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Digital Filtering

We next turn to the (very broad) topic of how to manipulate a sampled signal
to alter the amplitude and/or phase of different frequency components of the
signal. There is an incredible amount of literature on this subject, and we will
only be able to scratch the surface here. There are many reasons for wanting to
filter a signal including:

1. Noise rejection/Signal enhancement

2. Remove an instrument response from the signal

3. Differentiate or integrate

4. Change the sampling rate

5. Artistic effects in audio and video.

Some particular types of filters that we will look at include low pass, high
pass, and band pass filters which cut off portions of the frequency spectrum
while allowing other frequencies to pass through the filter. In implementing
these filters we will want to achieve the desired frequency response while other-
wise distorting the signal as little as possible.

We will concentrate our analysis on filters which are themselves linear time
invariant systems. This will enable us to apply all of the techniques that we
have previously developed for LTI systems to analyze the performance of the
filter. However, it is also possible to construct more complicated nonlinear filters
which are not LTI systems.

In analyzing filters we will again encounter the concept of stability. A linear
filter is stable if the corresponding LTI is stable. If we try to use an unstable
filter, we’re likely to find that small amounts of noise in the input build up in
the output to intolerable levels. Unstable filters are practically impossible to
use.

In some cases a filter is designed to process the signal in real time with little
or no delay, while in other cases we must receive the entire signal before we can
begin processing it. There is generally a preference for linear filters which are
causal, since these filters can be implemented in real time. If an acausal filter
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needs to look ahead only a few samples, then we can implement the filter in
real time by simply inserting a buffer before the filter and allowing the filter to
delay its output by a few samples.

In practice, much of the human effort that goes into designing and imple-
menting digital filters is about tradeoffs between the desired frequency and phase
response of the filter and difficulty and cost of the implementation of the filter.

Filtering by Direct Manipulation of the FFT

One very simple approach to filtering a sampled signal is to compute its FFT
and then manipulate the individual components of the FFT to achieve a desired
frequency or phase response. This approach gives us complete freedom to control
the frequency and phase response of the filter.

There are two significant costs associated with implementing a filter in this
fashion. The first problem is that computing the FFT of a signal can (depending
on the sampling rate and time duration of the signal) be very computationally
intensive. For very long signals, computing the FFT of the entire signal may
not even be practical. The second issue is that since we must have the entire
signal in hand before we can begin filtering, we cannot use this method for real
time filtering.

For example, consider a 20 second long recording of some guitar music.
(The audio clip and MATLAB codes for this example will be made available
on the class web site.) The audio is digitized according to the consumer audio
CD standard at a sample rate of 44.1 Khz, with 16 bits per sample. For this
example, we’ve combined the left and right channels into one mono channel.
Thus the 20 seconds of audio requires 20 × 44100 × 16 bits, or 1.76 megabytes
of storage. We’ll store the samples in MATLAB as 8 byte double precision
numbers, which expands the storage requirements by a factor of four to about
8 megabytes. This is fairly large, but still well within the memory size limits of
our computers.

At the sampling rate of 44.1 Khz, the Nyquist frequency is 22.05 Khz. Is a
practical matter, most of us can’t hear (and the speakers in our classroom can’t
reproduce) much above about 15 Khz. Before sampling, this signal was passed
through an analog anti-aliasing filter that eliminated all frequencies above 22.05
Khz. Thus the sampling rate has been chosen to effectively reproduce all of the
frequencies in the original music while avoiding aliasing problems.

We read the signal into MATLAB and compute its FFT. Since there are
882,000 real values in the original signal, the FFT also has 882,000 complex
components. Since there are 882,000 frequency components over a frequency
range of 0 to 44,100 Hz, each component of the FFT represents a frequency
range of 0.05 Hz. Figure 1 shows a plot of the absolute values of the FFT versus
frequency. The vertical axis represents power. We have used a dB scale. The
horizontal access represents frequency in Hz. For convenience, we have used the
MATLAB command fftshift to rearrange the entries in the FFT so that 0 Hz
is at the center of the spectrum.
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Figure 1: Spectrum of the original signal.

Now, suppose that we want to low pass filter the signal, eliminating all
frequency components above 2 Khz. We do this by simply setting to 0 those
elements of the FFT that correspond to frequencies above 2 Khz. Figure 2
shows a plot of the revised spectrum. At all frequencies below 2 Khz, we’ve left
the spectrum alone, while at all frequencies above 2 Khz, we’ve zeroed out the
entries in the FFT.

We can play the filtered signal, and hear that it sounds much like the original
recording, but somewhat “dull.” The guitar notes are at frequencies between
about 400 Hz and 1 Khz. However, as a guitar string plays a note, the string also
vibrates at multiples of the base frequency. These harmonics are what give
the guitar its particular tone. By filtering out the harmonics, we’ve effectively
dulled the tone of the guitar.

We can also try filtering out the fundamental frequencies and just listen to
the higher harmonics. Figure 3 shows the spectrum after filtering out everything
below 1 Khz. When you listen to the playback of the filtered signal, you’ll still
be able to hear the original music, because the harmonics still carry the tune.

Phase Shifts

So far, we’ve only adjusted the amplitude of various frequency components in
the FFT. A filter which doesn’t change the phases of any of the components
of the FFT is called a zero–phase filter. Hidden within the phase of the
complex numbers in the FFT is the information about when the various notes
appear in the signal. Adjusting the phases of the FFT components can do some

3



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

−100

−50

0

50

100

150

200

frequency Hz

P
ow

er
 (

db
/H

z)

Figure 2: Spectrum after low pass filtering.
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Figure 3: Spectrum after high pass filtering.
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interesting things to the signal.
Continuing our example, we’ll set the phase of each complex element of the

discrete spectrum to zero by taking the absolute value of each component. When
played back, the resulting gong-like signal bears little resemblance to the original
signal (although its amplitude spectrum is identical). The original frequencies
are all present, but the order of the notes has disappeared completely; they
are now all cosines that are aligned at zero time. In general, filtering that
affects phase can cause distortions to the signal that will make it virtually
unrecognizable (phase affects how all the Fourier components align in the time
domain, after all).

However, there is one important type of phase adjustment that does not
distort the relative time alignment of the Fourier components, and is fact use-
ful in many contexts. We will consider adjusting the phase of each frequency
component of the FFT by an amount proportional to its frequency.

