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Introduction to Linear Systems, Part 1: The Time
Domain

Our primary goal in this course is to understand methods of analyzing temporal
and spatial series, especially as applied to linear systems, both in continuous and
sampled (discrete) time, and to demonstrate applications to important problems
in geophysics and other physical sciences. Much of the demonstration and home-
work in this course will be done using MATLAB. You are thus encouraged to
demo and/or refamiliarize yourself with this package at the earliest opportunity.
There is also a MATLAB primer on the class web page.

We will be mostly concerned with an important class of physical situations
that can be adequately characterized by linear systems. A linear system is a
functional transformation, ¢, which converts an input signal, x(t) to an output
signal, y(t)

y(t) = ¢lz(t)] (1)
and which follows the principles of superposition
Plar(t) + 22(t)] = ¢lr1(t)] + Pl (t)] ()
and scaling
plax(t)] = aglz(t)] (3)

where « is a scalar. Note that for positive integer values of « (3) is equivalent
to (2). (3) also implies that the output of the system is zero when there is no
input

¢l0] =0 . (4)

Many of the phenomena which we wish to study in geophysics and other
areas of science are linear. Sometimes we study very weak perturbations to a
physical system (e.g., small gravity variations, seismic disturbances far away
from the source; effects due to small fluctuations in the magnetic field) and the
linear approximation is valid because the system is not tweaked very far from
equilibrium. Common situations where linearity does not hold up are generally
instances of large amplitude (e.g., high strain elastic waves near an underground
nuclear explosion or earthquake; ocean waves breaking at a shoreline). In these



cases the physics of the problem depends strongly on the amplitude of the
perturbation, so that superposition (2) and scaling (3) do not hold (and aren’t
even acceptable approximations).

Many interesting systems are also time-invariant, i.e., the functionality of ¢
is not time dependent. In some situations, of course we intentionally look for
gradual time variations in a system response, but these usually take place on
time scales greater than the duration of our signals of interest. For example,
earthquake prediction researchers hope that this is not the case for some aspect
of evolving earth response in an incipient mainshock region.

A linear system is said to be causal if the output at time tg depends only
on values of the input for ¢ < t5. Note that all physical processes are causal
(as acausal systems propagate information backwards in time!). It is very easy
mathematically, to construct non-causal mathematical systems, and these for-
mulations may be useful in processing stored information. Also keep in mind
that physical spatial phenomena (e.g. spatial filters) need not obey “causality”
constraints.

A linear system is said to be stable if every noninfinite input produces a
noninfinite output. While obvious for systems in the physical world (which
will become non-linear in some manner rather than produce an infinite output)
stability is important consideration in mathematical models of active systems
(i.e., systems that have feedback between output and input).

The simple rules defining linear systems provide far-ranging and very useful
constraints on the mathematical characterization of the system. Most impor-
tantly, linear systems are especially tractable, and very useful analysis tools,
embodied in Fourier Theory describes their behavior complementary domains
of time and frequency.

It may at first appear remarkable that the input to output transformation
of any linear, time-invariant system can be characterized by a general integral
relation (a convolution). To derive this result, we must first define the Dirac
delta or impulse function. The delta function is discontinuous; it is nonzero only
exactly where its argument is zero, where it is infinite. One way of conceptual-
izing the delta function (and to make it mathematically rigorous) is to define it
as a limiting set of functions. One definition (e.g., Bracewell) is:

§(t) = lim 7 'TI(t/7) (5)

T—0

where 77!TI(¢t/7) is the unit-area rectangle or bozcar function of height 77!
and width 7. The limit of (5) as 7 approaches zero is an infinitesimally narrow
pulse of infinite amplitude centered on ¢ = 0, and having unit area. It can be
shown that one need not start with the rectangle function to obtain the same
functional limit, we could just as easily have considered a limit of any set of
unit-area functions (e.g., an appropriately scaled set of Gaussians). Although
the delta function may seem outrageously artificial, it actually has a plethora
of analytical uses in the theory of physical and theoretical system behavior.

The usefulness of §(¢) in our present context arises from its sifting property,
whereby it can retrieve a functional value at a particular argument from within



an integral ,
| 6~ e = st (6)

= f(to) a < to < b (7)
= 0 elsewhere (8)

for any f(t) continuous at finite ¢ = tg.
The delta function is one of several related discontinuous functions which
will be of use to us. Another is the step function

H(t—to):/t 5(r — to)dr ()

which is 0 for t < tg, 1 for ¢t > t(, and takes a discontinuous step at ¢t = ¢y3. The
step function is a useful mathematical construction for “turning on” a system
at t = to.

We can define the boxcar function, II(t), and sign function, sgn(t), in terms
of H(t)

() =H(t+1/2) —H({t - 1/2) . (10)
sgn(t) = |z—‘ =2H(t)—1. (11)

sgn(t) is also sometimes referred to as the signum function.

