Inverse Methods in Geophysics

CERI 7260/8260; CVL 7128/8128
Spring 2018
Problem Set \#3
Due Wednesday 26 February 2018

1. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 2 & 1 & 3 \\
4 & 6 & 7 & 11
\end{array}\right]
$$

Find bases for $N(\mathbf{A}), R(\mathbf{A}), N\left(\mathbf{A}^{T}\right)$, and $R\left(\mathbf{A}^{T}\right)$. What are the dimensions of the four subspaces?
2. Let \mathbf{A} be an n by n matrix such that A^{-1} exists. What are $N(\mathbf{A}), R(\mathbf{A}), N\left(\mathbf{A}^{T}\right)$, and $R\left(\mathbf{A}^{T}\right)$?
3. Suppose that a nonsingular matrix A can be diagonalized as

$$
\mathbf{A}=\mathbf{P} \Lambda \mathbf{P}^{-1}
$$

Find a diagonalization of \mathbf{A}^{-1}. What are the eigenvalues of \mathbf{A}^{-1} ?
4. Let $P_{3}[0,1]$ be the space of polynomials of degree less than or equal to 3 on the interval $[0,1]$. The polynomials $p_{1}(x)=1, p_{2}(x)=x, p_{3}(x)=x^{2}$, and $p_{4}(x)=x^{3}$ form a basis for $P_{3}[0,1]$, but they are not orthogonal with respect to the inner product

$$
f \cdot g=\int_{0}^{1} f(x) g(x) d x
$$

Use the Gram-Schmidt orthogonalization process to construct an orthogonal basis for $P_{3}[0,1]$. Once you have your basis, use it to find the third-degree polynomial that best approximates $f(x)=e^{-x}$ on the interval $[0,1]$.