That is, if the original signal contains a frequency component of the form

φ(t) = Ae2πift (1)

then we will adjust this to

φ̂(t) = Ae2πift+icf (2)

where c is some constant of proportionality. This results in the signal is shifted
by cf radians, or cf/(2π) cycles. Since the time length of each cycle is 1/f ,

φ̂(t) is φ(t) shifted in time by (cf/(2π))(1/f) = c/(2π). Notice that this time
shift is independent of f . Thus if we apply a phase shift of cf at each frequency,
then we’ll get a consistent and circular time shift of c/(2π). This is just an
implementation of the time shift theorem for discrete periodic spectra.

A filter which shifts each phase in the FFT by an amount proportional to its
frequency is called a linear phase filter. The time shift introduced by a linear
phase filter can sometimes be a nuisance. However, there is a clever technique
for correcting this effect; we can apply a linear phase filter to our signal, then
time reverse the filtered signal and apply the same filter a second time, and
finally time reverse the twice filtered signal. This has the effect of shifting the
signal forward and backward in time by the same amount. It also effectively
squares the frequency response of the filter. This technique is implemented in
the MATLAB command filtfilt.

Returning to our original example, suppose that we multiply each component
of the FFT by ei15f . This effectively adds 15f to the phase angle of each
component of the FFT. For example, at f=22000 Hz, the phase is shifted by
φ = 330000 radians, which is 52,521 cycles, or 2.39 seconds. Similarly, at 100
Hz, the phase is shifted by φ = 1500 radians, or 238.7 cycles, which is also 2.39
seconds. We then invert the FFT to recover the filtered signal.

Note that the direction of this phase shift is backward in time. That is, at
time t = 0, we hear what was originally in the signal at t = 2.39 seconds. What
do you expect to hear during the last 2.39 seconds of the playback? Remember
that the FFT assumes that the entire signal is periodic.
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Finally, we’ll consider another common and often trivial or inconsequential
type of phase shift. Suppose that the phase of each component of the FFT is
adjusted by π. This is equivalent to multiplying each component of the FFT by
eiπ, which is just −1. Because the FFT is a linear transformation of the original
signal, we can easily compute the effect of this phase shift on the original signal.
The inverse FFT of minus one times the FFT of the original signal is minus
one times the inverse FFT of the FFT of the original signal, or just minus the
original signal.

For many purposes, φ(t) and −φ(t) are indistinguishable signals. In our
audio example, this phase phase shift makes no discernible difference, because
your hearing system effectively analyzes the amplitudes of different frequency
components and not their absolute phases.

Finite Impulse Response Filtering

By finite impulse response or FIR filters, we refer to linear filtering operators
which have finite duration impulse responses. Such filters can be easily im-
plemented by simply convolving the input signal with the impulse response.
Since the impulse response is typically very short (perhaps just a few samples),
this convolution can often be efficiently implemented directly without using the
convolution theorem and the FFT.

Finite impulse response filters are invariably stable because they have no
recursive components (i.e., no internal feedback in their algorithms). Once the
input goes to 0, the output will thus return to zero within a finite period of
time determined by the length of the impulse response. It’s also trivial to make
such a filter causal by simply specifying that the impulse response be zero for
negative times.

In the following discussion, M will be the length of the filter sequence, N
will be the length of the input sequence, n will be used as a time index, and k
will be used as a frequency index. A common and easy to understand example
is the symmetric, M -point (M odd) running meanfilter defined as

wn =
1

M
ΠM =

{
1/M for |n| ≤ (M − 1)/2
0 for |n| > (M − 1)/2

. (3)

The M filter impulse response values w0, w1, ..., wM−1, are often referred to in
this context as weights . Convolution of an arbitrary sequence, yn, with this
particular wn results in a sequence with frequency characteristics (according to
the convolution theorem)

Zk = Yk ·DFT[wn] = Yk ·
1

M

(M−1)/2∑
n=−(M−1)/2

e−ı2πkn/N (4)

Recall from our previous lecture notes on sampled time series that

M∑
n=−M

e−ı2πfn =
sin(Nπf)

sin(πf)
(5)
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where N = 2M + 1. Thus

Zk = Yk ·
1

M

sin(Mπk/N)

sin(πk/N)
. (6)

The net result is a low-pass filter with a Dirichlet kernel frequency response
function. The DFT of wn is real. Note that at some frequencies, Wk is positive
while at other frequencies it is negative. As a result, the phase of this filter
“flips” from 0 to 180 degrees and back whenever Wk changes sign.

Note that although this low pass filter has a zero phase contribution, it is
also acausal and thus can only be implemented on a pre-recorded signal. This
is easily gotten around with the implementation of a pre-event memory in the
recording system.

As we have already seen, linear phase response is a frequently desirable
property of a filter because it will not distort the relative timing of the Fourier
components. All M -point, real-valued FIR filters with symmetric weights have
this property, as we can see by expressing the frequency response as

Wk =

M−1∑
n=0

wne
−ı2πkn/N = e−ıπk(M−1)/N

(M−1)/2∑
n=−(M−1)/2

wne
−ı2πkn/N (7)

= e−ıπk(M−1)/N

2

(M−1)/2∑
n=1

wn cos(2πkn/N) + w0

 = P (k) ·A(k) . (8)

The phase factor P (k) is complex with magnitude one, so it only adjusts the
phase. Furthermore, the phase adjustment is a linear function of k. Meanwhile,
the amplitude factor A(k) is real, so it only changes the relative amplitude at
different frequencies.

The MATLAB command conv can be used to convolve a filter sequence w
with the input sequence x. One problem with this is that the convolution will
lengthen the sequence by M − 1 samples. This is because the response of the
filter continues after the end of the input signal. If these samples are unwanted
or zero, you can simply truncate the filtered signal to produce an output with
the same number of samples as the input

>> y=conv(x,w);

>> y=y(1:N);

An alternative is to use the MATLAB command filter. This command is
designed for more complicated IIR filters (discussed below) which are specified
by two vectors. However, it can be used with an FIR filter by specifying the
filter weights as the first argument, and “[1]” as the second argument. e.g.

