## Global Seismology CERI 7105/8105 <br> Homework Set \#5 <br> Due Monday, October 22, 2018 <br> Ray Theory Travel-time Computations and Inversion

1. (7105/8105 students) (30)Assume the following velocity profile, velocities are in $\mathrm{km} / \mathrm{sec}$ :


Do the following for

- the direct turning ray above 30 km depth,
- the direct turning ray in the structure below 30 km depth,
- and the reflected ray from the interface.
a. Derive the travel time and distance formulas as a function of incidence angle at the surface.
b. Write a computer program to evaluate the integrals to create a plot of the traveltime distance curves to a distance of 400 km . Also plot the travel times using a reducing velocity of $7 \mathrm{~km} / \mathrm{s}$.
c. Accurately sketch out the paths of important rays in this structure. (You do not have to make a ray-tracing program - just sketch the important rays, where they bottom, and explain the $T-x$, and $p-x$ behavior.)

2. (8105 students, extra credit for 7105 students) (20) Ray bottoming depth is given by the Herglotz-Weichert integral:

$$
Z_{1}=\frac{1}{\pi} \int_{0}^{x_{1}} \cosh ^{-1}\left(\frac{p(x)}{p\left(x_{1}\right)}\right) d x
$$

where,

$$
\begin{gathered}
p(x)=\frac{d T}{d x} \\
\cosh ^{-1} y=\ln \left(y+\sqrt{y^{2}-1}\right)
\end{gathered}
$$

Numerically, $p(x)$ can be found be differencing adjacent points on the travel time curve. For example, at $x_{i}$ and $T_{i}$

$$
p\left(x_{i}\right)=\frac{T_{i}-T_{i+1}}{x_{i}-x_{i+1}} .
$$

The integral over $x$ can be approximated by the trapezoidal rule:

$$
Z_{N}=\frac{1}{\pi} \sum_{j=1}^{N-1}\left(\cosh ^{-1}\left[\frac{p\left(x_{j}\right)}{p\left(x_{N}\right)}\right]+\cosh ^{-1}\left[\frac{p\left(x_{j+1}\right)}{p\left(x_{N}\right)}\right]\right)\left(\frac{x_{j+1}-x_{j}}{2}\right)
$$

Using your results from problem 1, calculate a "synthetic" data set of travel times and distances for the turning ray in the upper layer of the structure shown above. Using this data set, calculate the ray parameter - distance relation and then numerically evaluate the Herglotz-Weichert integral to determine bottoming depth for the ray at each distance. Compare your inverted velocity values with the actual values. Try different sampling intervals in $x$ and evaluate the accuracy of your answer.

