
A Short Theory of Rotation 
 
The analysis of deformation in a continuum yields a symmetric, second rank strain tensor 
and an anti-symmetric rotation tensor (e.g., Love, 1927).  For example, differential 
motions in a continuum are given by 
 

  . (1) 

 
The rotation tensor describes rigid body rotations about the three primary axes and the 
strain tensor internal deformations of the material.  Rotation can be simply derived as the 
curl of the displacement field or 
 

  (2) 

 
(Morse and Feshbach, 1953).  Rotation has vector properties such as direction and 
magnitude yet it does not have the same the properties as polar vectors in terms of 
coordinate transformations, reflection about the origin, or choice of left or right-handed 
coordinate systems.  Because of this, rotation is defined as an “axial” vector where the 
rotation sign (or spin direction) depends on the choice of direction of a normal to the 
reference surface that defines the vector.  Here we use the common “right-hand” rule to 
define rotation directions for a right-handed Cartesian coordinate system in the typical 
geocentric configuration. 
 
Although, strictly speaking, rotation is an axial vector, it conforms to typical vector 
addition properties under many circumstances.  In the case of infinitesimal rotational 
motions, two vector rotations can be summed using the usual rule of vector sums.  
However, it is well known that finite rotations cannot be added in this way (Resnick and 
Halliday, 1966).  On the other hand, instantaneous quantities like angular velocity(e.g., 

) or angular acceleration( ) can always be summed as vectors since they represent 
infinitesimal changes in rotation, and the rotation derivative with time. 
 
A fundamental assumption used in the derivation of the wave equation in elastic media is 
that of infinitesimal displacements and strains (e.g., Aki and Richards, 1980).  This 
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êz

 
θx  

θx



assumption requires rotations to be infinitesimal as well.  Seismological strains of  10-4 
are quite large and usually represent non-linear deformations of earth materials that may 
occur near a seismic source or where earth materials fail.  It follows that rotations of this 
magnitude, while still numerically small, will also occur in similar circumstances.  Thus, 
we can expect rotation itself to be accurately handled as a simple vector in most 
seismological circumstances.  For example, superposition of rotation vectors at a field 
point from different wave equation solutions in numerical simulations should be a valid 
technique.  Thus, seismological rotation fields will usually be infinitesimal and can be 
treated as typical vectors.  Tectonic, other geophysical observations (e.g., the rotation of 
the earth), and extreme engineering observations such as building failure may involve 
finite rotations.  Angular velocities and accelerations will be vectors in these cases but 
rotation will not. 
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