
fdfault Documentation
Release 1.0

Eric G. Daub

Apr 13, 2017

CONTENTS

1 Introduction 3
1.1 Governing Equations . 3
1.2 Frictional Descriptions . 5
1.3 Numerical Details . 7
1.4 References . 8

2 Installation 9
2.1 Building the Main Executable . 9
2.2 Installing the Python Module . 10
2.3 Building the Documentation . 11

3 Specifying Simulation Parameters 13
3.1 Text Input Files . 13
3.2 Input Using the Python Module . 26

4 Included Example Problems 159
4.1 Example Problem in 2D . 159
4.2 Example 2D Problem in Python . 161
4.3 The Problem, Version 4 . 163
4.4 The Problem, Version 5 . 165

5 Analyzing Simulation Results 169
5.1 Analysis With Python . 169
5.2 Analysis With MATLAB . 175

6 Indices and tables 179

Python Module Index 181

Index 183

i

ii

fdfault Documentation, Release 1.0

Contents:

CONTENTS 1

fdfault Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

fdfault is a finite difference code for numerical simulation of elastodynamic fracture and fric-
tion problems in 2 and 3 dimensions, principally those arising in study of dynamic earthquake
rupture. The code solves the elastic or elastic-plastic wave equation in the bulk material, coupled
to frictional failure on the fault and external boundary conditions.

1.1 Governing Equations

1.1.1 Material Governing Equations

The code solves the elastodynamic wave equation in 2 or 3 dimensions, with either an elastic or
viscoplastic bulk material. For a 3D continuum, momentum balance requires that

𝜌
𝜕𝑣𝑥
𝜕𝑡

=
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑥𝑧

𝜕𝑧

𝜌
𝜕𝑣𝑦
𝜕𝑡

=
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜎𝑦𝑧

𝜕𝑧

𝜌
𝜕𝑣𝑧
𝜕𝑡

=
𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧𝑧

𝜕𝑧
,

where 𝜌 is density. Additionally, a constitutive law relates the stresses to the deformations. For a
homogeneous, isotropic elastic-plastic material, these take the form

𝜕𝜎𝑖𝑗

𝜕𝑡
= 𝐿𝑖𝑗𝑘𝑙

(︁
�̇�𝑘𝑙 − �̇�𝑝𝑙𝑘𝑙

)︁
where the elastic tensor is given by Hooke’s Law for a homogeneous isotropic material

𝐿𝑖𝑗𝑘𝑙�̇�𝑘𝑙 = 𝜆𝛿𝑖𝑗
𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝐺

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︂
.

The elastic tensor includes two material parameters: 𝜆 is the first Lamé parameter and 𝐺 is the
shear modulus. Summation over repeated indices is implied. For an elastic material, �̇�𝑝𝑙𝑖𝑗 = 0, while
for a viscoplastic material the plastic strains are determined by the Drucker-Prager viscoplastic

3

fdfault Documentation, Release 1.0

flow rule described below. For 2D problems, the code can handle either in-plane (𝑣𝑥, 𝑣𝑦, 𝜎𝑥𝑥, 𝜎𝑥𝑦,
𝜎𝑦𝑦 are nonzero) or anti-plane (𝑣𝑧, 𝜎𝑥𝑧, 𝜎𝑦𝑧 are nonzero) problems, where all variables are functions
of 𝑥 and 𝑦.

Initial conditions must be provided for the velocities and stresses. The code assumes that the
velocities are initially zero, and provides numerous ways to set the initial stress depending on the
complexity of the problem. More details are provided when describing the code specifics.

