Cagniard-deHoop Solution for an Atmospheric Line Source

An isotropic line source is situated at a height $x_{3}=-h$ in an inviscid fluid (Figure 1). This source is an approximation of a very high Mach number horizontally propagating space vehicle or meteor in the high atmosphere that produces a thin conical Mach cone.

Figure 1 - Cartesian coordinate system for an isotropic line source situated in a fluid halfspace over an elastic solid halfspace.

The isotropic line source is represented by a body force given in terms of the gradient of scalar source potential.

$$
\begin{equation*}
\vec{f}\left(x_{1}, x_{3}, t\right)=\nabla \phi_{s} . \tag{1.1}
\end{equation*}
$$

The wave equation for the P wave potential in the fluid halfspace is

$$
\begin{equation*}
\nabla^{2} \phi^{f}-\frac{1}{\alpha_{f}^{2}} \frac{\partial^{2} \phi^{f}}{\partial t^{2}}=-\frac{1}{\alpha_{f}^{2}} \phi_{s} \tag{1.2}
\end{equation*}
$$

and the wave equations for the P and SV wave potentials in the solid halfspace are

$$
\begin{align*}
& \nabla^{2} \phi-\frac{1}{\alpha^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{1.3}\\
& \nabla^{2} \psi-\frac{1}{\beta^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
\end{align*}
$$

Displacements can be found through the Helmholtz decomposition

$$
\begin{equation*}
\vec{u}=\nabla \phi+\nabla \times \vec{A} \tag{1.4}
\end{equation*}
$$

which, for this two dimensional problem, reduces to

$$
\begin{align*}
& u_{1}=\frac{\partial \phi}{\partial x_{1}}-\frac{\partial \psi}{\partial x_{3}} \\
& u_{3}=\frac{\partial \phi}{\partial x_{3}}+\frac{\partial \psi}{\partial x_{1}} \tag{1.5}
\end{align*}
$$

By inspection, the solution for the P wave potential in the fluid halfspace for a receiver in the fluid halfspace is

$$
\begin{equation*}
\bar{\phi}^{f}\left(x_{1}, x_{3}, s\right)=\frac{F(s)}{2 \pi \alpha_{f}^{2}}\left\{\operatorname{Im} \int_{0}^{+i \infty} \frac{e^{-s\left(p x_{1}+\mid x_{3}+h \eta_{\alpha_{f}}\right)}}{\eta_{\alpha_{f}}} d p+\operatorname{Im} \int_{0}^{+i \infty} \frac{R_{P P} e^{-s\left(p x_{1}-\left(x_{3}-h\right) \eta_{\alpha_{f}}\right)}}{\eta_{\alpha_{f}}} d p\right\} \tag{1.6}
\end{equation*}
$$

The solution for the P wave potential in the solid halfspace is

$$
\begin{equation*}
\bar{\phi}\left(x_{1}, x_{3}, s\right)=\frac{F(s)}{2 \pi \alpha_{f}^{2}} \operatorname{Im} \int_{0}^{+i \infty} \frac{T_{p p} e^{-s\left(p x_{1}+h \eta_{\alpha_{f}}+x_{3} \eta_{\alpha}\right)}}{\eta_{\alpha_{f}}} d p \tag{1.7}
\end{equation*}
$$

and for the SV wave potential

$$
\begin{equation*}
\bar{\psi}\left(x_{1}, x_{3}, s\right)=\frac{F(s)}{2 \pi \alpha_{f}^{2}} \operatorname{Im} \int_{0}^{+i \infty} \frac{T_{p s} e^{-s\left(p x_{1}+h \eta_{\alpha_{f}}+x_{3} \eta_{\beta}\right)}}{\eta_{\alpha_{f}}} d p \tag{1.8}
\end{equation*}
$$

The displacements on the surface of the solid halfspace can be found by evaluating (1.5) and letting $x_{3} \rightarrow 0$ for the solid halfspace solutions for the potential (1.7) and (1.8):

$$
\begin{align*}
& \bar{u}_{1}\left(x_{1}, 0, s\right)=\frac{s F(s)}{2 \pi \alpha_{f}^{2}} \operatorname{Im} \int_{0}^{+i \infty} \frac{\left(p T_{p p}-\eta_{\beta} T_{p s}\right) e^{-s\left(p x_{1}+h \eta_{\alpha_{f}}\right)}}{\eta_{\alpha_{f}}} d p \\
& \bar{u}_{3}\left(x_{1}, 0, s\right)=\frac{s F(s)}{2 \pi \alpha_{f}^{2}} \operatorname{Im} \int_{0}^{+i \infty} \frac{\left(\eta_{\alpha} T_{p p}-p T_{p s}\right) e^{-s\left(p x_{1}+h \eta_{\alpha_{f}}\right)}}{\eta_{\alpha_{f}}} d p \tag{1.9}
\end{align*}
$$