>> y=filter(w,[1],x);

Now suppose we have some desired continuous (analog) filter characteristic,
Ω(f), and we wish to construct an FIR realization, specified by N weights, wn.
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As our realization is discrete, we let Ω(f) be periodic in f , and apply the inverse
Fourier transform on the Nyquist interval to obtain

wn =

∫ 1/2

−1/2

Ω(f)eı2πfn df (9)

where f is normalized to the Sampling rate, r. However, there is a complication
in applying this recipe, as the resulting sequence may have an infinite number
of nonzero wn. Consider, for example, the perfect low pass filter, with a desired
cutoff frequency of fs/α, defined by

Ω(f) = Π(αf/2) . (10)

The inverse Fourier transform gives

wn = 2

∫ 1/α

0

cos(2πfn) df =
2

α
sinc(2n/α) (11)

which has an infinite number of nonzero wn.
The sinc function decays as n−1. What happens if we simply truncate the

series to M terms, bounded by ±(M − 1)/2? In this case we are convolving the
ideal frequency response with the DFT of the boxcar function, which is the by
now familiar Dirichlet kernel

(M−1)/2∑
n=−(M−1)/2

e−ı2πkn/N =
sin(Mπk/N)

sin(πk/N)
≡ D(M,N, k) . (12)

The frequency response of our truncated realization is thus the convolution of
the desired response with the Fourier transform of the discrete boxcar function
weighting. This particular realization is thus not especially desirable because the
Dirichlet kernel is a very oscillatory function which doesn’t fall off particularly
rapidly with frequency. The result is the introduction of large side lobes to
the frequency response of this filter realization. We can reduce this problem by
applying less abrupt truncation and/or by taking N to be as large as possible.
This brings us back once again to the issue of windowing, which arose previously
in these notes in different contexts associated with estimating power spectral
densities and in sampling.

Although usually not an optimal way to design filters, windowing the infinite
sequence defined by (9) provides a simple way of obtaining useful closed forms
for FIR filter weights. Some examples of windowed realizations of ideal low-
pass filters for α = 4 (filter corner at 1/2 of the Nyquist frequency) are shown
in Figures 4, 5, 6.

Because of the unique correspondence between an N -length sequence and
its N DFT coefficients, an N -length FIR filter can be uniquely specified by
N DFT coefficients. Another design method for obtaining FIR filter weights,
called Frequency Sampling, is thus to specify frequency characteristics at up toN
desired frequencies and then take the IDFT, rather than the inverse continuous
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Figure 4: FIR weights and response for a 128-point rectangular window FIR
realization of a low pass filter with a desired cutoff frequency of f = r/4.
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Figure 5: FIR weights and response for a 128-point Bartlett window FIR real-
ization of a low pass filter with a desired cutoff frequency of f = r/4. Note the
reduction in ripple near the transition band relative to the simple truncation
series (Figure 4).
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Figure 6: FIR weights and response for a 128-point Hamming window FIR
realization of a low pass filter with a desired cutoff frequency of r/4. Note the
reduction in ripple near the transition band relative to the simple truncation
series (Figure 4) and the Bartlett window (Figure 5). The tradeoff for smoother
response and better rejection outside of the desired passband is to have a more
gradual transition.
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FFT, as we did in (9). This gets around the problem of truncating an infinite
number of weights, because the IDFT produces exactly N weights. For example,
the perfect low pass filter realization, where the passband is defined from k =
−(M − 1)/2 to k = (M − 1)/2 becomes

wn =
1

N

(M−1)/2∑
k=−(M−1)/2

eı2πnk/N =
1

N

sin(πnM/N)

sin(πn/N)
=

1

N
D(M,N, k) . (13)

Convolution of an input series of length N with (13) is identical to simply
taking the DFT of the input series, setting the frequency components for |k| >
M equal to zero, and then inverse transforming the modified k-series back to
the n domain via the IDFT.

In practice, we determine the desired filter length M , then pick N so that
a filter of length M covers all of the frequencies for which we want a nonzero
response. Once the filter sequence is computed, we can apply the filter to a
sequence of arbitrary length by convolving the filter sequence with the input
sequence.

The problem with this type of filtering is that we have only defined the
frequency response at N points. what happens to the frequency response at
frequencies that are not constrained?

The frequency response of the sequence wn is given by (13). Taking a unit
sampling interval (so that f is normalized to the Nyquist frequency) gives (when
the Hermitian terms are collapsed into a cosine function)

W (f) =
2

N

N/2−1∑
n=1

(
sin(πnM/N)

sin(πn/N)
cos(2πnf)

)
+
M

N
+

1

N
cos(2πnf) (14)

where the last two terms are for n = 0 and n = N/2, respectively. (14) is plotted
as a function of normalized frequency in Figures 7 and 8 for N = 128, M = 31
and for N = 512, M = 127.

We see that the frequency response oscillates wildly between the frequency
sample points, even though it dutifully follows the ideal low pass specification
exactly at the proscribed frequencies. The largest overshoots occur near the
transition band. This type of behavior at the intermediate frequencies is called
the Gibbs phenomenon and Figures 7 and 8 show that it has the unfortunate
property that the percent overshoot does not decrease as N increases, although
the width of the ripples does decrease as we squeeze them by stubbornly speci-
fying more and more frequencies in our frequency sampling procedure.

If frequency sampling is really equivalent to direct manipulation of the FFT,
then why didn’t we notice any problems when we directly manipulated the FFT
of the 20 second audio clip? In that case, the FFT had 882,000 frequencies, so
the equivalent FIR filter would consist of a sequence of over 80,000 weights.
Thus the ripple was confined to extremely narrow frequency bands near the
cutoff at 2 Khz.

It turns out that one can in fact design much better behaved (smaller ripple)
filters by using more sophisticated design methods. Although we won’t get
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Figure 7: Frequency sampling frequency response in attempting to realize an
ideal low pass filter; N=128
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Figure 8: Another frequency sampling frequency response in attempting to real-
ize an ideal low pass filter; N=512. Note that increasing the number of frequency
specifications does not reduce the amplitude of the undesirable response ripple.
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into this in these notes, one very popular approach is the use of the Remez
exchange algorithm to design FIR filters with specified maximum and minimum
amplitudes in each of several frequency bands. Typically, a quite small filter (say
15 points) can adequately match the desired frequency response with very little
ripple. The MATLAB command firpm implements this approach to designing
a FIR filter.

More compact filter representations are possible if we allow recursiveelements
in our filters, where a component of the output is fed back into the input. In
addition, there are systems of interest that have impulse responses with non-zero
values at t = ∞ (e.g., integrators) which cannot be expressed at all in a finite
length FIR series. To fully appreciate this and to get a more general outlook
on discrete realizations of continuous idealizations, we need to introduce some
new types of transforms that are related to the Fourier transform.

The Laplace Transform

The One-Sided Laplace transform is a generalized Fourier transform which ex-
plicitly allows for complex frequency, s = σ + ıω, where σ and ω are real

Φ(s) ≡ L[φ(t)] =

∫ ∞
0

φ(t)e−st dt . (15)

The convergence of the integral is very much an issue. Assuming that s is a
positive real number or is complex with a positive real part, the function e−st

will go to 0 as t goes to infinity. For the integral to converge, φ(t) must not
grow too quickly as t goes to infinity. If |φ(t)| ≤ Kebt, for some real constants
K and b, and Re(s) > b, then the integral will converge.

