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Cagniard-deHoop Solution for an Atmospheric Line Source 

An isotropic line source is situated at a height x3=-h in an inviscid fluid (Figure 1).  This 

source is an approximation of a very high Mach number horizontally propagating space 

vehicle or meteor in the high atmosphere that produces a thin conical Mach cone. 

 
Figure 1 - Cartesian coordinate system for an isotropic line source situated in a fluid halfspace 
over an elastic solid halfspace. 
 

The isotropic line source is represented by a body force given in terms of the gradient of 

scalar source potential. 

  . (1.1) 

The wave equation for the P wave potential in the fluid halfspace is 

   (1.2) 

and the wave equations for the P and SV wave potentials in the solid halfspace are 

    . (1.3) 

Displacements can be found through the Helmholtz decomposition 

   (1.4) 

which, for this two dimensional problem, reduces to 

 

f x1, x3,t( ) = ∇φs

∇2φ f − 1
α f
2
∂2φ f

∂t 2
= − 1

α f
2 φs

∇2φ − 1
α 2

∂2φ
∂t 2

= 0

∇2ψ − 1
β 2

∂2ψ
∂t 2

= 0

 
u = ∇φ +∇×


A



 2 

  . (1.5) 

By inspection, the solution for the P wave potential in the fluid halfspace for a receiver in 

the fluid halfspace is 

  . (1.6) 

The solution for the P wave potential in the solid halfspace is 

   (1.7) 

and for the SV wave potential 

  . (1.8) 

The displacements on the surface of the solid halfspace can be found by evaluating (1.5) 

and letting  for the solid halfspace solutions for the potential (1.7) and (1.8): 
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Cagniard’s contour is found by setting 
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which, for  and  , 
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and 

    . (1.12) 

Letting , the time domain solution is 

  

    . (1.13) 

It is understood that the functions of p are evaluated along Cagniard’s contour, C, 

equation (1.11). 

 

Figure 2 shows two example calculations for an impulse source time history.  The P and 

S wave velocities of the solid halfspace are very important in determining the nature of 

the acoustic-seismic response.  The common case of a solid substrate with higher P and S 

wave velocities (Figure 2a) gives rise to P and S head waves along with a very impulsive, 

acoustically coupled Rayleigh wave before the direct acoustic wave arrives at the station.  

In comparison, a solid substrate with P and S wave velocities lower than atmospheric 

acoustic wave velocity (Figure 2b) only shows the direct acoustic wave from the source.  

The large, acoustically coupled Rayleigh wave is a common hazard in explosion work 

since coupling can cause strong damaging ground motions away from the source. 

 

A counter-intuitive characteristic of the solution with low solid halfspace velocities is the 

unusual particle direction of the direct arrival.  A compressional acoustic wave gives rise 

to downward particle displacement at the halfspace boundary as expected.  However, the 

  

dp
dt

=
+iηα f

t2 − r 2

α f
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

 f t( ) = H t( )

  

u1 x1,0,t( ) = 1
2πα f

2

Re pTpp −ηβTps
⎡⎣ ⎤⎦C

t2 − r 2

α f
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

H t − r
α f

⎛

⎝
⎜

⎞

⎠
⎟

u3 x1,0,t( ) = 1
2πα f

2

Re ηαTpp + pTps
⎡⎣ ⎤⎦C

t2 − r 2

α f
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

H t − r
α f

⎛

⎝
⎜

⎞

⎠
⎟



 4 

radial component is polarized back towards the source due to the P-to-S conversion set up 

at the fluid/solid boundary. 

 

 
Figure 2 – Examples of the impulse response of an acoustic line source 50 km high in a halfspace 
atmosphere model.  In (a) and (b), the receiver is located 50 km from the origin where the origin 
is located on the fluid/solid boundary.  Top panels (a) show the path of the Cagniard contour (left) 
and the radial and vertical ground motion responses (right) for a relatively high velocity solid 
halfspace with average velocities similar to those found for Mississippi embayment sediments. 
Bottom panels (b) are arranged similarly but are for a low velocity halfspace more appropriate for 
the velocity of near-surface unconsolidated sediments.  For (a), the location of the branch cuts for 
solid halfspace velocities predict P and S head waves along with the Rayleigh wave before the 
direct wave arrives from the acoustic source.  The branch cuts for (b) are all to the right of p0.  
Only the geometric direct arrival is predicted in the response.  Recall that p0 is the geometrical ray 
parameter for the generalized ray, here the direct acoustic arrival, and occurs at the point where 
the contour leaves the real axis. 