For Drucker-Prager Viscoplasticity, plastic flow occurs when stresses exceed the yield function
𝐹 (𝜎𝑖𝑗):

𝐹 (𝜎𝑖𝑗) = 𝜏 − 𝑐 + 𝜇𝜎𝑘𝑘/3,

where 𝜏 =
√︀
𝑠𝑖𝑗𝑠𝑖𝑗/2 is the second invariant of the deviatoric stress tensor 𝑠𝑖𝑗 = 𝜎𝑖𝑗 − (𝜎𝑘𝑘/3)𝛿𝑖𝑗 ,

𝑐 is related to the cohesion, and 𝜇 is related to the internal coefficient of friction. For viscoplasticity,
flow is allowed to exceed the yield criterion according to

𝐹 (𝜎𝑖𝑗) = Λ𝜂,

where Λ =
√︁

2�̇�𝑝𝑙𝑖𝑗 �̇�
𝑝𝑙
𝑖𝑗 is the equivalent plastic strain rate from the deviatoric plastic strain rate

�̇�𝑝𝑙𝑖𝑗 = �̇�𝑝𝑙𝑖𝑗 − (�̇�𝑝𝑙𝑘𝑘/3)𝛿𝑖𝑗 and 𝜂 is a viscoplastic “viscosity” defining the time scale over which stresses
can exceed the yield stress. If stresses are accumulated at a rate faster than the relaxation time of
the viscoplastic material, the material behaves elastically, and the stress then decays towards the
yield surface if no further stresses are applied.

The components of plastic flow are determined by

�̇�𝑝𝑙𝑖𝑗 = Λ𝑃𝑖𝑗 (𝜎𝑖𝑗) ,

with 𝑃𝑖𝑗(𝜎𝑖𝑗) = 𝑠𝑖𝑗/(2�̄�) + (𝛽/3)𝛿𝑖𝑗 , where the 𝛽 parameter determines the ratio of volumetric to
plastic strain. Thus, viscoplastic materials are determined by 𝜌, 𝜆, 𝐺, 𝑐, 𝜇, 𝛽, and 𝜂, while elastic
materials require specification of 𝜌, 𝜆, and 𝐺. Rate independent plasticity arises in the limit that
𝜂 → 0, though the equations become increasingly stiff in this limit and plastic strain can exhibit
localization that is not resolved by the spatial grid in many problems.

The code can handle variable material properties in two different ways. The first type is “block-
like” structures, where the material properties are piecewise constant in an arbitrary number of
blocks. Alternatively, one can specify the elastic properties in a point-by-point fashion (the plas-
ticity material properties must be block-like even in the case of continuously varying elastic prop-
erties in the present version of the code).

Regardless of the method used, the domain is composed of a regular grid of blocks with conforming
edges, though the block boundaries can have complex shapes, so this does not limit the ability of
the code to handle complex earth structures. Blocks are coupled together through interfaces, which
can either be locked or frictional. Locked interfaces require continuity of velocity and forces across
block edges, while frictional interfaces allow for relative slip across the interface according to
several possible friction laws:

4 Chapter 1. Introduction

fdfault Documentation, Release 1.0

• Frictionless interfaces do not support shear stresses, so any stress applied to such interfaces
result in shear slip.

• Kinematic forcing allows for a forced rupture following a prescribed set of rupture times.

• Slip weakening interfaces follow a slip-dependent friction law, where the friction coeffi-
cient has static and dynamic values and transitions between the two according to a function
that decreases linearly with slip. Slip weakening laws also allow for cohesion. Slip weaken-
ing can also be combined with kinematic forcing to nucleate a rupture.

• Shear Transformation Zone (STZ) Theory interfaces have a frictional strength that de-
pends on the slip rate and a dynamic state variable representing the configurational disorder
in the fault gouge.

Specific details on each of the friction models is provided below. In addition to these base fric-
tion laws, a future version of the code will allow you to specify arbitrary slip- or rate- and state-
dependent friction laws through the Python module, which automatically generates the required
source code for new friction laws.

External boundaries (i.e. boundaries not between two blocks) can have absorbing, free surface
(traction-free), or rigid (velocity-free) boundary conditions.

1.2 Frictional Descriptions

1.2.1 General Formulation

Friction laws are used to set the boundary conditions on the edges connecting block interfaces.
At each edge, the velocities and stresses for each block are rotated into normal and tangential
components. The material governing equations above provide one set of relationships between the
velocities and tractions; an additional condition is required to fully specify the boundary values.