Note that an alternative Two-Sided Laplace Transform is used by some au-
thors. In the two–sided Laplace transform, the integral is evaluated from minus
infinity to plus infinity instead of from 0 to plus infinity. The two sided Laplace
transform of H(t)φ(t) is precisely the one sided transform of φ(t).

If we make the substitution s = 2πıf = ıω, we get

L[φ(t)] =

∫ ∞
0

φ(t)e−st dt =

∫ ∞
−∞

H(t)φ(t)e−2πıft dt = F [H(t)φ(t)] . (16)

The the Laplace transform of φ(t) is equivalent to the Fourier transform of
H(t)φ(t). An alternative way to look at this is to say that as long as our signals
are zero before time t = 0, the Fourier transform and Laplace transform are
equivalent. This equivalence will be used frequently. In practice, we will often
assume that signals begin after time t = 0, so that multiplying by H(t) isn’t
necessary. Because of this relationship between the Laplace transform and the
Fourier transform, many properties of the Laplace transform can be proved by
using the already known properties of the Fourier transform.

For example, consider the action of a linear time invariant system on a signal
x(t), which we’ll assume is zero for all t before t = 0. Let φ(t) be the impulse
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response of the system, and let Φ(f) be the Fourier transform of the impulse
response. Assume further that the system is causal so that the output, y(t), is
zero before time t = 0. We know from our work with the Fourier transform that
the Fourier transform of the output is Y (f) = X(f)Φ(f). Using our substitution
s = 2πıf , we get that Y (s) = X(s)Φ(s). Here we’ve abused notation slightly by
using Y (s) for the Laplace transform of y(t) and Y (f) for the Fourier transform
of y(t). As long as all of the functions involved are zero before time 0, this works
beautifully.

Recall that the Fourier transform of the derivative of f(t) is given by F [f ′(t)] =
2πıfF [f(t)]. Using the equivalence of the Fourier and Laplace transforms for
functions which are zero before time t = 0, we would get that L[f ′(t)] = sL[f(t)].
This is almost, but not quite correct. The problem occurs because f(0) might
be nonzero. Using the definition of the Laplace transform and integration by
parts, it’s easy to show that L[f ′(t)] = sL[f(t)]− f(0). In general,

L[f (n)(t)] = snL[f(t)]− sn−1f(0)− . . .− sf (n−2)(0)− fn−1(0) . (17)

Next, we consider a linear time invariant system that is governed by a nth
order linear differential equation with constant coefficients.

an
dny

dtn
+ . . .+ a1

dy

dt
+ a0y = bm

dmx

dtm
+ . . .+ b1

dx

dt
+ b0x . (18)

Many (but by no means all) LTI’s can be written in this form. If we assume
that y(0), y′(0), . . ., y(n−1)(0) = 0, then by the rule for the Laplace transform
of a derivative,

(ans
n + . . . a1s+ a0)Y (s) = (bms

m + . . . b1s+ b0)X(s). (19)

This can be rewritten as

Y (s)

X(s)
= Φ(s) =

∑m
j=0 bjs

j∑n
k=0 aks

k
. (20)

As in the Fourier transfer function definition, the m roots of the numerator
of (20) are called zeros, because Φ(s) is zero there, and the n roots of the
denominator are called poles, because Φ(s) is infinite there. If the coefficients,
ai and bi in (18) are real, then the poles and zeros are either real or form complex
conjugate pairs. Note that at a pole frequency, sp, an output can occur even for
zero input. As we have seen before, a stable system has all of its poles on the left
hand side of the complex plane (i.e., Re(sp) < 0), so that the pole frequencies
have negative real parts

Another qualitative point is that closely-spaced poles and zeros cancel and
can be ignored unless we are very close to them. Indeed for large frequencies all
poles and zeros will start to cancel in this manner, so that Φ(s) asymptotically
approaches

G(s) =
bm
an

(s)m−n (21)

which changes by some multiple of about 6 dB for every doubling in frequency
(6 dB per octave).
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Figure 9: The contour used in computing the inverse Laplace transform.

The Inverse Laplace Transform

For t ≥ 0, the inverse Laplace transform is given by

φ(t) =
1

2πı

∫ γ+ı∞

γ−ı∞
Φ(s)est ds (22)

where γ is selected to be large enough so that the integral converges. if |φ(t)| ≤
Kebt for some constants K and b, then any value of γ larger than b will suffice.

In practice, this integral is usually evaluated by the technique of contour
integration, using a contour c which includes the line Re(s) = γ and a semicir-
cular arc to the left. See figure 9. If the integral over the semicircular arc is
0 (because Φ(s) goes to zero fast enough as the radius increases), then we can
replace the integral over the line with an integral around the entire contour

φ(t) =
1

2πı

∫
c

Φ(s)est ds . (23)

Why bother with the contour integral? An important theorem of complex
analysis states that if f(z) has a finite number of poles, then the counter clock-
wise integral around a closed contour, which contains the poles of f(z) can be
evaluated by ∫

c

f(z)dz = 2πı
∑

α=poles of f(z)

residue(α) (24)
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where the residue at a pole z = α of order m is

residue(α) =
1

(m− 1)!
lim
z→α

dm−1

dzm−1
(z − α)mf(z) . (25)

Notice that the value of the contour integral depends only on the residues and
the locations of the poles. Any contour which surrounds the same collection of
poles will result in the same value for the integral! We can apply this formula
to (23) to evaluate the inverse Laplace transform of Φ(s).

For example, suppose that our linear time invariant system is governed by
the differential equation

2y′(t) + y(t) = x(t) . (26)

We find that

Φ(s) =
1

1 + 2s
. (27)

In this case the system has a single pole of order 1 at s=-1/2. We will now find
the impulse response by computing the inverse Laplace transform using (23)
and contour integration. We can use the integration path from −ı∞ to +ı∞.

φ(t) =
1

2πı

∫ ı∞

−ı∞

1

1 + 2s
est ds . (28)

Our integrand goes to 0 very rapidly as our semicircular arc expands, so that
in the limit, the integral over the semicircular arc is in fact 0. To show this, we
use the substitution s = Reıθ, and take the limit as R goes to infinity∫ 3π/2

π/2

1

1 + 2Reıθ
eRe

ıθtReiθ dθ . (29)

In the limit as R goes to infinity, this integrand goes to 0 and the integral goes
to 0, so it is safe in this case to replace (22) with (23). A very common mistake
is to make the switch to the contour without checking that the integral over
the semicircular arc is 0. In such cases, contour integration will give the wrong
answer, so beware!

