## CERI 7105/8105

Global Seismology
Homework Set \#2

## Under Stress and Strain

1. Find eigenvalues and eigenvectors for the following matrices:
a. $\left(\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right)$
b. $\left(\begin{array}{cc}-1 & 3 \\ 3 & 1\end{array}\right)$
c. $\left[\begin{array}{ccc}2.5 & -0.3 & 2.1 \\ -0.3 & 0 & 1.3 \\ 2.1 & 1.3 & -3.4\end{array}\right]$

You can use MatLab. Make sure your coordinate systems are right-handed.
2. Determine the principal strains and their directions for the following strain tensor:

$$
\varepsilon_{\mathrm{ik}}=\left(\begin{array}{ccc}
2.5 & 1.3 & -4.0 \\
1.3 & 1.1 & 2.0 \\
-4.0 & 2.0 & 3.4
\end{array}\right) \times 10^{-7}
$$

Compute the three strain invariants from this tensor and from the principal strain tensor. (Hint: They should be the same for the two tensors.)
3. (8105 Students only; extra credit for 7105) The Pinon Flat strain meter consists of 3 laser interferometers each 500 m long that measure (positive) extension in the NS, EW, and NW/SE directions. Given these three measurements of strain, what strains are possible to determine in the geographic (NS/EW) coordinate system? Give a relation for them.(Hint: Rotate the known normal strain and the unknown normal and shear strains in NW/SE coordinate system into the geographic coordinate system. Relate the unknown strains to the known normal strains in the geographic coordinate system.)
4. Principal stresses are measured in a hydrofract experiment. North, East and down represent the $\mathrm{x}_{1}, \mathrm{x}_{2}$ and $\mathrm{x}_{3}$ directions, respectively, of a Cartesian coordinate system. Determine the stress tensor in this coordinate system if the following principal stress directions and magnitudes are measured:
$\mathrm{P}_{1}=-200 \mathrm{MP}\left(10^{6}\right.$ Pascals) (oriented N30 ${ }^{\circ} \mathrm{E}$ on the horizontal plane)
$\mathrm{P}_{2}=-180 \mathrm{MP} \quad$ (oriented $\mathrm{N} 60^{\circ} \mathrm{W}$ on the horizontal plane)
$P_{3}=-60 \mathrm{MP} \quad$ (oriented vertically)
Remember that positive stress, in our convention, is tensional. Also remember that stress is not a vector. Make sure your coordinate systems are "right-handed".

What are the shear stresses on a hypothetical vertical fault plane oriented north-south? What is the deviatoric stress tensor?

