
Discrete Approximation of a
Convolution

This note discusses how to approximate a continuous convolution with a
discrete convolution, and how Matlab can easily be used to compute this ap-
proximation. Matlab works with vectors and arrays of numbers, not continuous
functions, so it is essential to develop a familiarity for moving between contin-
uous and discrete methods to apply Matlab to simulating physical systems and
solving problems.

Introductory comments on Discrete Time Series
vs. Continuous Functions

Our first issue is how to use a vector of numbers to represent a continuous
function f(t). We start by selecting a sampling interval- a period of time which
is short relative to the phenomenon that we’re interested in (we will make this
concept much more quantitative once we discuss Fourier theory and the Nyquist
theorem in Chapter 4). For example, if we’re working with a function that varies
over a period of several seconds, then a sampling interval of 0.01 s will probably
provide adequately dense sampling.

For each sampling interval, we select an “average” value to assign to the
associated sample. This might be the true average over the interval, or the
function value at the midpoint of the interval, or the value at some other rea-
sonable point in the interval. We then collect the values into a vector. Notice
that since we cannot store vectors of infinite length, we cannot approximate
functions which are nonzero everywhere. Typically, it is possible to use enough
sampling intervals to cover the portion of f(t) that we’re interested in.

For example, the following Matlab code represents some arbitrary function,
f(t), between t = 1 and t = 2 using 100 sampling intervals and stores the result
as a sequence stored in the vector x. The function f(t) is evaluated at the
midpoint of each sampling interval, at t equal to 1.005, 1.015, 1.025, and so
forth.

for i=1:100,
t=1.0+0.005+0.01*(i-1);
x(i)=f(t);

end;

Integrating a function represented in sampled fashion is straightforward by
using rectangular strips to approximate the area under the function during each
sampling interval. To do this we approximate the function on each sampling
interval as constant, and having the value associated with that interval. We then
integrate f(t) by adding up the area under f(t) across all sampling intervals.
The following bit of Matlab code integrates f(t) from 0 to 1 using the x vector
that we just generated.



s=0.0;
for i=1:100,
s=s+x(i)*0.01;

end;

Notice that the length of the sampling interval 0.01 plays an important part in
this formula. If we chose a different sampling interval, we must scale the sum
appropriately to get approximately the same result.

Discrete Convolution

Infinite sequences can be convolved in a fashion very similar to convolution of
functions in time. The convolution of the sequence xi with the sequence yj is
given by

zn =
∞∑

k=−∞
xkyn−k. (1)

In practice, we don’t store vectors of infinite length, but rather treat all of the
entries outside of our finite length vectors as if they were 0.

The Matlab command ”conv” implements a discrete convolution of two finite
length vectors. Given a vector x of length r, and a vector y of length s, the
convolution operation produces a vector z of length r+s−1. Since x has entries
1 through r, and y has entries 1 through s, the nonzero entries in the convolution
should be in positions 2 through r + s. However, since Matlab arrays always
start with index 1 (sorry, c programmers), the entries are shifted one place to
the left.

For example, suppose that x1 = 1 and x2 = 2 and all other entries of x are
zero. Also suppose that y1 = 3, and y2 = 4, and all other entries of y are 0. In
the convolution, using (1), we get that z2 = 3, z3 = 10, z4 = 8, and all other
entries in z are 0. In Matlab, we would have x = [12], y = [34], and z = [3108].

Now, how can we compute the discrete approximation to a continuous con-
volution? To approximate z(t) = x(t) ∗ y(t), start by representing the nonzero
parts of x(t) and y(t) by vectors x and y with some suitable sampling interval.
Next, compute z = conv(x, y). Finally, scale z by the sampling interval. The
scaling is required because each of the numbers in the vectors x and y represents
the average value of x(t) or y(t) over a sampling interval. When we multiply
these together and add them up in the convolution, we’re effectively integrating,
but we need to take into account the width of the sampling intervals.


