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Introduction to Linear Systems, Part 2: The Fre-
quency Domain

In Chapter 1, we examined signals in linear systems using time as the indepen-
dent variable. We now address the fundamentals of Fourier theory, where the
independent variable is frequency. The basic insight that leads to Fourier The-
ory is that linear systems, being subject to superposition and scaling, can be
analyzed in terms of their frequency response, that is, in terms of their response
to pure sinusoidal or exponential inputs.

Consider the response, g(t) of a linear system with impulse response φ(t)
to a unit-amplitude, complex input of frequency f , eı2πft. The time domain
response of any such system is given by the convolution of the input function
and the impulse response

g(t) =

∫ ∞
−∞

φ(τ)eı2πf(t−τ) dτ . (1)

Because a time shift in the argument of an exponential is mathematically equiv-
alent to multiplication by another exponential

g(t) = eı2πft
∫ ∞
−∞

φ(τ)e−ı2πfτ dτ = eı2πft · Φ(f) . (2)

(2) shows that the response of any linear system to a complex sinusoidal
input is unchanged in functional form (a complex sinusoidal signal of the same
frequency) and is only modified in amplitude and phase (by the complex factor
Φ(f)). The frequency, f , in (2) is arbitrary. Thus, if an arbitrary input ψ(t)
is decomposed into a sum of sinusoidal components, then, because of superpo-
sition, the relationship between ψ(t) and g(t) = ψ(t) ∗ φ(t) can be completely
characterized by Φ(f), the transfer function of the system. Φ(f) is the Fourier
transform (or spectrum) of the impulse response of the system, φ(t).

There are several conventions that are variously used in defining the Fourier
transform. The definitions that we will use are those most commonly encoun-
tered in geophysics

Φ(f) = F [φ(t)] =

∫ ∞
−∞

φ(t)e−ı2πftdt (3)
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φ(t) = F−1[Φ(f)] =

∫ ∞
−∞

Φ(f)eı2πftdf (4)

where F denotes the Fourier transform operation, and F−1 denotes the inverse
Fourier transform operation.

Be aware that in some other areas of physics and in exploration geophysics
the sign convention on the complex exponentials of (5) and (6) is reversed, so
that the forward transform has a plus sign in the exponent and the inverse
transform has a minus sign in the exponent. This will of course not affect any
fundamentals of the analysis, only the convention by which phase is measured.
An alternative common formulation uses the radian frequency ω = 2πf rather
than f to characterize the frequency. This introduces a factor of 2π into the
scaling of the transform pair (as can be seen by a simple change of variables
applied to the above pair) to produce

Φ(ω) = F [φ(t)] =

∫ ∞
−∞

φ(t)e−ıωtdt (5)

φ(t) =
1

2π
F−1[Φ(ω)] =

∫ ∞
−∞

Φ(ω)eıωtdω . (6)

We’ll occasionally employ the above transform pair here in cases when it
saves us from having to write a large number of 2π factors in our expressions.

Differential equations and Fourier theory. A particularly tractable and not
uncommon situation in the physical sciences occurs when a system relating
two time functions, x(t) and y(t), is characterizable by a linear homogeneous
differential equation with constant coefficients. For functions of a single variable,
t, the general form of such a differential equation is

an
dny

dtn
+an−1

dn−1y

dtn−1
+· · ·+a1

dy

dt
+a0y = bm

dmx

dtm
+bm−1

dm−1x

dtm−1
+· · ·+b1

dx

dt
+b0x .

(7)
As none of the coefficients (the ai and bi) depend on t, (7) describes a time-
invariant system. Because all of the terms are linear (there are no powers or
other nonlinear functions of x, y, or their derivatives), it is also a linear system,
obeying superposition and scaling (note that differentiation itself is a linear
operation). To obtain an expression for the transfer function corresponding to
(7), substitute an exponential unit amplitude exponential of arbitrary frequency
for the input, x(t), and output, y(t), so that

x(t) = eı2πft (8)

and, as must be the case for any linear, time-invariant system (2),

y(t) = Φ(f)eı2πft . (9)

Substituting (8) and (9) into (7), dividing both sides by eı2πft, and solving for
Φ(f) produces the system transfer function, which is a ratio of two complex
polynomials in f .

Φ(f) =

∑m
j=0 bj(2πıf)j∑n
k=0 ak(2πıf)k

(10)
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The values of f where the numerator is zero are referred to as zeros of Φ(f), as
the response is zero at this frequency, regardless of the amplitude of the input
signal. Conversely, frequencies for which the denominator is zero are called
poles, as the response becomes very large at these frequencies. Note that we
don’t have to worry too much about any mysteries regarding eı2πft being a
complex number, as

eı2πft = cos(2πft) + ı sin(2πft) (11)

and we could almost have just as easily chosen to propagate the real or the imag-
inary part of the input signal alone through the system to reach an equivalent
conclusion; in this case an input (cosine, sine) signal simply produces a scaled
output (cosine, sin) with a phase shift. Note that frequencies for which we have
zero or infinite response may be imaginary or complex, in which case the cor-
responding input function, (8) may be an increasing or decreasing exponential,
or an increasing or decreasing exponentially damped sinusoid, respectively.

Example: Response of a seismometer. As an important example of such a
linear system from geophysical instrumentation, consider (Figure 1) a damped
vertical harmonic oscillator with a rigid case that is fixed to the Earth. A mass,
M , is supported by a spring, in parallel with a damping or dashpot component
that produces Newtonian damping (i.e., a retarding force that is proportional
to velocity). Intuitively, it you may see that the motion of the mass relative to
the Earth will provide some sort of representation of the true vertical ground
motion. For example, if the mass were completely decoupled, so that it remained
stationary in its inertial reference frame while the Earth moved, then the motion
of the mass relative to its case (which is, recall, rigidly attached to the Earth)
would be exactly the negative of the ground motion).