The residue at s=-1/2 is

residue(−1/2) = lim
z→−1/2

(s+ 1/2)
1

1 + 2s
est =

1

2
e(−1/2)t (30)

The factors of 2πı in (23) and (24) cancel out, so

φ(t) =
1

2
e(−1/2)t t ≥ 0 . (31)

Although any inverse Laplace transform can in theory be computed by this
method, in practice it’s usually easier to refer to a table of Laplace transforms
or to use a symbolic computation package such as Maple to do the work. Table
1 gives some useful Laplace transforms.
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Table 1: Table of Laplace Transforms
f(t) F (s) where valid
1 1

s s > 0
eat 1

s−a s > a
t(n−1)

(n−1)!e
at 1

(s−a)n s > a

tn n!
sn+1 s > 0

sin(at) a
s2+a2 s > 0

cos(at) s
s2+a2 s > 0

eat sin(bt) b
(s−a)2+b2 s > a

eat cos(bt) s−a
(s−a)2+b2 s > a

H(t− c) e−cs

s s > 0
δ(t− c) e−cs

f (n)(t) snF (s)− sn−1f(0)− . . .− f (n−1)(0)
ectf(t) F (s− c)
H(t− c)f(t− c) e−csF (s)

A very common problem in practice is to find the inverse Laplace transform
of a rational function Φ(s) = p(s)/q(s), where p(s) and q(s) are polynomial
functions of s. We can perform a partial fraction decomposition of Φ(s) in
terms of its poles a1, a2, . . ., am.

Φ(s) =
p(s)

q(s)
=

m∑
j=1

nj∑
k=1

cj,k
(s− aj)k

. (32)

Here nj is the multiplicity of the pole aj . Note that since we’re working with
complex poles, there are no irreducible quadratic factors. This partial fraction
decomposition can be done by hand, or it can be done with the help of a symbolic
computation package such as Maple, Mathematica, or with MATLAB’s symbolic
computation toolbox.

From the table of inverse Laplace transforms, we can see that

L−1

[
1

(s− a)n

]
=

t(n−1)

(n− 1)!
eat. (33)

Thus

φ(t) = L−1 [Φ(s)] =

m∑
j=1

nj∑
k=1

cj,k
(k − 1)!

tk−1eajt. (34)

This expression of φ(t) in terms of the poles of Φ(s) is very useful, because
it provides us with a stability criterion. If Re(aj) < 0, then eajt will go to 0 as
t goes to infinity. However, if Re(aj) ≥ 0, then eajt will not decay as t goes to
infinity. Thus our filter will be stable if and only if Re(aj) < 0 for j = 1, . . .,
m. That is, the filter will be stable if all of the poles are in the left half plane.
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The Chandler Wobble

As an example of a geophysical system transfer function with one complex pole
in the s plane and a complex forcing and response, we next consider the Chan-
dler wobble or free nutation response of the earth’s spin axis, which changes due
to some combination of mass shifts in the Earth due to oceanic or atmospheric
circulation, glaciation, vegetation variations, snow or surface water accumula-
tion, large earthquakes, mantle motions, core-mantle interactions, etc. Lately,
it has been claimed that the most important processes, at least from 1985-1996,
were atmospheric and oceanic processes, with the dominant mechanism being
ocean-bottom pressure variations; Gross, 2000; GRL 27, p. 2329-2332). In a
Cartesian grid is laid out at the north pole with an origin at the mean pole
position (the axis of greatest moment of inertia), the spin axis at a given time
can be specified as being at at (y1, y2) (Figure 10.)

If the forcing function, in this case, the migration of the Earth’s principal axis
of maximum rotational inertia due to mass movements, in the same coordinate
system, is (x1, x2), the governing differential equations of motion are those of a
body rotating slightly off from its maximum moment of inertia principal axis

ẏ1

ωc
+ y2 = x2 (35)

−ẏ2

ωc
+ y1 = x1 (36)

where, for a rigid body,

ωc =

(
C −A
C

)
Ω (37)

where C and A are the polar and equatorial rotational moments of inertia and
Ω is the spin rate. In the Earth, the components of the Chandler wobble have
amplitudes of tens of meters, and are thus readily detectable using astronomical
or other techniques. The ideal rigid body frequency (37) for a solid Earth is
about 305 days, (C − A)/C ≈ 1/305.51) but the observed decay constant is
significantly longer (about 430 days) due to the Earth not being a perfectly
elastic body.

We can jointly consider the two equations (35 and 36) by defining the com-
plex quantities

x = x1 + ıx2 (38)

y = y1 + ıy2 (39)

to obtain

i
ẏ

ωc
+ y = x . (40)

Taking the Laplace transform of both sides gives

Y (s)

(
is

ωc
+ 1

)
= X(s) (41)
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.
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so that the transfer function is

Y (s)

X(s)
=

ωc
is+ ωc

(42)

which has a single pole at s = ıωc (as y(t) and x(t) are complex valued, there is
no complex conjugate pole at s = −ıωc in this case). Physically, this means that
the locus of the rotational axis on the earth’s surface will indefinitely precess
from west to east, once the system is excited. This asymmetry arises from the
gyroscopic nature of the system. Dissipation in the earth (the principal cause
or causes for the damping of the Chandler wobble are, again, controversial) can
be accommodated by making ωc complex

ωc =
2π

Tc

(
1 +

i

2Qc

)
=

π

Tc

(
2 +

i

Qc

)
(43)

where Qc is the quality factor (see Chapter 2) of the system and Tc is the natural
frequency. The pole of the system response (42) then becomes

p =
π

Tc

(
2ı− 1

Qc

)
(44)

which has a negative real part and hence describes a decaying sinusoidal motion.
The impulse response is thus

φ(t) = L−1[Y (S)/X(s)] =
1

2πı

∫
c

−iωc
s− ıωc

est ds (45)

and may be found via contour integration and the residue theorem to be the
complex sinusoid

= −iωceıωct (46)

where the phase of (46) signifies the phase relationship between the complex
forcing and response functions, x(t) and y(t). In the problem of the Chandler
wobble, the interesting physics are tied up in the measurement of Tc (which is
around 430 days) and of the forcing function, x(t). The wobble is continuously
excited by mass movements in the solid Earth, oceans, and the atmosphere
which change its moments of inertia and averages about 0.14 seconds of arc (6.8×
10−7 rad), which corresponds to a root mean square (rms) polar discrepancy of
about 4.5 m).