The impulse response of a system is the output produced by an impulse
function input

h(t) = o[6(t)] - (12)

We will now show the important result that the response of a linear, time-
invariant system to an arbitrary input is characterizable as a convolution. First,
note that any input signal, f(¢), can be written as a summation of impulse
functions because of the sifting property (8) of the delta function

ﬂwz/ffku—ﬂdT. (13)

Thus, for a general linear system characterized by an operator, ¢, the response,
g(t), to an arbitrary input, f(t), is just that operator acting on (13)

o0 = olr0l =6 | [~ st - ryar] (14)

or, from the definition of the integral,

g(t) =9 [Alirgo > fE)o(t — ma)AT (15)

n=—oo




If ¢ characterizes a linear process, we can move it inside of the summation using
the superposition (2) and scaling (3) relations, where the f(7,) become scalar
weights
= Alirgo Z fl)o[d(t — )] AT . (16)
n=—oo
If ¢ is time-invariant, then ¢[0(t — 7,,)] is just the time-lagged impulse response,
h(t — 7,) (12). Making this substitution, (16) then converges to the integral

/ F(r)h(t — 7)dr (17)

Equation (17) is the convolution integral, or simple the convolution, of f(t) and
h(t), often written in shorthand as

g(t) = f(t) x h(t) . (18)

Thus, convolution of a general input signal with an appropriate impulse re-
sponse exactly describes the corresponding output signal, and this is true for any
linear time-invariant system. An important observation regarding (17) is that
convolution is a “smearing” action where the input function is typically broad-
ened by the impulse response function. For example, a linear time-invariant
measurement apparatus which records signals from the outside world exactly
would have a delta function impulse response (so that its output, given by the
convolution of an impulse and the real world signal would exactly match the de-
sired observable). To see this, note that (13) is itself a convolution; convolution
with a delta function simply returns the input signal, shifted in time (delayed
or advanced) by the delta function’s origin time

F@)«6(t —1t9) = /_OO f(r)o(t—to—7)dr=f(t—tg) . (19)

A “perfect” recording instrument would thus have a delta function impulse
response.

As all functions can be thought of as continuous integral superpositions of
delta functions (13) it is clear that a necessary and sufficient condition for system
stability is that the impulse response be bounded for all ¢.

Convolution with a step function

/_o; fH(t —7) dr = /_O; f(r) /_; §(& — 1)de dr (20)

| soe-micar o
[ it marae= [ sie)a 22)



is the definite integral of f from ¢ = —oo up to time ¢. Thus, while convolution
with a delta function returns the system impulse response, convolution with a
step function performs the definite integration operation.

0(t) can usefully be regarded as the time derivative of H(¢). The significance
of convolution with the time derivative of 6(¢) is left as an exercise.

Another useful function for the analysis of linear systems is the sampling
function (Bracewell’s shah function)

oo

rII(rt) = Y rd(rt —n) . (23)

n=—oo

Multiplication by ITI(rt) produces a continuous time representation of a sampled

time series, with nonzero weighted impulses at ¢t = (..., —=2/r, —1/r, 0, 1/r, 2/r, ...

where the weights are the values of the original function at those points. r is
referred to as the sampling rate (the additional factor of r in (23) is required
to maintain unit-area delta functions). Sampled time series (not necessarily in
one dimension, but frequently in 2 or more dimensions, and usually uniformly
sampled in time or space) make up the vast majority of geophysical and other
types of scientific data.

Time domain interpretation of convolution. A way to develop further insight
into convolution is to graphically examine the operation of the convolution in-
tegral

o) = AL = [ A@fE-T) dr. (24
The procedure is as follows:

1. Plot both f1(7) and fo(t —7) on the 7-axis. Note that this operation flips
the function fo(7) about the 7-axis and shifts it by an amount ¢ (which is
the independent variable of the output function c(t)).

2. Visualize that as ¢t advances, fo(t — 7) slides along the 7-axis.

3. For each t, the convolution integral (24) gives the area of the product
fu(r) - falt = 7).
As an example, consider the convolution of TI(¢) (10) and a truncated expo-
nential, e "H(t).
ct) = / (r)H(t — 7)e” ¢ dr . (25)

—0o0
Because of the discontinuities in II(¢), the solution is found by examining
three cases:
e Case (a)t < —1/2

The nonzero portions of the functions do not overlap, and ¢(t) = 0.