The differential equation of motion for the mass in such a seismometer can
be derived using Newton’s second law by equating the (upward) forces of the
spring and damper acting on the mass with the (upward) acceleration times the
mass, i.e.,

Fup = Maup (12)

or

−Ddξ(t)
dt

+K[ξ0 − ξ(t)] = M
d2

dt2
[ξ(t) + u(t)] (13)

which gives rise to the homogeneous differential equation

M
d2

dt2
[ξ(t) + u(t)] +D

dξ(t)

dt
+K[ξ(t)− ξ0] = 0 . (14)

Here, u is the motion of the Earth (up positive), ξ is the position of the mass,
which has an equilibrium position in the Earth’s gravity field of ξ0 (both mea-
sured up positive relative to the surface of the Earth), M is the mass of the
inertial component, D is the dashpot constant (units of force per velocity), and
K is the spring constant (units of force per distance).
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Figure 1: A Mechanical Seismometer

We can simplify (14) somewhat by writing the equation of motion for the
mass in an upward positive coordinate system (z) where z = 0 is the equilibrium
position in the Earth’s gravitational field, so that z(t) = ξ(t)− ξ0. This gives

z̈ + 2ζż + ω2
sz = −ü (15)

where the damping coefficient is

2ζ = D/M (16)

and
ωs = (K/M)1/2 (17)

is the angular undamped or natural frequency of the system. (15) is a linear
homogeneous equation where the input, u, is the displacement of the Earth, and
the output, z, is the deviation of the mass from its equilibrium position, relative
to the seismometer frame.

Using (10), we now write the transfer function of the seismometer system
(seismometer displacement response to a displacement of the Earth)

Φ(ω) =
z(ω)

u(ω)
=

−(ıω)2

(ıω)2 + 2ζ(ıω) + ω2
s

=
−ω2

ω2 − 2ıζω − ω2
s

(18)

or, in terms of amplitude and phase

|Φ(ω)| = ω2

[(ω2 − ω2
s)2 + 4ζ2ω2]1/2

(19)
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θ = arg[Φ(ω)] = π − tan−1
−2ζω

ω2 − ω2
s

. (20)

At high frequencies (ω � ωs), |Φ(ω)| ≈ 1, and θ ≈ π, so the seismometer
displacement from equilibrium is the negative of the Earth displacement, z ≈
−u. In this case, the Earth moves so rapidly that the mass cannot follow the
motion at all, and the position of the mass relative to the frame is thus just −u.

At low frequencies (ω � ωs), |φ(ω)| ≈ ω2/ω2
s , so that response amplitude

falls off quadratically with decreased frequency. From the time domain repre-
sentation (15), we see that this response is proportional to the negative of the
Earth’s acceleration, z ∝ −ü.

The mechanical seismometer, in displacement, thus acts like a displacement
sensor at high frequencies and as an accelerometer at low frequencies. Around
ω = ωs, the system undergoes a transition between these two end-member
behaviors. One can already see why very low frequency natural frequencies
are desirable for seismometers; if ωs is very small, the true displacement of the
Earth is recoverable directly from the instrument response.

The frequency response for displacement input and displacement output
[(19) and (20)] is plotted in Figure 2 for various damping factors, where the
complex response is plotted in terms of its amplitude and phase.

In examining Figure 2, first consider the amplitude response when the damp-
ing, ζ, is small relative to ωs In this case the system exhibits a large amplitude
response for input frequencies near ωs. This occurs because the system is ex-
cited near its natural resonant frequency and there is little energy loss via the
dashpot. When ζ becomes larger than ωs, the resonance peak in the amplitude
response disappears, and the system no longer oscillates freely.

Next consider the phase response. At the undamped resonance period, the
phase is −90◦, implying that the output is phase-shifted by that amount (by
-π/2 radians) relative to the input. A cosine Earth motion of frequency ωs
would be phase shifted into a sine mass displacement. Regardless of damping,
the phase shift approaches zero at low frequencies and approaches π (a factor
of -1) at high frequencies.

Purely mechanical seismometers such as that described above were among
the first such instruments used to record accurate ground motion from earth-
quakes or other sources (they were first widely deployed starting in the 1890’s).
In most modern seismometers mass motion is sensed as a voltage which is pro-
portional to the velocity of the mass using an inductive coil and magnetic field, a
method pioneered by Prince Boris Galitzin of Russia around 1906. If the mass
motion is small, the induction circuit is linear and, as a bonus, the induced
current in the inductive coil produces an electromagnetic force that counteracts
the motion of the mass and thus provides predictable and stable damping. In
the electromagnetic seismometer the output is a voltage that is proportional to
the velocity, ż, of the mass relative to its frame (or case), and is thus the time
derivative of the displacement response. The system response of a differentiator,
which is characterized by the differential equation

y(t) = ẋ(t) , (21)
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Figure 2: Frequency Response of the Mechanical Seismometer
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can be trivially seen (10) to be just iω, so that the transfer function of an
inductive seismometer system as voltage out versus Earth displacement is

Φinduction,D(ω) =
ż(ω)

u(ω)
=

−ıω3

ω2 − 2ıζω − ω2
s

. (22)

Note that if we consider the Earth velocity, u̇ instead of the Earth displacement,
u as the input signal, the response of the inductive seismometer can be written
as

Φinduction,V (ω) =
ż(ω)

u̇(ω)
=

−ω2

ω2 − 2ıζω − ω2
s

(23)

which is identical to (18), and the same response discussion as above applies,
except that the output is in volts (practically speaking, with a gain constant
controlled by the electronics of the data logging system) for a ground velocity
input rather than output displacement for ground displacement. For this reason,
such seismometers are sometimes referred to as velocimeters.

The inverse Fourier transform of a response function Φ(ω) will give the time
domain impulse response of the system. The following conditions can be shown
to be sufficient for the existence of a Fourier transform:

1. φ(t) has only a finite number of maxima and minima in any finite time
interval. This eliminates very wiggly functions (e.g., sin(1/x)).

2. φ(t) has only a finite number of finite discontinuities in any finite time
interval. Pathological functions such as 1 where the argument is rational
and 0 where the argument is irrational won’t work.