For the normal components, the code requires continuity of velocities and tractions across the
interface. In the event that tensile normal stresses occur, the code sets the normal traction to zero
but does not allow for the interface to open.

For the shear components, the tractions are required to be continuous, but the velocities can be
discontinuous across the fault. The velocity discontinuity, called the slip velocity 𝑉 with vector
components 𝑉1 and 𝑉1, is the primary quantity of interest, as it describes the rate at which fault
slip occurs. The wave equation provides one relationship between the shear traction and the slip
velocity, and the other is given by another equation (along with the constraint that the traction and
slip are parallel to one another). This relationship may simply specify the traction (so that the slip
velocity can be solved for directly), or require a nonlinear solver if the relationship is nonlinear
and cannot be solved in closed form.

The slip velocity is integrated in time, resulting in slip components 𝑈1 and 𝑈2, along with a scalar
slip 𝑈 that is computed as a line integral. The slip is used by some friction laws to control the
evolution of strength as a function of time, but is computed for all frictional descriptions.

1.2. Frictional Descriptions 5

fdfault Documentation, Release 1.0

1.2.2 Frictionless Interface

The frictionless interface is the simplest friction description – the interface cannot support a shear
traction, so the slip velocity is set to be whatever value is needed to ensure that no stress accu-
mulates. This applies to both components of traction for 3D problems. This model requires no
additional parameter specifications beyond the material properties.

1.2.3 Kinematic Forcing

Rupture propagation can be prescribed using kinematic forcing. Kinematic forcing requires spec-
ification of 4 parameters: a static friction coefficient 𝜇𝑠, a dynamic friction coefficient 𝜇𝑑, a time
scale 𝑡𝑐 which sets the time scale over which friction linearly weakens from static to dynamic, and
a rupture time 𝑡𝑟𝑢𝑝 that determines when the frictional weakening initiates at a given point. The
friction coefficient can be determined directly from the time, and the friction coefficient combined
with the normal traction determines the shear traction on the fault. If the value of the shear traction
set by the wave equation is less than the value set by the friction law, the fault is locked, the slip
rate is zero, and the shear traction takes the value from the wave equation.

1.2.4 Linear Slip-Weakening

In order for rupture propagation to be truly spontaneous, a friction law that does not prescribe
rupture time is required. The most common form used in dynamic rupture modeling is the linear
slip-weakening law. As with kinematic forcing, a static and dynamic friction coefficient must be
specified. However, instead of a rupture time and a weakening time, the weakening process is
characterized by a slip weakening distance 𝑑𝑐. Friction weakens linearly with slip from the static
to dynamic value:

𝜇(𝑈) =

{︃
(𝜇𝑠 − 𝜇𝑑)

(︁
1 − 𝑈

𝑑𝑐

)︁
+ 𝜇𝑑 (𝑈 < 𝑑𝑐)

𝜇𝑑 (𝑈 ≥ 𝑑𝑐).

Once the friction coefficient is known, the shear traction is set in a similar fashion to the Kinematic
Forcing law described above. The code also allows for frictional cohesion 𝑐0, in which case the
shear traction 𝜏 is:

𝜏 = 𝑐0 + 𝜇max(0,−𝜎𝑛)

where 𝜎𝑛 is the normal traction (negative in compression).

For 3D problems with vector slip, each vector component of the velocity/traction is solved sepa-
rately, but the total slip 𝑈 is used to determine the weakening behavior.

Additionally, the code allows for a combination kinematic/slip-weakening law, where the code
uses the minimum friction coefficient that is calculated for the kinematic and slip-weakening laws.
This is used in cases where the rupture is initiated with a kinematic procedure, but then is allowed
to propagate spontaneously.