-1.0 0.0 1.0 2.0 3.0 4.0 5.0

—1.0 0.0 1.0 2.0 3.0 4.0 5.0

~ 0.0
= —1.0 0.0 1.0 2.0 3.0 4.0 5.0

Figure 1: Convolution Example.

e Case (b) —1/2 < ¢t <1/2

The sliding exponential partially overlaps the boxcar function. The ap-
propriate integral is

t
ct) = / 1oe & dr =1 — e /2 (26)
~1/2

e Case (¢)t > 1/2

The sliding exponential completely overlaps the boxcar function. The
integral is

1/2
c(t) = / 1-e ) dr = ¢ (71/2) _ o= (t41/2) (27)
—1/2

The result of this convolution is plotted in Figure 1. Note that we could



have equivalently written the convolution as

o0
c(t) = / II(t — 7)H(r)e " dr . (28)
—0o0
This produces the same answer with somewhat different integrals. A more
efficient and elegant way of evaluating convolutions will become apparent after
we learn how to examine functions in the frequency domain, rather than the
time domain, as we have done here.
Autocorrelation and crosscorrelation. Several other integral operations, com-
monly used in time and spatial series analysis are closely related to convolution.
Autocorrelation is similar to autoconvolution

010 = [ T - dr (20)

except that one of the functional components in the 7-domain is not time-
reversed. The autocorrelation of a real function, f(t), is

Aw = [ T RO~ 1) de = / T HE-0f© (de)  (30)

oo

which is, if we let £ —t = —7,
:/jo f(=m)f(t = 1) dr = f(=t) = f(t) = f(t) = f(=1) . (31)

If f(¢) is symmetric in time (an even function; f(t) = f(—t)), then the auto-
convolution and autocorrelation are equal. Also, because the autocorrelation
integral (31) is unchanged when we interchange +t, we see that autocorrelation
always produces an even function.

It is often convenient to divide (31) by the signal energy to obtain a normal-
ized autocorrelation form

(32)

(32) is bounded on the interval [—1, 1]. Note that for (32) and (31) to converge,
the signal energy

E = A(0) = [ b f2(r) dr (33)

must be finite. It is thus necessary for f2(t) to have finite area (zero mean alone
is not sufficient).

The crosscorrelation of two functions, fi(t) and f2(t) (often referred to sim-
ply as the correlation) is

Ct) = /_"O fi(n) fa(r = t)dr = /_OO fi(r +t) fa(r)dr = f1(t) x fa(t)  (34)



If (34) is divided by the cross-signal energy we have a normalized version of the
crosscorrelation corresponding to (32)

() = —— OO
VI R [, f(rydr

produces a value of one at zero time lag when the two functions are identical.
Autocorrelation and correlation have important applications in power spectra,
coherency, signal detection and timing, and array processing.

Correlations and Crosscorrelations in MATLAB. MATLAB has built in con-
volution (conv), and crosscorrelation (zcorr) functions in the Signal Processing
toolbox. The numerical operations of MATLAB, of course, only operates on
finite time series (or sampled) representations of functions stored as vectors or
arrays of numbers. In time series analysis, such vectors or arrays are used to
represent continuous functions. We will examine the issues associated with sam-
pled functions in considerable detail detail later in the course. The MATLAB
conv function thus calculates a sample-by-sample moving dot-product rather
than an integral. The zcorr function includes a coeff option that performs the
normalization of (32) or (35) Note that, because these MATLAB operations are
simply moving vector dot products as functions of lag between the two functions,
you will have to scale the results by the sampling interval to get results that
agree with continuous integral values (i.e., there is no corresponding dr factor
in these calculations). You are encouraged to experiment with these MATLAB
functions. Note that if you operate on two MATLAB time series, a; and as,
which are of length ny and no samples, respectively, then the convolution output
from conv, a; * as will be of length (nq 4+ ne + 1).

Here is MATLAB code that performs the above convolution example (Figure
1):

(35)

%MATLAB demonstration of example convolution in notes, part 1
%clear any old variables
clear

%total length of f1, f2 time series in seconds
N=10;

%time step size in seconds
dt=0.02;

%length of vectors to create
M=N/dt;

%zero time reference point
ztime=M/4;



%here is the boxcar function

%initialize f1

fl=zeros(M,1);

%insert ones into the correct elements
f1((ztime-0.5/dt) :ztime+(0.5/dt) )=ones(1+1/dt,1);

%here is the decaying exponential function (starting at zero time);
%hinitialize £2

f2=zeros(M,1);

%insert a decaying exponential into the correct elements
f2(ztime:M)=exp(-dt*(0:M-ztime));

hcreate the time axis vector for plotting f1 and £2
taxis = ((1:M)-ztime)*dt;

%plot f1
figure(1)
plot(taxis,f1)
grid
title(P£_1(t)’)
xlabel (’time’)

%plot £2
figure(2)
plot(taxis,f2)
grid
title(P£_2(t)’)
xlabel(’time’)

%do the convolution (multiplied by dt to make the sum an approximate integral)
c=conv(f1,f2)*dt;

%create the appropriate time axis vector for the convolution (which has length(c)=2#M-1) fo:
taxisc=((1:1length(c))-2*ztime)*dt;

%plot the convolution
figure(3)

plot(taxisc,c)

grid
title(Pc(t)=f_1(£)*f_2(t)?)
xlabel(’time’)