3. φ(t) is has finite “energy”, so that∫ ∞
−∞
|φ(t)|2 dt (24)

is bounded.

There are useful functions that do not satisfy (24), yet still have Fourier
transforms (such transforms will have delta or other discontinuous functional
components). Clearly, for example, (24) is not satisfied for the displacement
transfer function (18) in the seismometer system. It is a little easier to obtain
the displacement response to an impulsive Earth acceleration (ü = δ(t)) by the
inverse Fourier transform method by solving

ä+ 2ζȧ+ ω2
sa = −δ(t) (25)

which is shown in Figure 3 (we’ll do the detailed calculation, and solve for the
displacement response to Earth displacement later).

Energy in the Time and Frequency Domains; Parseval’s theorem. The in-
verse Fourier transform says that time domain signals can be expressed as an
infinite summation of complex exponentials. We might therefore expect a simple

7



Figure 3: Response of the Mechanical Seismometer to an Acceleration Impulse
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relationship between signal energy expressed in the time and frequency domains.
Consider the total energy in a real (or complex) time domain signal, φ(t)

E =

∫ ∞
−∞

φ(t)φ∗(t) dt (26)

where the asterisk denotes complex conjugation (which has no effect if φ(t) is
real). Invoking (6), this can be written as

E =

∫ ∞
−∞

φ(t)

(∫ ∞
−∞

Φ∗(f)e−ı2πftdf

)
dt . (27)

Interchanging the order of integration, we get

E =

∫ ∞
−∞

Φ∗(f)

(∫ ∞
−∞

φ(t)e−ı2πftdt

)
df (28)

which gives

E =

∫ ∞
−∞

Φ∗(f)Φ(f) df =

∫ ∞
−∞

φ(t)φ∗(t) dt . (29)

Equation (29) is variously referred to as Parseval’s, Rayleigh’s or Plancherel’s
theorem. It says that one can evaluate the energy in a signal as either an
integral of its amplitude squared time domain representation over all time, or
as an integral across all of its amplitude squared frequency components over all
frequencies. In a more general sense, Parseval’s theorem says that the Fourier
transform is length preserving, i.e., the “size” of the function (in the size-sense
of the integral of the amplitude squared) is the same in the time and frequency
domains.

Properties of the Fourier transform. We next consider the Fourier transforms
of some canonical functions and discuss general symmetries and other properties.
An important function in time series analysis which we saw in Chapter 1 is the
boxcar function, Π(t). The Fourier transform of the boxcar function is (Figure
4)

F [Π(t)] =

∫ ∞
−∞

Π(t)e−ı2πft dt (30)

=

∫ 1/2

−1/2
e−ı2πftdt =

∫ 1/2

−1/2
cos(2πft) dt (31)

=
sin(πf)

πf
= sinc(f) . (32)

The corresponding inverse transform is thus

F−1[sinc(f)] =

∫ ∞
−∞

sinc(f)eı2πftdf = Π(t) . (33)

Taking the complex conjugate and interchanging f and t, gives us the Fourier
transform of sinc(t)

Π(f) =

∫ ∞
−∞

sinc(t)e−ı2πftdt . (34)
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Figure 4: The Boxcar-Sinc Fourier Transform Pair
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Note that (32) and (33) show, perhaps surprisingly, that we can get discontin-
uous functions by the integration smooth functions.

The Fourier transform of a delta function is easily seen to be

F [δ(t)] =

∫ ∞
−∞

δ(t)e−ı2πftdt = 1 . (35)

So a delta function can be thought of as consisting of an equal weighting of
e−ı2πft functions across all frequencies, with no relative phase shifts. Going the
other direction, from the frequency to the time domain, gives

F−1(1) =

∫ ∞
−∞

eı2πftdf = δ(t) . (36)

One way to grasp (36) is to imagine the oscillating terms of the integrand all
averaging out to zero, except exactly at t = 0, where they all have value one
and will reinforce each other, i.e.,

F−1(1) = lim
ε→0

∫ −ε
−∞

eı2πftdf +

∫ ∞
ε

eı2πft df = 2 lim
ε→0

∫ ∞
ε

cos(2πft) df . (37)

A very useful property of the Fourier transform is the shifting property ; a
simple time shift of a function only changes the phase (not the amplitude) of
its Fourier transform. Furthermore the phase shift in this case is proportional
to frequency.

Consider the Fourier transform of a general function

F [φ(t− t0)] =

∫ ∞
−∞

φ(t− t0)e−ı2πftdt . (38)

Substituting τ = t− t0 gives

=

∫ ∞
−∞

φ(τ)e−ı2πf(τ+t0) dτ = e−ı2πft0
∫ ∞
−∞

φ(τ)e−ı2πfτ dτ (39)

= e−ı2πft0Φ(f) (40)

so that time shifts in the time domain correspond to linear (with respect to
frequency) phase shifts in the frequency domain. You could also derive this
relationship by considering what phase shifts all of the complex sinusoidal com-
ponents in a general signal would have to accrue produce the same summation,
only shifted in time.

Another important relationship is time-frequency scaling or similarity, con-
sider

F [φ(αt)] =

∫ ∞
−∞

φ(αt)e−ı2πftdt . (41)

For α > 0, this gives

=
1

α

∫ ∞
−∞

φ(τ)e−ı2πfτ/αdτ =
1

α
Φ

(
f

α

)
, (42)
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using the substitution τ = αt. For α < 0, the limits on the definite integral
become reversed with the change of variable, so we get

F [φ(αt)] = − 1

α
Φ

(
f

α

)
(43)

so that, in general

F [φ(αt)] =
1

|α|
Φ

(
f

α

)
. (44)

Thus, when we “squeeze” a function in the time domain, its Fourier transform
“spreads out” in the frequency domain (and vice-versa). An extreme end mem-
ber showing this behavior is the delta function, which is an infinitely squeezed
function in the time domain with an infinitely spread out transform (the 1
function; (35)) in the frequency domain.

