CERI 7105/8105
 Global Seismology
 Fall 2018
 Homework Set \#1
 Due Wednesday September 12, 2018

Some MatLab or ObsPy practice:

1. Find the PREM500 and iasp91 earth models on the iris.edu website. Download each earth model and plot Vp and Vs as a function of Earth's radius such that the upper edge of the plot is Earth's surface and zero radius is at the bottom of the plot. (Plot Vpv and Vsv for the PREM model.) Label the major discontinuities and parts of the velocity models.

Einstein notation, strain and rotation:
2. Write out all of the terms for the following quantities:
a. $a_{k} b_{k}$
b. $c_{i j} d_{j k}$
c. $\alpha_{i j k} \beta_{j k}$
d. $\omega_{i j} \delta x_{i} \delta x_{j}$
3. Show that

$$
\omega_{i j} \delta x_{i} \delta x_{j}=0 .
$$

4. Show that (note the " i " subscript on the right hand side)

$$
\delta u_{i}=\varepsilon_{i j} \delta x_{j}+\frac{1}{2}[(\nabla \times \vec{u}) \times \delta \vec{x}]_{i} .
$$

5. Show that

$$
\delta V^{\prime}=\delta V\left(1+\varepsilon_{k k}\right)
$$

6. Radial cylindrical displacement for a P wave is given by

$$
\vec{q}(t, r)=a_{P} \frac{e^{-b^{2}\left(t-\frac{r}{\alpha}\right)^{2}}}{r} \hat{e}_{r}
$$

where

$$
r=\left[\left(x_{1}-\xi_{1}\right)^{2}+\left(x_{2}-\xi_{2}\right)^{2}\right]^{\frac{1}{2}}
$$

Derive

a) $\frac{\partial \vec{q}}{\partial t}$
b) $\frac{\partial \vec{q}}{\partial x_{1}}$
and
c) Sketch $\frac{\partial \vec{q}}{\partial t}$. (Do not program this and make a plot - sketch.)