6 Chapter 1. Introduction

fdfault Documentation, Release 1.0

1.2.5 Shear Transformation Zone Theory

Shear Transformation Zone (STZ) Theory is a rate- and state-dependent constitutive law, which ties
the fault strength to the dynamic evolution of a state variable representing the effective disorder
temperature 𝜒. Frictional strength 𝜇 is determined by the slip rate and the effective temperature:

𝑉 = 𝑉0 exp

(︂
−𝑓0 +

𝜇

𝑎
− 1

𝜒

)︂(︂
1 − 𝜇𝑦

𝜇

)︂
.

Note that this cannot be solved in closed form for the friction coefficient, so the code solves this
equation simultaneously with the elastic wave equation for 𝜇 and 𝑉 . Additionally, the effective
temperature evolves in time according to

𝑑𝜒

𝑑𝑡
=

𝑉 𝜏

𝑐0

(︂
1 − 𝜒

�̂�(𝑉)

)︂
−𝑅 exp

(︂
𝛽

𝜒

)︂
,

where the rate-dependent steady state effective temperature is �̂�(𝑉) = 𝜒𝑤/ log(𝑉1/𝑉). The STZ
model introduces several additional parameters: a reference slip rate 𝑉0, an activation barrier for
slip 𝑓0, the frictional direct effect 𝑎, the friction coefficient at jamming 𝜇𝑦, the effective temperature
specific heat 𝑐0, the normalized effective temperature activation barrier 𝜒𝑤, the reference slip rate
for STZ activation 𝑉1, the STZ relaxation rate 𝑅, and the normalized effective relaxation barrier 𝛽.

More details on the STZ model and the parameters can be found in the papers listed below.

1.3 Numerical Details

The code solves the governing equations numerically using finite differences. The outer boundaries
of each block is described by a series of 6 surfaces (4 curves in 2D), and each block is transformed
from physical space to the unit cube (unit square in 2D). The governing equations are transformed
as well, and the code solves the resulting problem on a structured grid using high order finite dif-
ferences. The grid is generated using standard transfinite interpolation, and the required metric
derivatives for solving the governing equations and applying boundary conditions are automati-
cally calculated using finite differences. Grids between neighboring blocks must be conforming,
though no other continuity condition is required across block interfaces. The grid must satisfy cer-
tain smoothness constraints (these are checked during the initialization steps in the code), though
non-uniform grid spacing along interfaces is allowed, provided that the resulting grid meets the
smoothness requirements. Boundary conditions at external boundaries and interfaces are applied
in locally rotated normal/tangential coordinate systems using characteristic variables.

The specific finite difference operators used exhibit a summation-by-parts property that mimics the
properties of integration by parts. This allows for estimates of the energy dissipation rate of the
numerical scheme. Boundary conditions are imposed weakly using the Simultaneous Approxima-
tion Term approach, and this combined with the summation by parts difference operators allows
for a provably stable numerical scheme that matches the energy dissipation rate of the continuous
problem.

1.3. Numerical Details 7

fdfault Documentation, Release 1.0

The code allows for central finite difference operators that are globally second, third, or fourth
order accurate. Time integration is performed with a low memory Runge-Kutta method, with
either first, second, third, or fourth order accuracy in time. Artificial dissipation can also be used
for the finite difference operators, which will reduce the numerical artifact oscillations that can
occur with large grid spacings.

The finite difference method is only applied to the elastic part of the problem. The plasticity
equations are handled through an operator splitting procedure, where the elastic problem is solved
first and then used as initial conditions for the plasticity problem. This is done using an implicit
backward Euler method.

For more details on the numerical methods used, please consult the papers listed below.

1.4 References

8 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

fdfault requires a C++ compiler and an MPI library, though you can run the code on a single
processor if you want. The code has mostly been tested with the GNU compiler and Open MPI.
Parallelization is achieved through domain decomposition, with interprocessor communication oc-
curing after each Runge-Kutta stage to populate ghost cells with the appropriate values. Python
with Numpy is required if you want to use the Python module for setting up problems and gener-
ating the input files, with support for either Python 2 or 3. The code also includes Python (requires
Numpy) and MATLAB scripts for loading simulation data.