As you have probably already suspected, there is a duality between the time
and frequency domains, the precise relationship is

F [φ(t)] = Φ(f) (45)

F [Φ(t)] = φ(−f) . (46)

Any function can be decomposed into even and odd parts with respect to
the origin

φ(t) = φe(t) + φo(t) (47)

=
1

2
[φ(t) + φ(−t)] +

1

2
[φ(t)− φ(−t)] (48)

where φe(t) = φe(−t) and φo(t) = −φo(−t). This decomposition can be used
to show that the Fourier transform exhibits various symmetry relations.

Consider the transform of a general real and even function, φe.

F [φe(t)] =

∫ ∞
−∞

φe(t)e
−ı2πftdt (49)

=

∫ ∞
−∞

φe(t) cos(2πft) dt− ı
∫ ∞
−∞

φe(t) sin(2πft) dt (50)

= 2

∫ ∞
0

φe(t) cos(2πft)dt (51)

which is even and is purely real. Similarly, for an odd, real function, φo, the
Fourier transform

F [φo(t)] =

∫ ∞
−∞

φo(t)e
−ı2πftdt (52)

=

∫ ∞
−∞

φo(t) cos(2πft)dt− ı
∫ ∞
−∞

φo(t) sin(2πft) dt (53)

= −2ı

∫ ∞
0

φo(t) sin(2πft) dt (54)
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is odd and purely imaginary. Thus, the Fourier transform of an arbitrary real
function containing both odd and even components may be evaluated as a su-
perposition of (51) and (54), frequently referred to as the cosine transform and
sine transform, respectively. Using superposition, one can derive a list of basic
symmetry relationships between the time and frequency domains:

φ(t) Φ(f)
even even
odd odd
real, even real, even
real, odd imaginary, odd
imaginary, even imaginary, even
imaginary, odd real, odd
complex, even complex, even
complex, odd complex, odd
real, asymmetrical complex, Hermitian
imaginary, asymmetrical complex, anti-Hermitian
Hermitian real
anti-Hermitian imaginary

where a Hermitian function has an even real part and an odd imaginary part
(Φ(f) = Φ∗(−f)) and an anti-Hermitian function has an odd real part and an
even imaginary part (Φ(f) = −Φ∗(−f)).

One of the most important conceptual and practical relationships between
the time and frequency domains is embodied in the convolution theorem. Con-
sider the Fourier transform of the convolution of two functions

F [φ1(t) ∗ φ2(t)] =

∫ ∞
−∞

(∫ ∞
−∞

φ1(τ)φ2(t− τ) dτ

)
e−ı2πftdt . (55)

Reversing the order of integration gives

F [φ1(t) ∗ φ2(t)] =

∫ ∞
−∞

φ1(τ)

(∫ ∞
−∞

φ2(t− τ)e−ı2πftdt

)
dτ . (56)

However, by the time shift property (40), this is just∫ ∞
−∞

φ1(τ)Φ2(f)e−ı2πfτ dτ = Φ1(f)Φ2(f) (57)

so that convolution in the time domain corresponds to multiplication in the fre-
quency domain! Similarly, we can show that multiplication in the time domain
corresponds to convolution in the frequency domain

F [φ1(t)φ2(t)] = Φ1(f) ∗ Φ2(f) . (58)

This can be understood intuitively based on what we know about the response
of linear systems, as the response of a linear system at each frequency is just
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the complex amplitude of that frequency component in the input, times the
complex value of the response function of the system at that frequency.

Recall that time differentiation has a remarkably simple form in the fre-
quency domain

d

dt
φ(t) =

d

dt

∫ ∞
−∞

Φ(f)eı2πft df (59)

=

∫ ∞
−∞

∂

∂t
[Φ(f)eı2πft] df =

∫ ∞
−∞

2πıfΦ(f)eı2πftdf = F−1[2πıfΦ(f)] (60)

taking the Fourier transform of both sides gives:

= F [
d

dt
φ(t)] = 2πıfΦ(f) . (61)

(61) clearly shows that differentiation amplifies high frequency signal compo-
nents relative to those at low frequency, and thus belongs to a class of operators
generally referred to as high-pass filters.

The situation for integration is somewhat more complex

F
(∫ t

−∞
φ(τ)dτ

)
=

Φ(f)

2πıf
+
δ(f)

2

∫ ∞
−∞

φ(t)dt (62)

where the delta function term accommodates the contribution of a possible
non-zero mean value in φ(t). A definite integrator is thus a low-pass filter, as it
reinforces low frequencies relative to high frequencies.

(61) and (62) are helpful in computing some otherwise nonstraightforward
Fourier transforms, especially for discontinuous functions. Consider the step
function. Using (62) gives

F [H(t)] = F
(∫ t

−∞
δ(τ)dτ

)
(63)

=
1

2πıf
+
δ(f)

2
. (64)

The Fourier transform of the sign function is thus

F [2H(t)− 1] =
1

πıf
. (65)

Example: Equilibrium elastic response of a loaded, buoyantly supported crust.
The differentiation and integration properties of the Fourier transform provide
a useful method for obtaining solutions to ordinary linear integrodifferential
equations. An example of geophysical interest is the downward deflection of a
rigid plate (such as the Earth’s crust) buoyantly supported by an underlying
liquid (to first order, the mantle) to a distributed load (such as an ice cap,
volcano, or reservoir) (Figure 5.
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Figure 5: A Buoyant, Rigid Plate with a Spatial Load

The model for the small-deformation equilibrium of a deformed plate is a
linear differential equation (e.g., Banks et al., Geophys J., B51, 431-452, 1977;
Turcotte and Shubert, Geodynamics, 1982)

D54w(r) = p(r) (66)

where w(r) is the upward deflection of the plate and p(r) is the upward force
per unit area. The forcing term, p(r), arises from a topographic load, hl(r) and
from a buoyancy term due to the displaced mantle. D is the flexural rigidity,
which depends on the thickness and elastic moduli of the plate