Cagniard's contour is found by setting

$$
\begin{equation*}
t=p x_{1}+h \eta_{\alpha_{f}} \tag{1.10}
\end{equation*}
$$

which, for $t \geq \frac{r}{\alpha_{f}}$ and $r=\left(h^{2}+x_{1}^{2}\right)^{\frac{1}{2}}$,

$$
\begin{equation*}
p=\frac{x_{1}}{r^{2}} t+i\left(t^{2}-\frac{r^{2}}{\alpha_{f}^{2}}\right)^{\frac{1}{2}} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d p}{d t}=\frac{+i \eta_{\alpha_{f}}}{\left(t^{2}-\frac{r^{2}}{\alpha_{f}^{2}}\right)^{\frac{1}{2}}} \tag{1.12}
\end{equation*}
$$

Letting $f(t)=H(t)$, the time domain solution is

$$
\begin{align*}
& u_{1}\left(x_{1}, 0, t\right)=\frac{1}{2 \pi \alpha_{f}^{2}} \frac{\operatorname{Re}\left[p T_{p p}-\eta_{\beta} T_{p s}\right]_{C}}{\left(t^{2}-\frac{r^{2}}{\alpha_{f}^{2}}\right)^{\frac{1}{2}}} H\left(t-\frac{r}{\alpha_{f}}\right) \tag{1.13}\\
& u_{3}\left(x_{1}, 0, t\right)=\frac{1}{2 \pi \alpha_{f}^{2}} \frac{\operatorname{Re}\left[\eta_{\alpha} T_{p p}+p T_{p s}\right]_{C}}{\left(t^{2}-\frac{r^{2}}{\alpha_{f}^{2}}\right)^{\frac{1}{2}}} H\left(t-\frac{r}{\alpha_{f}}\right)
\end{align*}
$$

It is understood that the functions of p are evaluated along Cagniard's contour, C, equation (1.11).

Figure 2 shows two example calculations for an impulse source time history. The P and S wave velocities of the solid halfspace are very important in determining the nature of the acoustic-seismic response. The common case of a solid substrate with higher P and S wave velocities (Figure 2a) gives rise to P and S head waves along with a very impulsive, acoustically coupled Rayleigh wave before the direct acoustic wave arrives at the station. In comparison, a solid substrate with P and S wave velocities lower than atmospheric acoustic wave velocity (Figure 2b) only shows the direct acoustic wave from the source. The large, acoustically coupled Rayleigh wave is a common hazard in explosion work since coupling can cause strong damaging ground motions away from the source.

A counter-intuitive characteristic of the solution with low solid halfspace velocities is the unusual particle direction of the direct arrival. A compressional acoustic wave gives rise to downward particle displacement at the halfspace boundary as expected. However, the
radial component is polarized back towards the source due to the P-to-S conversion set up at the fluid/solid boundary.

Figure 2 - Examples of the impulse response of an acoustic line source 50 km high in a halfspace atmosphere model. In (a) and (b), the receiver is located 50 km from the origin where the origin is located on the fluid/solid boundary. Top panels (a) show the path of the Cagniard contour (left) and the radial and vertical ground motion responses (right) for a relatively high velocity solid halfspace with average velocities similar to those found for Mississippi embayment sediments. Bottom panels (b) are arranged similarly but are for a low velocity halfspace more appropriate for the velocity of near-surface unconsolidated sediments. For (a), the location of the branch cuts for solid halfspace velocities predict P and S head waves along with the Rayleigh wave before the direct wave arrives from the acoustic source. The branch cuts for (b) are all to the right of p_{0}. Only the geometric direct arrival is predicted in the response. Recall that p_{0} is the geometrical ray parameter for the generalized ray, here the direct acoustic arrival, and occurs at the point where the contour leaves the real axis.

