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Notes on Deconvolution

We have seen how to perform convolution of discrete and continuous signals
in both the time domain and with the help of the Fourier transform. In these
lectures, we’ll consider the problem of reversing convolution or deconvolving an
input signal, given an output signal and the impulse response of a linear time
invariant system.

We begin with the equation

d(t) = g(t) * m(t) (1)

where d(t) and g(t) are known. Our goal is to solve for the unknown m(t).

Although there’s no obvious way to use the convolution integral to solve this
equation, the equation becomes much easier to solve in the frequency domain.
By the convolution theorem,

D(f) = G(H)M(f). @)
Thus D
M(f) = GEQ (3)

Once we have M(f), we can invert the Fourier transform to obtain m(t). Simi-
larly, if we have discrete time signals and

dp, = (gn * mp)At (4)

then
Dy = G M, At (5)

for k=0,1,..., N — 1. Solving for M}, we get

n GLAt

My,



Once we have the vector M we can invert the discrete Fourier transform to
obtain m,,. This simple approach to solving the deconvolution problem is called
spectral division.

Unfortunately, this method seldom works in practice. The first problem is
that denominator in (3) might be zero, at least for some frequencies. In that
case, M(f) is undefined, and we can’t invert the Fourier transform to obtain
m(t). Another way of looking at this is to consider what output the system
will produce for sine waves at different frequencies. If the system produces zero
output for a sine wave at a particular frequency fo, then it’s clear that we can’t
solve the deconvolution problem for any input signal that contains a sine wave
at frequency fy because there’s no evidence of this sine wave in the output!

What about noise? First, suppose that noise n(t) is mixed with the true
signal before the convolution. In that case we have

d(t) = g(t) = (m(t) + n(t)) (7)
D(f) = G()(M(f)+ N(f))- (8)

If we perform spectral division, we obtain
M)+ N = g Q

In this situation, the deconvolution hasn’t made the noise any worse than it
was before the deconvolution. Later in the course we’ll discuss approaches to
removing noise with a known frequency spectrum from such a signal.

Things get trickier if the noise is added after the convolution with g(¢). In
that case, we have

d(t) = g(t) * m(t) + n(t) (10)
D(f) = G(f)M(f) + N(f). (11)

If we try to perform spectral division, we end up with
M(f)+]c\;((gzggg. (12)

The N(f)/G(f) term will introduce noise into the recovered signal. At frequen-
cies where G(f) is small but nonzero, the deconvolution process can greatly
increase the magnitude of the noise.

Various techniques have been developed to deal with this noise. The basic
idea is to avoid division by zero by somehow modifying the denominator in (6).
This regularizes the deconvolution problem. In performing the regularization,
we want to do as little as possible to frequencies where the noise is insignificant,
while damping out the noise at frequencies where it is larger than the signal.
Because the DFT of a real input signal is always Hermitian (i.e. My = M} _,)



it is important that we perform the regularization in a way that produces a
Hermitian M sequence and a real signal m,,.
For example, we might try

Dy,

M, = — "%
T (Gr+ VAt

(13)
where A is a small positive real number. When Gy, is much larger than A, then
this will have little effect on My. However, when Gy is very small compared
to A, this will effectively zero out the response at frequency k. One problem
with this scheme is that if G = —\, we can still get division by zero. It would
obviously be better to work with the absolute value of Gy.

A scheme called water level regularization is widely used in geophysics.
Since problems only occur at frequencies where |G(f)| is small, we pick a critical
level w and adjust G(f) only when |G(f)| < w. At frequencies where |G(f)| > w
we simply perform spectral division. This has the advantage of not altering the
spectral division method at good frequencies. At frequencies where |G(f)| is
small, we need to replace G(f) with something that isn’t too small. We could
simply use w, but it is slightly better to use a complex number that at least has
the same phase as G(f). So we, use

G(f) = w&;;' (14)

If G(f) is exactly zero this still causes problems! In that case, we’ll use G‘(f) =
w. In discrete time, the water level deconvolution scheme can be written as

- D
N k

= = 15
¥ G At ( )
where
Gy |Gk| >w
Gy = I‘UGC;;'“‘ 0<|Gi| <w (16)
w Gk =0.

Note that Mk will be a Hermitian sequence. When we invert the transform to
obtain m,,, we’ll get back a real signal.

In order for the water level regularization to work we need to make sure that
wAt is somewhat larger than |Ng|. If w is too large, then we simply get back
d,, scaled down by a factor of w. If w is too small, than the result will be overly
noisy, often at higher frequencies where |G(f)| is smaller.

In the following example, A small amount of noise in the data makes spectral
division unstable, but water level regularization produces very good results.

The input signal is m(t) = te~! and the impulse response is g(t) = ¢! sin(10¢).
See Figures 1 and 2. This signal was sampled at intervals of At = 0.01 seconds.
The convolved signal d(t) is 10 seconds long, so there are 1001 samples.

Random noise was added to the signal with a normal distribution with mean
0 and standard deviation 0.0001. Figure 4 shows the noisy data. Figure 5 shows



The model that we would like to recover
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Figure 1: The input signal.

the unfortunate result of simple spectral division- the high frequency noise is
greatly increased in amplitude.