D =
Eτ3

12(1− ν2)
(67)

where τ is the plate thickness, E is Young’s Modulus, and ν is Poisson’s Ratio.
In one spatial dimension, x, (66) becomes

D
∂4w(x)

∂x4
= p(x) . (68)

The total forcing function for a load of homogeneous density, ρl is the sum
of the load and the opposite-directed buoyant compensation of the mantle

p(x) = −ρlghl(x) +B(x) (69)

where ρl is the density of the added material, g is the acceleration of gravity,
and B(x) is the buoyancy term due to mantle material of density ρm,

B(x) = −ρmgw(x) . (70)
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We can thus write the forcing term in terms of the input load hl(x) as the linear
homogeneous differential equation

p(x) = D
∂4w(x)

∂x4
= −g(ρlhl(x) + ρmw(x)) . (71)

Now we can solve for the resulting crustal deformation, using the same method
that we utilized for the seismometer system, by separating response, w(x), and
input, hl(x) related terms, and then taking spatial Fourier transforms to obtain

[(2πık)4D + gρm]W (k) = −ρlgHl(k) (72)

where k is the spatial frequency (units of 1/length), the spatial counterpart of
f . Here, to keep our Fourier conventions unchanged from previous discussion,
note that k is just 1/λ, or the reciprocal wavelength (this is slightly different
than the common use of k as the wavenumber, which is 2π/λ, and is the spatial
equivalent of the radian frequency 2πf). Our definition of k here is utilized to
make the mathematics a bit cleaner and is entirely analogous to the convention
used in thes notes for t and f .

Note that Hl(k) is the spatial Fourier transform of the input

Hl(k) =

∫ ∞
−∞

hl(x)e−ı2πkx dx (73)

(not the step function). The (spatial) frequency domain solution is thus

W (k) = −Hl(k)

ρl
ρm

1 + 16π4k4D
gρm

. (74)

Note that (74) depends strongly on the reciprocal wavelength, k. For k large,
the response of the system becomes becomes negligible. Conversely, for k small,
the response becomes increasingly significant, reaching a maximum value of

Wmax = W (0) = −Hl(0)ρl/ρm (75)

as k → 0. Thus, for long-wavelength (small k) spatial components of the land-
scape, we say that we have a large degree of buoyant compensation, as the
topographic load is primarily supported by mantle buoyancy. At short spatial
wavelengths, on the other hand (large k), the landscape is almost totally sup-
ported by the flexural rigidity of the crust. The degree of compensation for a
spatial component of wavelength λ = 1/k, is the deflection of the system relative
to Wmax

C =
W (k)

Wmax
. (76)

We can evaluate the impulse response in the x domain by taking the inverse
Fourier transform of W (k)/Hl(k) (preferably with the assistance of a table of
integral transforms), to obtain

q(x) = F−1[W (k)/Hl(k)] (77)
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or

q(x) =
−2gρl
D

∫ ∞
0

cos(2πkx) dk

α4 + (2πk)4
(78)

where

α =
(gρm
D

)1/4
(79)

so that (e.g., Erdelyn et al., Tables of Integral Transforms, Volume 1, 1954):

q(x) =
−
√

2gρl
4α3D

e
−α|x|√

2

(
sin

α|x|√
2

+ cos
α|x|√

2

)
. (80)

This function is plotted in Figure 6 and consists a central depression and an
outboard peripheral upwarp. Note that (80) is the impulse response of this
system, as W (k) is the response for Hl(k) = 1 (74), or hl(x) = δ(x), so that any
1-d deformation of a rigid plate to a load (assumed to be infinitely extending in
the out-of plane direction) can thus be calculated by convolving q(x) and the
specific linear load distribution.

Note also that the net topography for the system in equilibrium is given by
the sum of the input load topography and the system response

h(x) = hl(x) + w(x) . (81)

Example: Time domain seismometer response. We can use Fourier tools to
obtain a result for the displacement response of the vertical seismometer in the
time domain by noting, as above, that the time domain response to an impulsive
acceleration characterized by ü = δ(t) is characterized by

ä+ 2ζȧ+ ω2
s = −δ(t) . (82)

Taking the Fourier transform of both sides and solving for a(ω), the displacement
response to an acceleration impulse input, gives the frequency domain expression

a(ω) =
1

ω2 − 2ıζω − ω2
s

(83)

Note that this is just the response of the seismometer system to the displacement
impulse (18), divided by −ω2. This is appropriate, as the input function has
been twice differentiated in the time domain and the response of a differentiator
is ıω (61).

The time domain displacement response to an acceleration impulse input is
therefore

φ(t) = F−1 (a(ω)) = F−1
(

1

ω2 − 2ıζω − ω2
s

)
(84)

=
1

2π

∫ ∞
−∞

eıωt dω

ω2 − 2ıζω − ω2
s

=
1

2π

∫ ∞
−∞

eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(85)

where
ω1 =

√
ω2
s − ζ2 (86)
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Figure 6: Response of a Buoyant, Rigid Plate to an Spatial Impulse Load
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Solving this integral is relatively straightforward using the residue theorem from
complex analysis and separation into three cases. For ωs > ζ, the system ex-
hibits a distinct resonance near ω = ωs (as we have already seen from examining
the frequency response; Figure 2) and is referred to as underdamped. In this
case, the poles of the integrand in (85) lie at (ω1, ıζ) and (−ω1, ıζ) in the com-
plex ω plane. The time domain solution is found from the residues of the two
complex poles of the integrand to be

a(t) =
−H(t)

ω1
e−ζt sin(ω1t) . (87)

When ωs < ζ, the system does not resonate, the complex poles of the integrand
lie on the positive imaginary axis of the complex ω plane, and the system is
referred to as being overdamped. ω2

1 is negative in this case, and the result is an
impulse response that is a sum of real exponentials

a(t) =
−H(t)

2(ζ2 − ω2
s)1/2

(
e−(ζ−(ζ

2−ω2
s)

1/2)t − e−(ζ+(ζ2+ω2
s)

1/2)t
)
. (88)