It is worth noting that in some interesting situations, such as the excitation
of the normal modes of the earth, we can examine the response and estimate
the pole positions without worrying about the exact spectrum of the excitation
function. This is because the excitation function is broad-band relative to our
observational bandwidth and thus, on average, excites many frequencies.

The Z Transform

Just as the discrete Fourier transform as an alternative to the Fourier transform
to analyze discretized signals, the Z transform is the discrete analog of the
continuous Laplace transform.
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Consider a complex variable z and define the z transform of a sequence xn
as

X(z) = Z[xn] =

∞∑
n=−∞

xnz
−n. (47)

A warning: a few authors use zn rather than z−n in their z transform definitions.
Again, this is mere convention, akin to choosing e−ı2πft or eı2πft in the Fourier
transform definitions, but can lead to misinterpretations. Also, some authors
will define a one-sided version of the z transform in which the sum runs from
n = 0 to infinity. As a rule, always check to see what conventions a given author
is using!

Multiplication by z−l in the z domain is equivalent to a time delay (rightward
shift) of l samples and multiplication by zl is equivalent to a time advance
(leftward shift) of l samples; the exponent of z in each term is a place holder
to designate where a particular value fits into the time series. The time shift
theorem for the z transform is thus

Z[xn−i] =

∞∑
n=−∞

xn−iz
−n = z−i

∞∑
n=−∞

xn−iz
−(n−i) = z−i

∞∑
m=−∞

xmz
−m (48)

or
Z[xn−i] = z−iX(z) . (49)

Finding closed-form expressions for the z transforms of common time se-
quences relies on the specific properties of each series, but as an example, con-
sider an exponential series

xn =

{
cn n ≥ 0
0 n < 0

. (50)

In this case, we can use the standard procedure for collapsing geometric series
to obtain

Z[xn] =

∞∑
n=0

cnz−n =
1

1− cz−1
=

z

z − c
(51)

when |z| > |c| .
The case when c = 1 gives the z transform of the discrete unit step function

Z[Hn] =
z

z − 1
. (52)

The convolution theorem relationship for the z transform is particularly easy
to see. For a particular m, the terms in the product

W (z) = X(z)Y (z) =

∞∑
m=−∞

wmz
−m (53)

can be seen from polynomial multiplication of X(z) and Y (z) to be

xnz
−nym−nz

−(m−n) . (54)
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It follows that

Wm =

∞∑
n=−∞

xnym−n =

∞∑
n=−∞

ynxm−n (55)

which is just the discrete (linear) convolution of xn and yn.
To evaluate the inverse z transform, we again make use of the technique

of contour integration. By the residue theorem, the counterclockwise contour
integration around a pole of degree −k + 1 is

1

2πı

∫
c

dz

z−k+1
=

{
1 k = 0
0 k 6= 0

. (56)

The inverse z transform is thus

xn =
1

2πı

∫
c

X(z)zn−1 dz (57)

where c is a counterclockwise closed contour selected so that the integral will
converge.

To discuss issues of convergence, we express the z transform as a function of
complex z in a polar coordinate system z = Reı2πf , where R is a real number.
The z transform is then

X(Reı2πf ) =

∞∑
n=−∞

xn · (Reı2πf )−n =

∞∑
n=−∞

xnR
−ne−ı2πfn (58)

for R = 1, z lies on the unit circle in the complex plane, and the z transform is
equivalent to the Fourier series of the sequence xn. The infinite series defined
by the z transform (47) converges when

∞∑
n=−∞

|xnz−n| =
∞∑

n=−∞
|xnR−n| <∞ . (59)

As the z transform contains terms for both positive and negative n, the general
situation is that the sequence converges in some annular region, where R is not
so large that the negative n part of the sequence diverges, but not so small that
the positive n part of the sequence diverges, i.e.,

Rh− < |z| < Rh+ (60)

where Rh− and Rh+ designate the inner and outer radii of the annulus, respec-
tively.

Given the inverse z transform (57) we can now examine what happens in
the z domain when we multiply two time series together

wn = xn · yn . (61)
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Taking the z transform of both sides yields

W (z) =

∞∑
n=−∞

xnynz
−n =

1

2πı

∞∑
n=−∞

xn

∫
c

Y (v)
(v
z

)n dv
v

(62)

=
1

2πı

∫
c

Y (v)

{ ∞∑
n=−∞

xn

(v
z

)n} dv

v
=

1

2πı

∫
c

Y (v)X(z/v)
dv

v
(63)

setting z = Reıφ and letting the contour, c be the circular path v = ρeıθ gives

W (Reıφ) =
1

2π

∫ 2π

0

Y (ρeıθ)X(
R

ρ
eı(φ−θ)) dθ (64)

This is a generalized case of the convolution relationship for the Fourier trans-
form. To see this, evaluate (64) on the unit circle, where R = ρ = 1, φ = 2πf ,
and θ = 2πf ′ to obtain

W (f) =

∫ 1

0

Y (e2πıf ′)X(e2πı(f−f ′)) df ′ (65)

which is a circular convolution! In fact, the DFT of a sequence,

Xk =

N−1∑
n=0

xne
−ı2πnk/N (66)

is just the z transform evaluated at N equiangular points around the unit circle,
i.e.,

Xk = X(z = eı2πk/N )k = 0, 1, 2, ..., N − 1 . (67)

How can we relate the discrete-time z transform to the continuous-time
Laplace transform? How we do this is fundamental to designing discrete systems
which mimic continuous ones.

Consider the Laplace transform of a sampled version of a continuous func-
tion, x(t), which is assumed to be 0 before t = 0:∫ ∞

0

x(t)III(t)e−st dt =

∫ ∞
0

∞∑
n=0

x(n)δ(t− n)e−st dt (68)

=

∞∑
n=0

x(n)

∫ ∞
0

δ(t− n)e−st dt =

∞∑
n=0

x(n)e−sn =

∞∑
n=0

xnz
−n . (69)

Notice that if we let z = es, then z−n = e−sn. Thus the mapping between z
and s is simply z = es!

The general relationship between the z transform and the Fourier domain
is shown in Figure 11. The imaginary axis in the s-plane corresponds to the
unit circle in the z-plane. Similarly, the right half s-plane maps outside of the
z-plane unit circle and the left half of the s-plane maps inside of the z-plane
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unit circle. Note that this mapping is multivalued, with a periodicity of 2π in
the s-plane imaginary dimension, i.e., all of the points s = R(2πıf +2πım) map
to the same point on the unit circle in the z plane, z = eıR2πf .

