatively small.
Thus we can use our linearization of f() to derive an approximation for é; .

€pp = f@r—1,up—1,wr—1) — f(Zr—1,ux—1,0). (58)
By the linearization,
by = Ap_1(Tp—1 — Tp_1) + e (59)

where ¢, accounts for the effect of the random wy_;. The distribution of ¢ is
N0, Wy—1Qpr—1W}L_,). Similarly,

¢ = h(wk,ve) — h(iy ,0). (60)
By the linearization this is approximately
é;k ~ Hé;k + Nk (61)

where 7y, has an N(0, VR, V,I) distribution.
Ideally, we could update £, to get xy by

Tp =T, +é . (62)
Of course, we don’t know ¢, , but we can estimate it. Let
ear, = Kilor —) (63)
where K}, is a Kalman gain factor to be determined. Then let
Tp = T, + Eyy,- (64)

By a derivation similar to our earlier derivation of the optimal Kalman gain for
the linear Kalman filter, it can be shown that the optimal Kalman gain for the
EKF is
Ky = Py HI'(HyP7 HE + Vi R, VE) 7 (65)
Using this optimal Kalman gain, the covariance matrix for the updated estimate
f]c is . R
P, = (I — Kka)P]; (66)

11

The EKF algorithm can be summarized as follows. For k =1, 2, ...,
1. Let &, = f(&r—1,ur—1,0).

2. Let Py = Aj_1Pu1 AT+ Wil 1 Qe WL

3. Let Ky = P, HF (H, Py HE + ViR, V;T) L

4. Let 2, = T, + Ki(2, — h(2,,0))).

5. Let Py = (I — KxHy) Py

The Ensemble Kalman Filter

A fundamental problem with the EKF is that we must compute the partial
derivatives of f() so that they’re available for computing the covariance matrix
in the prediction step. An alternative approach involves using Monte Carlo
simulation. In the Ensemble Kalman Filter (EnKF), we generate a collection
of state variables according to the MVN distribution and time k& = 0, and then
follow the evolution of this ensemble through time.

In the following, we’ll assume that our system state evolves according to

rp = f(Th—1,Uk—1,Wk—1) (67)
and that our observation model is
2z = Hxyp + v, (68)
As in the extended Kalman filter, we predict x; with
2 = f(@r—1,uk—1,0). (69)

Instead of using partial derivatives of f() to estimate Iak_ , we’ll use Monte
Carlo simulation. Suppose that we’re given a collection of random state vectors
at time k£ — 1, 53};_17 i = 1,2,...,m. For each random state vector, we can
generate a random N (0, Q1) vector w};_l, and then update the vector with

AT, —

i = f(& | up_1,wi), i=1,2,...,m. (70)

Now, we can estimate the covariance matrix P, from the vectors #; . Let C

be this estimate of }5,;
At time k, we obtain a new observation zi, which is assumed to include
MVN N (0, R) noise. By adding N (0, R) noise to zj, we obtain an ensemble of

simulated observations, z;, ¢ =1,2,...,m.
Next, we update our ensemble of solutions with
@i =&y +CHT(HCHT + R)™ (2}, — Hi}"). (71)

This is simply the Kalman filter update, but using the estimated covariance
matrix C, and the Monte Carlo simulated observations z;. Finally, we can use
the ensemble of states 27, ¢ = 1,2,...,m to estimate the mean state, £, and

the covariance P.

12