The case ωs = ζ is a transition between the underdamped and overdamped
case,s referred to as critically damped. Because there is a double pole, a special
case of the residue theorem must be applied to obtain the impulse response,
which is

a(t) = −H(t)te−ζt . (89)

These time domain responses are shown in Figure 3.
How do we evaluate the displacement impulse response of the system to

Earth displacement? One way is to reexpress the integrand in the inverse trans-
form of (18) to strip off a delta function

1

2π

∫ ∞
−∞

−ω2eıωt dω

ω2 − 2ıζω − ω2
s

= − 1

2π

∫ ∞
−∞

(
1 +

2ıζω + ζ2 + ω2
1

(ω − ω1 − ıζ)(ω + ω1 − ıζ)

)
eıωt dω

(90)

= −δ(t)− 1

2π

∫ ∞
−∞

(2ıζω + ζ2 + ω2
1)eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(91)

and then evaluate the remaining integral using the residue theorem. Another
way to solve (91) is to note that a(t) is the time domain solution for the system
response to an Earth acceleration of a0(t) = δ(t). Because the seismometer sys-
tem and the differentiation operation are linear, we can evaluate the seismometer
displacement response from a displacement impulse by twice differentiating a(t)
with respect to time. For the underdamped system, for example, this gives

d(t) =
d2a(t)

dt2
=

d2

dt2

(
−H(t)

ω1
e−ζt sin(ω1t)

)
(92)

= − 1

ω1

(
H′′(t)e−ζt sin(ω1t)−H′(t)ζe−ζt sin(ω1t)
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Figure 7: Displacement Output/Displacement Input Response of an Under-
damped Seismometer (ζ = 0.3ωs; ωs = 2π Hz) to a Displacement Impulse

+H′(t)e−ζtω1 cos(ω1t)−H′(t)ζe−ζt sin(ω1t)H(t)ζ2e−ζt sin(ω1t)−

+H(t)ζe−ζtω1 cos(ω1t) + H′(t)e−ζtω1 cos(ω1t)

−H(t)ζe−ζtω1 cos(ω1t)−H(t)e−ζtω2
1 sin(ω1t)

)
. (93)

Using H′(t) = δ(t) and H′′(t) = δ′(t), and noting that δ′(t) sin(ω1t)e
−ζt =

−δ(t)ω1, and δ(t)e−ζtω1 cos(ω1t) = δ(t)ω1 gives

d(t) = − 1

ω1

(
δ(t)ω1 − 2H(t)ω1ζe

−ζt cos(ω1t) + H(t)ζ2e−ζt sin(ω1t)−H(t)ω2
1e
−ζt sin(ω1t)

)
.

(94)
or

d(t) = −δ(t) + H(t)e−ζt
(
−2ζ cos(ω1t) +

(
ζ2/ω1 − ω1

)
sin(ω1t)

)
. (95)

In the limit as ωs → 0, and for an undamped (ζ = 0) seismometer, we obtain

d(t) = −δ(t) . (96)

Note that as the resonant frequency, ω1, becomes small (the resonant period
becomes large), (96) and Figure 7 approach the ideal instrument response of a
delta function (with a trivial minus sign). Because seismologists frequently want
to know the true ground displacement (its long-period asymptotic spectral level
is proportional to the seismic moment, among other reasons), seismometers with
very long natural periods are desirable and constitute the instrumental backbone
of much of modern seismology. In practice, most seismometers have an output
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that is proportional to velocity, but if they have suitably low noise at long
periods the native output can be stably integrated to produce a displacement
seismogram.

Moment-spectral relationships. As an additional perspective on the rich
mathematics of Fourier theory can be obtained by noting that all of the moments
of the time domain function, φ(t), can be expressed in terms of the behavior of
Φ(f) at the origin. Consider the nth moment

φn =

∫ ∞
−∞

tnφ(t)dt . (97)

The nth derivative of Φ(f) with respect to f is

∂nΦ(f)

∂fn
=

∫ ∞
−∞

(−2πıt)nφ(t)e−ı2πftdt (98)

so that
1

(−2πı)n

(
∂nΦ(f)

∂fn

)
=

∫ ∞
−∞

tnφ(t)e−ı2πftdt . (99)

Evaluating both sides at f = 0 gives

1

(−2πı)n

(
∂nΦ(0)

∂fn

)
=

∫ ∞
−∞

tnφ(t) dt = φn . (100)

Thus, we can now see that the 0th moment of φ(t), the total area under φ(t), is
just Φ(0). Similarly, the 1st moment of φ(t) is just∫ ∞

−∞
tφ(t)dt = − 1

2πı
(Φ′(f))f=0 (101)

where

Φ′(f) =
∂Φ(f)

∂f
(102)

so that the slope of Φ(f) at the origin is proportional to the expectated value
of t

< t >φ(t)=

∫∞
−∞ tφ(t) dt∫∞
−∞ φ(t) dt

. (103)

Time functions which which are symmetrical must therefore have Fourier trans-
forms with zero slope at f = 0 (we can also see this from the aforementioned
symmetry relations).

The 2nd moment is∫ ∞
−∞

t2φ(t)dt = − 1

4π2
(Φ′′(f))f=0 (104)

so that the curvature of Φ(f) at the origin is proportional to the second mo-
ment of φ(t). For functions which have an infinite second moment, the Fourier
transform has a cusp at the origin, for example,

F

(
1

α2 + t2

)
=
e−α|f |

2α
. (105)
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Next, consider the variance of φ(t)

σ2[φ(t)] =< (t− < t >)2 >φ(t)=

∫∞
−∞(t2 − 2t < t > + < t >2)φ(t) dt∫∞

−∞ φ(t) dt
(106)

=
1

Φ(0)

(
Φ′′(0)

(−2πı)2
− 2

Φ′(0)

−2πı
· Φ′(0)

−2πıΦ(0)
+

[Φ′(0)]2

(−2πı)2
· Φ(0)

Φ(0)2

)
(107)

=
1

4π2Φ(0)

(
−Φ′′(0) +

[Φ′(0)]2

Φ(0)

