Intermediate Seismology
 ESCI 7402
 Homework \#4
 Due: Monday, April 2, 2012
 NCAA Cagniard-deHoopsters!
 SsPmp Tournament

Figure 6 of the attached paper shows the geometry of 3 different rays that contribute to the response of intermediate depth regional earthquakes.

Examine the kinematics and dynamics of the response of these 3 generalized rays.

1) Assume the layer-over-halfspace model in Table 2. The Cagniard contour can be generally written as

$$
t=p x+\sum_{n=1}^{m} l_{i} T h_{i} \eta_{v_{i}}
$$

where,
$t=$ time
$p=$ complex ray parameter
$x=$ horizontal distance
$T h_{i}=$ thickness of the ith layer
$\eta_{v_{i}}=\left(\frac{1}{v_{i}^{2}}-p^{2}\right)^{1 / 2}$
$l_{i}=$ number of times the ray traverses the layer
Write out the Cagniard contour for each ray.
2) The ray parameter of the geometrical ray, p_{0}, can be found iteratively by examining the behavior of $\frac{d t}{d p}$:

$$
\frac{d t}{d p}=x-p \sum_{i=1}^{m} \frac{T h_{i} l_{i}}{\eta_{v_{i}}}
$$

One way to find p_{0} is to successively halve the interval between a trial $p_{\text {left }}$ and $p_{\text {right }}$ to produce a $p_{\text {new }}$ as shown on the figure. Decide what side $p_{\text {new }}$ is on and then use it to replace $p_{\text {left }}$ or $p_{\text {right }}$. Repeat the process until you reach p_{0} within some small tolerance (say 10^{-5}).

Using this or some other numerical technique, calculate $t-x$ and $p_{0}-x$ curves for the 3 generalized rays. Assume a source depth of 110 km and a range between 0 to 700 km .
3) For a distance past critical distance for all 3 rays, analyze each ray for head wave contributions and sketch these ray paths.