Recall the stability criterion, that a filter is stable if and only if the poles
of Φ(s) lie in the left half plane. In terms of z, the condition is that a filter is
stable if and only if the poles of Φ(z) lie inside the unit circle.

IIR filtering

We will now consider recursive filters which effectively take weighted averages
of the input and previous output samples. The filter equation is of the form

K∑
k=0

akyn−k =

M∑
m=0

bmxn−m (70)

where y is the output sequence and x is the input sequence. This can be rewrit-
ten to show how yn can be computed

yn =

∑M
m=0 bmxn−m −

∑K
k=1 akyn−k

a0
. (71)

As equation (71) shows, recursive filters of this type are always causal. In this
form, the filter is trivial to program. Given the filter coefficients b, a, and the
input sequence x, the MATLAB command filter can be used to compute y.

We can compute the z transform of the impulse response by multiplying
equation (70) by z−n, and summing up terms from n = −∞ to ∞.

∞∑
n=−∞

K∑
k=0

akyn−kz
−n =

∞∑
n=−∞

M∑
m=0

bmxn−mz
−n (72)

Y (z)

K∑
k=0

akz
−k = X(z)

M∑
m=0

bmz
−m. (73)

Thus

Φ(z) =
Y (z)

X(z)
=

∑M
m=0 bmz

−m∑K
k=0 akz

−k
. (74)

Note the similarities between (70), (74) and (18), (20), this is because delays
map into powers of z−1 in the z transform, just as differentiation maps into
powers of s in the Laplace transform.

When is our recursive filter stable? For our filter to be stable, we must have
that the impulse response sequence φn goes to 0 as n goes to infinity. Recall
that if all of the poles of Φ(s) are in the left half plane (or have negative real
parts), then an LTI is stable. If all of the poles of Φ(z) are contained within the
unit circle, then by our transformation z = es, all of the poles of Φ(s) will be in
the left half plane, and our filter will be stable. Thus the stability condition for
a recursive filter of the form (70) is that the poles of Φ(z) must lie within the
unit circle.
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Figure 11: The Z Transform, and its relationship to the Fourier domain.
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The Impulse Invariance Method

Consider the simple continuous-time system defined by

τ
dy

dt
+ y = x (75)

where τ is real. Solving for the transfer function using the Laplace transform
yields

Y (s)

X(s)
=

1

1 + τs
(76)

which has a pole at s = −1/τ and is stable for τ > 0. The frequency response
is found by letting s = 2πıf

Y (f)

X(f)
=

1

1 + ı2πτf
(77)

which is 1 at zero frequency, and becomes smaller as f increases. This system
is thus a low pass filter. The impulse response is

L−1[Y (s)/X(s)] =
1

2πı

∫
c

est ds

1 + τs
= H(t)τ−1est|s=τ−1 =

H(t)

τ
e−t/τ . (78)

and the step response is thus

H(t) ∗H(t)τ−1e−t/τ = H(t)(1− e−t/τ ) . (79)

This response is nonzero for all non-negative t <∞, and thus cannot be modeled
at large t with any FIR filter, unless we are willing to use an arbitrarily large
number of filter terms. However, a very simple recursive filter can come much
closer to mimicking the desired response.

In the impulse invariance method, we pick a recursive filter so that the im-
pulse response of the digital filter matches the desired impulse response of the
continuous filter.

Consider the step response of the discrete system defined by

yn − αyn−1 = xn(1− α) (80)

For a step sequence input, we get

y0 = 1− α
y1 = α(1− α) + (1− α)

y2 = α2(1− α) + α(1− α) + (1− α)
(81)

and so forth. In general,

yn = (1− α)

n∑
k=0

αk = 1− αn+1 = 1− e(n+1) ln(α) (82)
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which has the form of a sampled version of the desired continuous response (79).
(80) is thus an IIR filter realization of (79).

To express this IIR filter in the z domain, recall the z−1 is the z transform
of a one sample delay. We can thus map the xn and yn in (80) to the z domain
by multiplying each term by z−n and summing over all n

∞∑
n=−∞

ynz
−n − α

∞∑
n=−∞

yn−1z
−n = (1− α)

∞∑
n=−∞

xnz
−n (83)

which can be factored as

Y (z)(1− αz−1) = (1− α)X(z) (84)

to obtain the z transfer function

Y (z)

X(z)
=

1− α
1− αz−1

. (85)

To evaluate the frequency response of (85), we evaluate the transfer function on
the unit circle, or at z = e2πıf/fs , where fs is the sampling frequency, and the
Nyquist interval is the range of frequencies is thus −fs/2 ≤ f ≤ fs/2

Φ(z = e2πıf/fs) =
1− α

1− αe−ı2πf/fs
. (86)

The corresponding frequency response of the continuous system is given by (77).
Both the continuous and discrete response functions are plotted in Figure 13,
using τ = 10 and the corresponding value for α, α = 1− 1/τ , so that values for
the discrete and continuous time functions agree at n = 0 and t = 0, respectively.

The major discrepancy in the frequency domain is that a discrete system
has a periodic frequency response, and so, for this filter, must return to a value
of 1 at f = fs, while the continuous system continues to approach zero response
with increasing frequency at a rate of about 6 dB per octave.

The Bilinear Transformation

Consider writing the discrete y sequence at a sampling interval of ∆ as

y(n∆) =

∫ n∆

∆(n−1)

ẏ(u)du+ y(∆[n− 1]) . (87)

Approximating the integral in (87) by the trapezoidal rule then gives

y(n∆) ≈ ∆

2
[ẏ(∆[n− 1]) + ẏ(n∆)] + y(∆[n− 1]) . (88)

which has the discrete time counterpart

yn =
∆

2
[ẏn−1 + ẏn] + yn−1 (89)
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The original (rewritten) differential equation (75) is

ẏn =
1

τ
(xn − yn) (90)

or equivalently

ẏn−1 =
1

τ
(xn−1 − yn−1) . (91)

Thus, we can eliminate the time derivatives by evaluating ẏ + ẏn−1 from the
sum of (90) and (91) and substituting the result into (89). This yields

yn =
∆

2τ
[xn−1 − yn−1 + xn − yn] + yn−1 (92)

or

yn(1 +
∆

2τ
)− yn−1(1− ∆

2τ
) =

∆

2τ
(xn + xn−1) . (93)

(91) has the z transform

Φ(z) =
Y (z)

X(z)
=

∆
2τ (1 + z−1)

(1 + ∆
2τ )− (1− ∆

2τ )z−1
(94)

=
(1 + z−1)

( 2τ
∆ + 1)− ( 2τ

∆ − 1)z−1
(95)