)
. (108)

What is the variance, then, of φ1(t)∗φ2(t)? Using the convolution theorem (57)
makes this straightforward, as

σ2[φ1(t) ∗ φ2(t)] =
1

4π2Φ1(0)Φ2(0)

(
−(Φ1Φ2)′′(0) +

[(Φ1Φ2)′(0)]2

Φ1(0)Φ2(0)

)
(109)

=
1

4π2

[
−Φ′′1(0)

Φ1(0)
− Φ′′2(0)

Φ2(0)
+

(
Φ′1(0)

Φ1(0)

)2

+

(
Φ′2(0)

Φ2(0)

)2
]

= σ2[φ1(t)] + σ2[φ2(t)]

(110)
which gives the important result that the variance of a convolution result is just
the sum of the variances of the two constituent functions. This is a quantitative
measure of the amount of ”spreading” that occurs in the convolution operation.
Unless one or both of the constituent functions in the convolution has zero
variance, the convolution result will always have greater variance than either of
the two input functions.

Causal systems and the Hilbert transform. An important relationship exists
between the real and imaginary parts of the Fourier transform of a real causal
function, φc(t), that is, a real function that is zero for all t < 0. To see this, we
first decompose φc(t) into its even and odd parts

φc(t) = φe(t) + φo(t) = 1/2(φc(t) + φc(−t)) + 1/2(φc(t)− φc(−t)). (111)

For the causal function, we can express φo(t) in terms of φe(t), as:

φo(t) = φe(t) (t > 0) (112)

and
φo(t) = −φe(t) (t < 0) (113)

Thus
φc(t) = [1 + sgn(t)]φe(t) . (114)

By superposition, using the frequency domain convolution theorem (58),

Φc(f) = Φe(f) + F [sgn(t)] ∗ Φe(f) , (115)

and using the Fourier transform of the sign function (65), we obtain the Fourier
transform of φc(t) explicitly in terms of the Fourier transform of φe(t)

Φc(f) = Φe(f) +
−ı
πf
∗ Φe(f) . (116)
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Note that because φe(t) is real and even, so is Φe(f). Thus, the real and imag-
inary parts of Φc(f) are related to each other by the real convolution operator
(−1/πf). This relationship can be summarized by

=[Φc(f)] =
1

π

∫ ∞
−∞

<[Φc(ξ)]

ξ − f
dξ = <[Φc(f)] ∗ −1

πf
= H[<[Φc(f)]] . (117)

and conversely,

<[Φc(f)] = − 1

π

∫ ∞
−∞

=[Φc(ξ)]

ξ − f
dξ = =[Φc(f)] ∗ 1

πf
= H−1[=[Φc(f)]] . (118)

One can confirm (118) by showing that

− 1

πf
∗ 1

πf
= δ(f) . (119)

(117) is the Hilbert transform and (118) is the inverse Hilbert transform op-
erator, acting on <[Φc(f)] and =[Φc(f)], respectively. This relationship puts
constraints on the frequency response of all physical (causal) transfer functions.
If we take the Hilbert transform of a time function, we get the associated quadra-
ture function.

H[φ(t)] = φ̂(t) . (120)

The Fourier transform of the quadrature function has the same amplitude in-
formation as the original function, but its phase is multiplied by ı sgn(f), so
that it is phase shifted by −π/2 for negative frequencies and by π/2 for positive
frequencies.

An analytic signal is one in which the real and imaginary parts are related
by the Hilbert transform (so that its Fourier transform is zero for all negative
frequencies)

A(t) = φ(t)− ıφ̂(t) . (121)

Among its other uses, the analytic time series formulation is useful in evaluating
the amplitude envelope, |A(t)|, of a function.

An important example of a causal physical system is the attenuation which
occurs when a wave propagates through a lossy medium. In seismology, such
media (which of course include all real materials) are referred to as anelastic.
The loss mechanisms need not concern us in detail here, but they include work
done at grain boundaries and other irreversible changes in the material. The
observational result of attenuation is that the energy arriving at the receiver is
less than that which one would expect from considering the effects of geometrical
spreading and other ray path effects alone.

For the idealized case of a one-dimensional plane wave propagating through
a lossless medium (e.g., an electromagnetic wave propagating through a perfect
vacuum, or a seismic wave propagating through a perfectly elastic medium) the
signal, β, at position x and time t is simply the signal at the source delayed by
the propagation time x/v

a(x, t) = a(t− x/v) (122)
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where v is the phase velocity. If the time function at the source is a(t), then we
can express the signal at an arbitrary time and place as

a(x, t) = a0(t) ∗ δ(t− t0) (123)

where t0 = x/v and a0(t) is the signal at x = 0. We are assuming here that
all frequency components propagate at a single velocity, v. Such a medium is
referred to as nondispersive. The transfer function of a lossless, nondispersive
system is therefore that of a time delay. Consider an exponential input at some
frequency, f , the output of the delay system is

a(x, f) =

∫ ∞
−∞

δ(t− t0)e−i2πft dt = e−ı2πft0 = e−ı2πfx/v . (124)

The quality factor, Q, of an oscillating system is given by

1

Q(f)
=

δE

2πE
(125)

where E is the peak energy of the system and δE is the energy lost in each
cycle, assuming Q� 1. For a propagating sinusoidal disturbance, then, the loss
relationship as a function of x is

δE =
dE

dx
λ (126)

as the field goes through one oscillation in a wavelength, λ = v/f . Combining
(126) and (125), we have

2πE

Q
=
dE

dx
λ (127)

which has a solution for propagating energy of

E(x, f) = E0(t)e−2πfx/Qv (128)

or for propagating amplitude of

b(x, f) = b0(t)e−πfx/Qv . (129)

The combined transfer function for the system is thus, by the convolution the-
orem (57)

c(x, f) = F

(
1

a0(t)
a(x, t) ∗ 1

b0(t)
b(x, t)

)
(130)

1

a0
a(x, f) · 1

b0
b(x, f) = e−ı2πfx/v · e−πfx/Qv . (131)

