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Finding an Impulse Response via Contour Inte-

gration

In the Chapter 2 notes, we noted that the time domain displacement response
to an acceleration impulse input is
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where
ω1 =

√
ω2

s − ζ2 . (3)

To solve (2), we utilize a remarkable and useful theorem from complex analysis,
the residue theorem. Succinctly stated, the residue theorem says that, for a
complex function in the complex plane that is defined and differentiable with
a region except at an isolated singularity at a finite point z0 (e.g., a pole in
a transfer function), then, for a closed path, or contour, C, encompassing the
singularity ∮

C

f(z)dz = 2πıa (4)

where a is called the residue of f(z) at z0, where, for a pole of order m,

a =
1

(m− 1)!
dm−1

dzm−1
[(z − z0)mf(z)]z=z0 . (5)

for a single pole at z0, the residue is simply

a = [(z − z0)f(z)]z=z0 . (6)

Evaluation of a contour integral in the complex plane thus involves evaluating
the integrand at z = z0 with the pole ”removed” by first multiplying by the
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Figure 1: Contour integration in the complex ω plane.

factor (z − z0) More generally, if more than one distinct pole is enclosed by the
integration path ∮

C

f(z)dz = 2πı
∑

i

ai (7)

where the ai are the residues at the encosed poles. If there are no poles enclosed
by C, the integral will be zero (this is the same as saying that the function is
conservative, or that the integral of f(z) between two complex points doesn’t
depend on the integration path).

We can now use the residue theorem to evaluate the inverse Fourier transform
(2). The poles of the integrand lie at (±ω1, ıζ). We conceptualize the inverse
Fourier transform as a contour integration by integrating in the complex ω plane
along the ω axis from−∞ to∞, and then closing the countour at |z = ∞| (where
the value of the integrand is zero). For t < 0 the contour is clockwise because
of the eıωt factor and encompasses no poles (Figure 1). Thus

φ(t) = 0 (t < 0) . (8)

For t > 0 the contour is clockwise and encompases poles, so that the residue
theorem gives

φ(t) =
ı

ω1

(
e−ıω1t

−2
+

eıω1t

2

)
e−ζt . (9)

For the underdamped case, where ω2 > ζ, ω1 is real, so that (setting the
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function to be zero for t < 0 with a step function) we have the impulse response

φunderdamped = H(t)
−1
ω1

e−ζt sin(ω1t) . (10)

For the overdamped case, where ωs < ζ, ω1 = ı
√

ζ2 − ω2
s , and the poles lie

on the negative real axis at −ζ ±√
ζ2 − ω2

s . The impulse response function in
this case can be written entirely with real exponentials as

φoverdamped(t) =
−H(t)

2(ζ2 − ω2
s)1/2

(
e−(ζ−(ζ2−ω2

s)1/2)t − e−(ζ+(ζ2+ω2
s)1/2)t

)
. (11)

For the critically damped case, ω1 = 0, and we have a repeated (order 2)
pole at ω = ıζ. Application of (5) for t > 0 gives

φcritical(t) = ı
d

dω
H(t)eıωt|ω=ıζ = −H(t)te−ζt . (12)
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