Inverse Methods in Geophysics CERI 7260/8260; CVL 7128/8128 Spring 2018 Problem Set #3 Due Wednesday 26 February 2018

1. Let

Γ	1	2	3	4]
$\mathbf{A} = $	2	2	1	3	.
L	4	6	7	11	

Find bases for $N(\mathbf{A})$, $R(\mathbf{A})$, $N(\mathbf{A}^T)$, and $R(\mathbf{A}^T)$. What are the dimensions of the four subspaces?

- 2. Let **A** be an *n* by *n* matrix such that A^{-1} exists. What are N(A), R(A), $N(A^{T})$, and $R(A^{T})$?
- 3. Suppose that a nonsingular matrix A can be diagonalized as

$$\mathbf{A} = \mathbf{P} \Lambda \mathbf{P}^{-1}$$

Find a diagonalization of A^{-1} . What are the eigenvalues of A^{-1} ?

Let P₃[0,1] be the space of polynomials of degree less than or equal to 3 on the interval [0, 1]. The polynomials p₁(x)=1, p₂(x)=x, p₃(x)=x², and p₄(x)=x³ form a basis for P₃[0, 1], but they are not orthogonal with respect to the inner product

$$f \cdot g = \int_0^1 f(x)g(x)dx.$$

Use the Gram-Schmidt orthogonalization process to construct an orthogonal basis for $P_3[0, 1]$. Once you have your basis, use it to find the third-degree polynomial that best approximates $f(x)=e^{-x}$ on the interval [0, 1].