Taking the inverse Fourier transform of c(x, f) to obtain the impulse response
of the system, we have (taking the absolute value of f so that negative and
positive frequencies are treated equally)

c(x, t) =

∫ ∞
−∞

e2π(−|f |t0/2Q+ıf(t−t0)) df (132)
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Figure 8: Attenuated Pulses, Constant Q

=

∫ ∞
0

e2π(−ft0/2Q+ıf(t−t0)) df +

∫ 0

−∞
e2π(ft0/2Q+ıf(t−t0)) df (133)

= − 1

2π

[
1

(ıt− (ı+ 1/2Q)t0
− 1

(ıt− (ı− 1/2Q)t0

]
(134)

=
1

π

(
(t0/2Q)

(t− t0)2 + (t0/2Q)2

)
(135)

which is plotted in Figure 8
(135) is a symmetrical pulse with a maximum at t = t0. Note, however,

that c(x, t) is not zero for t < t0. This solution is therefore acausal and cannot
correspond to the behavior of the real world. Reexamining our assumptions, we
find that we must reassess both the nondispersiveness of the medium and the
constancy of Q with frequency. A moment’s reflection reveals that we cannot get
an asymmetrical, causal pulse by simply allowing Q to vary as an even function
of frequency, as the Q operator will affect positive and negative frequencies
equally and hence will not alter the symmetry of the pulse. Thus, we are led to
the conclusion that all lossy media must be dispersive!

The general transfer function for a wave propagating towards positive x is
thus a generalization of (131)

c(x, f) = e−π|f |x/Q(f)v(f) · e−ı2πfx/v(f) (136)
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where v and Q are now functions of f . We can write this as

c(x, f) = e−2πıKx (137)

if we define the complex wavenumber, K as

K =
−ı|f |

2Q(f)v(f)
+

f

v(f)
=

f

v(f)
+ ıα(f) (138)

where α(f) is the attenuation factor. The impulse response is thus the inverse
Fourier transform of this

c(x, t) =

∫ ∞
−∞

eı2π(−Kx+ft) df (139)

It can be shown (e.g., Aki and Richards, v. 1, 1980) that constraining c(x, t) to
be causal, i.e., equal to zero for t < t1 = x/v∞ places the following constraint
on the dispersive velocity function

f

v(f)
=

f

v∞
+ H[α(f)] (140)

where v∞ is the phase velocity at infinite frequency and H is the Hilbert trans-
form. Finding solutions to (140) is non-trivial, and there is no solution for con-
stant Q. If we take Q to be constant over the seismic frequency range, however,
we can arrive at the useful solution proposed by Azimi et al. (Izvestiya, Physics
of the Solid Earth, pp. 88-93, 1968), where the phase velocity is approximately
given by

1

v(f)
=

1

v∞
+

2α0

π
ln

(
1

2πfα1

)
(141)

where α0 and α1 are constants. Using

α0 ≈ (2v∞Q)−1. (142)

and
α1 = 0.01 s (143)

Figure 9 showns the results of numerically integrating (141) for various values
of Q to obtain attenuation pulses which are asymmetrical and exhibit a much
better approximation to causal behavior than the nondispersive pulses of Figure
8.

The effect of feedback on the transfer function. An important engineering
concept is the effect of feedback on the transfer function of a system. Figure
10 shows the situation where a filtered portion of an output signal, modified by
the feedback transfer function Φ2 is subtracted from the input signal (negative
feedback). The effect of feedback can alter the system response significantly and,
in the case of engineering applications, can do so in several highly desirable ways.
The net transfer function for the system of Figure 10 is
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Figure 9: Attenuated Pulses, Quasi-Causal Q

Figure 10: A linear system with feedback
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Y (ω) = (X(ω)− Φ2(ω)Y (ω))Φ1(ω) (144)

which gives

Φfb(ω) =
Y (ω)

X(ω)
=

Φ1(ω)

1 + Φ1(ω)Φ2(ω)
. (145)

For example, consider Φ1 to be the displacement transfer function for a
seismometer (18) with damping ζ and natural frequency ωs, and the feedback
component transfer function being a constant Φ2 = k. In this case the transfer
function of the fed back system is

Φfb(ω) =

−ω2

ω2−2ıζω−ω2
s

1− kω2

ω2−2ıζω−ω2
s

=
−ω2

(1− k)ω2 − 2ıζω − ω2
s

(146)

which has poles at

ωfb =
ıζ ±

√
(1− k)ω2

s − ζ2
1− k

(147)

instead of the original poles at

ω = ıζ ±
√
ω2
s − ζ2 = ıζ ± ω1 . (148)

A plot of the poles of the function in z = ıωfb complex plane (Figure 11);
see the ancillary Poles and Zeros notes), shows the system behavior as k is
increased from zero for an initially ωs = 2π rad/s underdamped seismometer
with ζ = 0.1ωs. The damping increases as k increases (the ratio (real(z)/imag(z)
increases), and the system response approaches critical damping. As the amount
of feedback is increased, the system response approaches that of a very-long
period seismometer.

Feedback is the essence of modern broadband seismometer design; the feed-
back makes it possible to build portable stable, low noise instruments with
periods T = 2π/ωfb as long as several hundred seconds. An added technical
advantage associate with feedback is, if there is enough gain in Φ2 so that (145)
becomes

Φfb(ω) ≈ y(ω)

x(ω)
≈ 1

Φ2(ω)
. (149)

This is a remarkable, and very important result, because in this case the system
response can be designed to be effectively completely dependent on the feedback
components of the system, Φ2 (which are typically electronic), rather than on
less controllable mechanical seismometer components inherent in Φ1.
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Figure 11: Poles for a seismometer with simple feedback (0.01 ≤ k ≤ 0.99).
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Figure 12: Phase and Velocity responses of some modern seismograph systems
used in PASSCAL, GSN, and other networks, c/o the Incorporated Research
Institutions for Seismology (IRIS).
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Figure 13: An STS2 seismometer.
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