The white noise that we added to the signal has approximately equal energy
at all frequencies. Recall Parseval’s theorem for the DFT,

N-1

1 N-1
S Il = 5 31Xl (1)
0 k=0

Jj=

Since N = 1001, we expect the |Ni| values of our noise to be about 4/1001 or
roughly 30 times larger than the |n,, values. Thus a typical value of | Ny| should
be about 0.003. In order to make the values of wAt larger than 0.003, we’d like
to have w > 1.

Figures 6 through 8 shows the results obtained with w = 0.1, w = 1, and
w = 10. Although the solution is under regularized at w = 0.1, the solution is
quite good by the time we get to w = 10.



The impulse response
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Figure 2: The impulse response.
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Figure 3: Clean data.



Data with noise added
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Figure 4: The data with a small amount of noise added.

Solution by spectral division
1 T T T

0.8 q

minv(t)

-0.8 I I I I I
0

Figure 5: Deconvolution by spectral division, no regularization.
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Figure 6: Water level solution, w = 0.1.

Water level deconvolution solution, w=1.0

10

Figure 7: Water level solution, w = 1.0.
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mwat3(t)
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Water level deconvolution solution, w=10.0

Figure 8: Water level solution, w = 10.0.

10



In Tikhonov regularization, we use

- G} Dy
My = (GiGr + M)At (18)
where A is a small positive parameter. This is similar to (13), in that when
|G| is much larger in magnitude than A, we get essentially (6). However, when
|G| is much smaller than A, M, is reduced in magnitude. It’s not hard to show
that if M}, is obtained by Tikhonov regularization then M} will be Hermitian.
Furthermore, the denominator in this formula can never be 0.
The size of the factor
G Ny,
(GiGr + M)At

determines whether a noise frequency k will be effectively eliminated from the
deconvolved signal. To get rid of the noise, we want

(19)

IGENG| < AAL. (20)

This gives us a very simple criteria for picking A. We’ll discuss more sophisti-
cated methods for picking A in the inverse problems course.

Returning to our earlier example, we know that | Ny| is typically about 0.003,
while |Gy| is typically around 3. Thus we need AAt > 0.01 or A > 1 to cover
the noise. Figures 9 through 11 show the effect of different values of the regu-
larization parameter .



Tikhonov solution, A=0.01
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Figure 9: Deconvolution with Tikhonov regularization, A = 0.01.

Tikhonov solution, A=0.1
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Figure 10: Deconvolution with Tikhonov regularization, A = 0.1.
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Tikhonov solution, A=1.0
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Figure 11: Deconvolution with Tikhonov regularization, A = 1.0.
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It can be shown that Tikhonov regularization minimizes
min |G - M — D||3 + \|| M]3 (21)
By Parseval’s theorem, this is equivalent to minimizing
min ||g * m — d|3 + X|m3. (22)

The objective function is a weighted sum of a term that measures how well the
model m fits the data d and a term that measures the energy of the model m.
Tikhonov regularization is effectively picking the smallest energy signal that fits
the data reasonably well, with the relative balance of these two factors controlled
by the regularization parameter \.

An alternative formulation of Tikhonov regularization sets a limit ¢ on the
data misfit and then minimizes ||m||s.

min [lm||2

lgxm—d|s < 6. (23)

There are situations in which other kinds of regularization are appropriate.
We'll consider an example in which a controlled source (e.g. a vibroseis truck) is
used to send a seismic wave down into the earth. The wave bounces back from
reflecting layers at various depths and a seismograph of the reflected signal is
recorded. We’d like to recover the depths of these reflecting layers.

Here, g(t) is the known source signal, d(t) is the recorded seismograph,
and m(t) is the unknown. The reflector should appear in m(t) as scaled delta
functions, with a reflect at time “depth” t7/2 appearing as a scaled (¢t — tg).

In this case, we want m to be a simple sequence of spikes. Rather than using
Tikhonov regularization to minimize ||m/||2, we want to minimize the number of
nonzero entries in m. Let ||m|o be the number of nonzero entries in m. Than
we can formulate our regularization problem as

min [lm|lo

lgsm—dls < o (24)

Unfortunately, these kinds of optimization problems are extremely difficult to
solve.
A surprisingly effective alternative is to instead minimize

n

Iy = lmyl- (25)

j=1
The regularization problem is then

min mlls

lgxm—d|s < 6. (26)

It turns out that these problems can be effectively solved by convex optimization
techniques.
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The model that we would like to recover
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Figure 12: The target model m(t).

For an example, we’ll use the same impulse response from our previous
example.
g(t) = e P sin(10t). (27)

This time our target model m(t) will be
m(t) =106(t —2) — 76(t — 2.5) +40(t —4) + 65(t — 7). (28)

Again we’ll add random noise to the convolved signal and then attempt to
recover m(t).

Figure 12 shows the target model. Figure 13 shows the data with noise
added. It’s quite hard to pick out the impulses in this plot. Figures 14 shows the
best result that could be obtained with Tikhonov regularization. The impulses
are artificially broadened, and the noise is not completely removed from the
signal. Figure 15 shows using (26) produces an amazingly good recovery of
m(t). Notice that the spikes are correctly placed in time. The amplitude of the
spikes is reduced and the spikes are slightly broader than they should be, but the
results are vastly better than the results obtained with Tikhonov regularization.
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Data with noise added
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Figure 13: Data with noise added.

Tikhonov solution, A=20.0
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Figure 14: Tikhonov solution.
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Figure 15: 1-norm regularized solution.
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