=
1

1 +
(

2τ
∆

) (
1−z−1

1+z−1

) . (96)

Evaluating the frequency response of (96) by taking z = e2πıf/fs , we get

Φ(z = ei2πf/fs) =
1

1 +
(

2τ
∆

) (
1−e−ı2πf/fs
1+e−ı2πf/fs

) (97)

=
1

1 +
(

2τ
∆

)
ı tanπf/fs

. (98)

(98) is thus the response of the continuous system (76) with the substitution

s =
2i

∆
tanπf/fs . (99)

(98) is plotted along with the continuous response in Figure 15).
Recalling that the continuous frequency response (77) is just (76), evaluated

at s = ı2πf , we can see that the frequency mapping between (98) and 77) is
just

2πfc =
2

∆
tanπfd/fs (100)
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where fd is the digital frequency and fc is the continuous frequency. The con-
tinuous system frequency response tends to zero as fc → ∞. The bilinear z
transform frequency response, on the other hand tends to zero where

πfd
fs

=
π

2
(2m+ 1) (101)

or

fd =
fs
2

(2m+ 1) (102)

where m is an integer, which is just at odd multiples of the Nyquist frequency,
fN = fs/2. The bilinear z-transform substitution (99) thus maps the semi-
infinite frequency interval of the continuous system (−∞, ∞) into the Nyquist
interval [−fN , fN ]. To obtain the digital transfer function, Φd(z), from a given
analog filter transfer function, Φa(s), we simply substitute

s =
2

∆

1− z−1

1 + z−1
. (103)

An alternative explanation of the bilinear transform approach is that if z =
es, and

ŝ = 2
1− 1

z

1 + 1
z

(104)

then

ŝ = 2
1− e−s

1 + e−s
= 2

1− e−2πıf

1 + e−2πıf
= 2ı tan(πf) . (105)

For small frequencies f , tanπf ≈ πf . Thus

ŝ ≈ 2πıf . (106)

That is, ŝ is an approximation to s. By using ŝ in place of s in the transfer
function, we obtain a transfer function that can be expressed as a rational
function of 1/z.

Of course, we can never match the analog response with a digital system
because of aliasing, but we can match some desirable characteristic of the analog
system (e.g., ripple height, corner frequency, etc.) within the Nyquist interval.
In general, we can do this far more compactly with an IIR filter, but as always,
there is a price, in this case IIR filters will have more complicated (non-linear)
phase characteristics than FIR filters. We can see this directly by noting that
the z transform of an FIR filter is just a polynomial in z−1, while the z transform
of a recursive filter is a ratio of two polynomials (a rational function) in z−1.
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Figure 14: Bilinear z transform discrete realization response compared to a
target continuous response in the time domain.
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Figure 15: Bilinear z transform discrete realization response compared to a
target continuous response in the frequency domain.
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Some Common Filter Types

Some filter types are commonly encountered in a wide variety of applications.
A high pass filter is designed to pass through all frequencies above a cut-off
frequency fc. The ideal high pass filter would have |Φ(f)| = 1 for f ≥ fc and
|Φ(f)| = 0 for f < fc. Similarly, a low pass filter would have |Φ(f)| = 1 for
f < fc and |Φ(f)| = 0 for f ≥ fc. An ideal band pass filter has |Φ(f)| = 1 for
f1 ≤ f ≤ f2 and |Φ(f)| = 0 for frequencies outside of the pass band. An ideal
band stop filter has |Φ(f)| = 0 for f1 ≤ f ≤ f2 and |Φ(f)| = 1 for frequencies
outside of the pass bad.

In practice it’s simply impossible to achieve these ideal frequency responses.
However, it is possible to design filters that are optimal with respect to some
objective criterion. The most common goal is to minimize the “ripple” in the
pass band. This is simply the difference (in dB) between the largest value of
|Φ(f)| and the smallest value of |Φ(f)| in the pass band. In the stop band, the
typical goal is to minimize the maximum value of ‖Φ(f)| in the stop band.

The Butterworth filter is designed to be optimally flat in its passband for
amplitude response (i.e., to be ”ripple”-less). Another very commonly applied
filter is the Chebyshev filter. The type 1 Chebyshev filter has no more than R dB
of ripple in the pass band, while the type 2 Chebyshev filter has |Φ(f)| at least
R dB down within the pass band. The sharpness of the corner is controlled by
the order of the filter (the number of poles in its transfer function). In general,
higher order filters can realize very sharp transition bands in their amplitude
response, but at a cost of complex (i.e., non-linear-phase) frequency response.
See Figures 16 through for examples of the frequency response that can be
obtained with these filter designs.

Unfortunately, these highly optimized filters tend to have very odd phase
responses. There is a useful trick that can be used to produce a zero phase
filter with amplitude response that is the square of the amplitude response of
the original filter. Given a signal x(t), let u(t) = φ[x(t)]. Let v(t) = u(−t),
effectively time reversing the filtered signal. Let w(t) = φ[v(t)]. Finally, let
y(t) = w(−t), effectively time reversing the signal again. The MATLAB com-
mand filtfilt implements this procedure. Note that the resulting filter will be
acausal. See Figures 22 and 23.

The amplitude of the frequency response of this filter is |Φ(f)|2. To see this,
let X(f) be the Fourier transform of x(t). Then

U(f) = Φ(f)X(f). (107)

By the time reversal theorem, the Fourier transform of u(−t) is U(−f). Thus

V (f) = U(−f) = Φ(−f)X(−f). (108)

Then
W (f) = Φ(f)V (f) = Φ(f)Φ(−f)X(−f). (109)

Finally,
Y (f) = W (−f) = Φ(−f)Φ(f)X(f). (110)
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Figure 16: 1-pole Butterworth low-pass realization impulse response.

Assuming that the impulse response φ(t) is real, Φ(f) is Hermitian. Thus

Y (f) = Φ(f)∗Φ(f)X(f) = |Φ(f)|2X(f). (111)
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Figure 17: 1-pole Butterworth low-pass realization transfer function.
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Figure 18: 8-pole Butterworth low-pass realization impulse response.
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Figure 19: 8-pole Butterworth low-pass realization transfer function.
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Figure 20: 8-pole Chebyshev (type 1) low-pass realization impulse response.
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Figure 21: 8-pole Chebyshev (type 1) low-pass realization transfer function.
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Figure 22: 1-pole Butterworth low-pass realization impulse response with
forward-reverse-time filtering (2 poles, effectively).
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Figure 23: 1-pole Butterworth low-pass realization transfer function with
forward-reverse-time filtering (2 poles, effectively).
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