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GEOP 505/Math 587 Primer on
Complex Numbers and Arithmetic

These notes summarize some important facts about complex numbers and
their arithmetic.

Rectangular Form

If we define i =
√
−1, then we can construct a system of complex numbers of

the form z = a + bi. In this system,

(a + bi) + (c + di) = (a + c) + (b + d)i (1)

(a + bi) − (c + di) = (a − c) + (b − d)i (2)

(a + bi)(c + di) = ac + bci + adi + bdi2 = (ac − bd) + (bc + ad)i (3)

a + bi

c + di
=

(a + bi)(c − di)

(c + di)(c − di)
=

(ac + bd) + (bc − ad)i

c2 + d2
(4)

The complex conjugate of a complex number is given by

(a + bi)∗ = a + bi = a − bi. (5)

Euler’s Formula

Using the power series

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (6)

we can derive a formula for e raised to an imaginary power.

eix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+ . . .
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Using the facts that i2 = −1, i3 = −i, and i4 = 1, we find that

eix = 1 + ix − x2

2!
− i

x3

3!
+

x4

4!
+ . . .

Rearranging the terms, we get

eix = (1 − x2

2!
+

x4

4!
+ . . .) + i(x − x3

3!
+

x5

5!
− . . .)

Finally, using the Taylor’s series for sin and cos, we get

eix = cos(x) + i sin(x) (7)

For general complex numbers a + bi, we find that

ea+bi = ea(cos(b) + i sin(b)) (8)

Polar Form

Using Euler’s formula, we can take any complex number

z = a + bi

and rewrite it as
z = Reiθ (9)

where
R = |z| =

√
z∗z =

√

a2 + b2 (10)

is variously called the amplitude, modulus, or complex norm and

θ = ∠z = tan−1 b

a
. (11)

is variously called the complex angle, phase or argument of z. Because sin and
cos are 2π periodic, we can add any multiple of 2π to the phase of a complex
number without changing its value.

We can also go the other way. If

z = Reiθ

then z = a + bi, where
a = R cos(θ) (12)

and
b = R sin(θ). (13)

Polar form is very useful for multiplication, division, and exponentiation,
but hopeless for addition and subtraction.

AeiθBeiφ = ABeθ+φ (14)
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Aeiθ

Beiφ
=

A

B
eθ−φ (15)

(Aeiθ)x = (Ax)eixθ. (16)

It’s also easy to find the complex conjugate of a number in polar form.

(Aeiθ)∗ = Ae−iθ. (17)

Cosine and Sine in terms of complex exponentials

Using Euler’s formula, it’s easy to derive formulas for sin and cos in terms of
complex exponentials.

cos(θ) =
eiθ + e−iθ

2
. (18)

sin(θ) =
eiθ − e−iθ

2i
. (19)

MATLAB and Complex Numbers

When you first start MATLAB, The variable i is set equal to
√
−1. However, if

you change the value of i (for example by using it as the index in a for loop!),
then it will no longer have this value. Thus it is a good idea to avoid using i as
a loop index.

Nearly all of the functions that are built into MATLAB operate correctly
on complex numbers. Thus you can add, subtract, multiply, and divide com-
plex numbers. You can also compute exponentials, logs, sines, cosines, and
other functions of complex numbers. MATLAB has several useful functions for
manipulating complex numbers. The conj function computes the complex con-
jugate of a number. The abs function computes the absolute value of a complex
number. The angle function computes the phase angle of a complex number.

How LTI’s operate on complex exponentials, sines,
and cosines

A linear time invariant (LTI) system operates in a simple fashion when a complex
exponential, sine, or cosine is input to the system. Recall that if φ(t) is the
impulse response of the system (that is, the response of the system when the
input δ(t)), then response to an input function, x(t), is given by the convolution
of x(t) with the impulse response.

y(t) = φ(t) ∗ x(t) (20)

or

y(t) =

∫

∞

−∞

φ(τ)x(t − τ)dτ. (21)
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Consider the special case where

x(t) = ei2πft. (22)

In this case,

y(t) =

∫

∞

−∞

φ(τ)ei2πx(t−τ)dτ. (23)

y(t) = ei2πft

∫

∞

−∞

φ(τ)e−i2πfτ dτ. (24)

Notice that this integral depends only on f , and not t. We can define

Φ(f) =

∫

∞

−∞

φ(τ)e−i2πfτ dτ. (25)

Where Φ(f) is the Fourier Transform of φ(t). Then

y(t) = ei2πftΦ(f). (26)

Since Φ(f) is just a complex number, we can write it in exponential form as
Φ(f) = A(f)eiθ(f), where A(f) and θ(f) are real numbers. Now, we can write
y(t) as

y(t) = ei2πftA(f)eiθ(f). (27)

This says that if we use a complex exponential signal as the input to our LTI
system, we’ll get a complex exponential signal as the output. The factor A(f)
amplifies or attenuates the signal, and the factor eiθ(f) shifts the phase of the
signal.

What if x(t) = cos(2πft) where f and t are a real frequency and time? We
can use (??) to write the cosine in terms of complex exponentials.

x(t) =
ei2πft + e−i2πft

2
. (28)

Then using the principles of scaling and superposition and (??), we get that

y(t) =
ei2πftΦ(f)

2
+

e−i2πftΦ(−f)

2
. (29)

It can be shown that if φ(t) is real, then

Φ(−f) = Φ(f)
∗

(30)

To see this, simply take the complex conjugate of Φ(f).

Φ(f)∗ =

(
∫

∞

−∞

φ(τ)e−i2πfτ dτ.

)

∗

(31)

Φ(f)∗ =

∫

∞

−∞

(

φ(τ)e−i2πfτ
)∗

dτ. (32)
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Φ(f)∗ =

∫

∞

−∞

φ(τ)e+i2πfτ dτ. (33)

Φ(f)∗ =

∫

∞

−∞

φ(τ)e−i2π(−f)τ dτ. (34)

Φ(f)∗ = Φ(−f). (35)

Equivalently, this says that Φ(f) for a real-valued impulse response φ(t)
has even symmetry for its real part, and odd symmetry for its imaginary part
(relative to f = 0.)

Since Φ(f) = A(f)eiθ(f), and Φ(−f) = Φ(f)∗, Φ(−f) = A(f)e−iθ(f). Thus

y(t) =
ei2πftA(f)eiθ(f)

2
+

e−i2πftA(f)e−iθ(f)

2
. (36)

y(t) =
ei(2πft+θ(f)) + e−i(2πft+θ(f))

2
A(f). (37)

y(t) = cos(2πft + θ(f))A(f). (38)

This shows that the output of the LTI system with a real-valued φ(t) and a
cosine input is also a cosine, but with its magnitude scaled by the amplitude,
A(f), and shifted in phase by the angle θ(f). Similarly, it’s easy to show that if
the input is a sine wave with frequency f , then the output will be a sine wave
scaled by the amplitude A(f) and shifted in phase by the angle θ(f).
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