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Frequency/Wavenumber Analysis 

 

1D Case 

Assume that we have a continuous wavefield in t and x, f(t,x).  A seismic array consists of 

discrete spatial measurements of the wavefield at N locations in x.  This spatially sampled 

wavefield can be represented by 

 

    .        (1) 

The temporal and spatial Fourier transform of the wavefield is given by 

    .      (2) 

Substitute (1) into (2) and evaluate the integrals 
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The “array response”, , is defined when 

           (4) 

so that 

       (5) 

 
and since , we can find the frequency-horizontal slowness response as 

  .   (6) 

A “broadband” array response could also be defined as an average over a frequency band 
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Here is an example of producing a 1D slowness-frequency spectrum for 24 channels of 

refraction data at 2m spacing.  The source was a vertical hammer blow (Figure 1). 

 

 

 
Figure 1 – Refraction data taken in the front yard of CERI in 2006.  Shown are vertical 

component waveforms using the Matlab program “wavefield”. 

 

Here is the resulting 1D frequency-slowness spectra of the raw data without correcting 

for geometric spreading of the arrivals with distance (Figure 2). 
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Figure 2 – 1D frequency-slowness spectra of the raw refraction data of Figure 1 without 

correcting for geometrical spreading.  As a result, the spectra are dominated by large arrivals at 

relatively close distance to the source effectively making the array much shorter in aperture. The 

slowness spectra at each frequency are relatively wide except beyond 200 Hz where the source 

airwave dominates the power spectrum.  The amplitude scale is for normalized power spectra at 

each frequency. 

 

Because the data at greater distance has less amplitude from simple geometrical 

spreading, the frequency-slowness spectra are of relatively low resolution.  This happens 

since data at greater range is weighted less in the summation in equation (3).  This can be 

remedied by simply normalizing traces at each range to have the same maximum 

amplitude.  After normalization, the frequency-slowness spectra appear more distinct 

(Figure 3).  Note that the “plane wave” approximation was not applied to these data in 

that there are several kinds of waves in the data that have different dispersion 

characteristics. 
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Figure 3 – 1D frequency-slowness spectra after normalizing each time domain waveform to 

effectively correct for geometrical spreading.  Note the highly aliased Air wave spectra for 

frequencies greater than 125 Hz. 

 

2D Case 

2D frequency-wavenumber analysis works the same way as 1D except there is one more 

Fourier transform.  Assume a two dimensional wavefield, .  A two dimensional 

array of seismometers discretely samples the wavefield in space.  Using the same kind of 

representation as (1), we write 

      (8) 

where we have used a 2D irregular “comb” function to isolate measurements at array 

element locations  .  Fourier transforming (8) in space and time gives 
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Substituting (8) into (9) gives 

   . (10) 

Writing kx and ky in terms of the x and y horizontal slownesses: 

  

       (11) 

gives 

   .  (12) 

As in the 1D case the array response is given for an impulse wavefield ( ) 

so that 

     .  (13) 

Likewise, a “broadband” array response can be obtained by averaging (integrating) the 

response over a frequency band as in (7) to get 

 

     .  (14) 

Figure 4 shows a theoretical calculation of the array response and co-array for a “Golay 

3x6” array design.  This is an unusual array built from 6 small tripartite arrays.  The co-

array diagram shows that the interstation distances and azimuths uniformly sample the xy 

plane, a surprising result considering the sparseness of the actual array design. 
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Figure 4 – Array geometry (upper left), co-array (upper right), and the broadband array response 

(lower left) for a bandpass between 15s to 30s period for a plane wave traveling from an azimuth 

of 45 degrees at a horizontal phase velocity of 10km/s.   The co-array is a plot of all possible 

distances and azimuths between pairs of stations of the array. 


