- * -------1st PART (MATERIAL PROP.,
GEOMETRY, BOUNDARY CONDITIONS)------
- * POISSONS RATIO, YOUNGS MOD, #PLANES, COEFF
FRICTION, BACKGROUND DEFORMATION
.25 7.E10 2 0.6 displacement gradient
* Background deformation tensor
0 0 0 0 -.00001 0 0 0 0
-
- * for each element or plane specify the
* REFERENCE:XO YO ZO, DIMEN.:STK DIP, #SUB-ELEMS:STK DIP GEOM:STK
DIP
50. 59. .0 136. 15. 3 2 48. 90.
122. 180. .0 54. 15. 1 2 37. 90.
-
- * for each plane (at each fixed distance
along strike, going up-dip):
* PLN, SUB-ELEM code BC-shear(STK) BC2-shear(DIP) BC3-normal
* 1 (STK,DIP)
1 1 10 -270. 0.0 0.0
1 2 10 -270. 0.0 0.0
2 1 10 -270. 0.0 0.0
2 2 10 -270. 0.0 0.0
3 1 10 -270. 0.0 0.0
3 2 10 -270. 0.0 0.0
* 2 (STK,DIP)
1 1 10 -270. 0.0 0.0
1 2 10 -270. 0.0 0.0
-
- * --------------2nd PART (OUTPUT CONTROL)----------------------------------
- * Block #1: Run everything else non-interactively
Not Interactive (alternative is 'Interactive'
grid specification)
Volume grid (alternative is 'Plane
grid')
XYZ Output (alternative is Vector output
- results in both output types)
*
- * Block #2: Coordinate system for output (global only for
volume grids)
global
*
* Block #3: Output information (each line results in a separate
output file)
stress (in global coordinates)
strain (in global coordinates)
gradients of displacement (in global coordinates)
rigid body rotations (about the global X(E),Y(N),Z(up)
axes)
orientation of principal strain axes (w.r.t the
global X(E),Y(N),Z(up) coordinates)
displacements (in global coordinates)
invariants of the strain field (independent of coordinate
system)
failure planes (in global coordinates)
element relative displacements (strike,dip,normal directions
of each element's plane)
*
* Block #4: Output file suffix
out1
*
* Block #5: XYZ Coordinates of the upper NW and lower SE corners
of the volume:
0,0,0, 90,-90,-10
* Grid spacing increments in X (E), Y (N),Z (up) directions:
9,9,2
-
-