Intermediate Seismology ESCI 7402 Homework #4 Due: Monday, April 2, 2012 NCAA Cagniard-deHoopsters! SsPmp Tournament

Figure 6 of the attached paper shows the geometry of 3 different rays that contribute to the response of intermediate depth regional earthquakes.

Examine the kinematics and dynamics of the response of these 3 generalized rays.

1) Assume the layer-over-halfspace model in Table 2. The Cagniard contour can be generally written as

$$t = px + \sum_{n=1}^{m} l_i Th_i \eta_{v_i}$$

where,

t = time p = complex ray parameter x = horizontal distance $Th_i = \text{thickness of the ith layer}$ $\eta_{v_i} = \left(\frac{1}{v_i^2} - p^2\right)^{1/2}$

 l_i = number of times the ray traverses the layer

Write out the Cagniard contour for each ray.

2) The ray parameter of the geometrical ray, p_0 , can be found iteratively by examining the behavior of $\frac{dt}{dp}$:

$$\frac{dt}{dp} = x - p \sum_{i=1}^{m} \frac{Th_i l_i}{\eta_{\nu_i}}$$

One way to find p_0 is to successively halve the interval between a trial p_{left} and p_{right} to produce a p_{new} as shown on the figure. Decide what side p_{new} is on and then use it to replace p_{left} or p_{right} . Repeat the process until you reach p_0 within some small tolerance (say 10⁻⁵).

Using this or some other numerical technique, calculate t-x and p_0 -x curves for the 3 generalized rays. Assume a source depth of 110 km and a range between 0 to 700 km.

3) For a distance past critical distance for all 3 rays, analyze each ray for head wave contributions and sketch these ray paths.