2.1 Building the Main Executable

If installing from a downloaded zip archive, enter

unzip fdfault-1.0.zip

Depending on which version you downloaded, the filename for the zipped archive might be differ-
ent. Or clone the git repository using

git clone https://github.com/egdaub/fdfault.git

For most users, building the source code should simply require

cd fdfault/src
make

assuming you have Make and an appropriate C++ compiler with an MPI Library. You may need
to change some of the compiler flags – I have mostly tested the code using the GNU Compilers
and OpenMPI on both Linux and Mac OS X. This will create the fdfault executable in the main
fdfault directory.

9

fdfault Documentation, Release 1.0

2.2 Installing the Python Module

You will also need to configure the python module. There are several ways to do this:

1. Install the Python module system-wide. To make the Python tools available system-wide,
change to the python directory and run setup.py (you must have setuptools installed):

cd fdfault/python
python setup.py install

You may also use Python 3 without any modifications. Depending on your setup, you might
need administrative privileges to do the installation step. If you obtained the code by cloning
the Git repository, installation in this manner will not update automatically if any of the
source code files are updated. If you want to keep up to date without having to reinstall,
install a development version:

cd fdfault/python
python setup.py develop

This will simply place a link to the fdfault python directory in the system Python
libraries, so any updates will automatically be available.

2. If you would like the Python module available in any directory without installing for other
users, you can simply modify your PYTHONPATH environment variable to include the full
path to fdfault/python. This will only effect the current user.

3. Some users prefer to only have the Python tools available in certain directories. The tools
for setting up problems are most often used in the problems directory, and the analysis tools
are most often used in the data directory.

To make these tools available in these directories only, make a symbolic link to the
python/fdfault directory in the problems directory:

cd fdfault/problems
ln -s ../python/fdfault/ fdfault

This will allow you to simply type import fdfault in python from within the problems
directory. Similarly, to make the analysis features available in the data directory:

cd fdfault/data
ln -s ../python/fdfault/analysis fdfault

This allows you to type “import fdfault” from within the data directory and have the analysis
tools at your disposal.

10 Chapter 2. Installation

fdfault Documentation, Release 1.0

2.3 Building the Documentation

Finally you will need to build the User’s Guide (requires Sphinx, with MathJax required for the
HTML verions and a LaTeX distribution for the PDF version).

cd fdfault/docs/
make html && make latexpdf

This should build the notes in the fdfault/docs/_build/html or
fdfault/docs/_build/latex directories. If you wish to build only the html or pdf
version, use the appropriate command. If you do not have Sphinx or LaTeX on your machine,
both versions of the documentation are available on the web:

http://www.ceri.memphis.edu/people/egdaub/fdfault/_build/html/index.html (html)

http://www.ceri.memphis.edu/people/egdaub/fdfault/_build/latex/fdfault_docs.pdf (pdf)

2.3. Building the Documentation 11

http://www.ceri.memphis.edu/people/egdaub/fdfault/_build/html/index.html
http://www.ceri.memphis.edu/people/egdaub/fdfault/_build/latex/fdfault_docs.pdf

fdfault Documentation, Release 1.0

12 Chapter 2. Installation

CHAPTER

THREE

SPECIFYING SIMULATION PARAMETERS

Parameters for simulations are set with input files. These are text files that are formatted to be
understood by the C++ code. They mostly consist of section headers followed by raw numbers,
strings, or file names. They are manageable for small, simple problems, but to really use the full
power of the code it is suggested to take advantage of the Python module. Either way, parameters
are set through an input file problemname.in, though the problem name is actually set in the
input file itself so the input file name and problem name need not be the same.

Once the input file is written to disk, you can launch a simulation. From the main fdfault
directory, simply enter:

> mpirun -n 4 fdfault problems/problemname.in

This should run the problem on 4 processors, printing out information to the console as it pro-
gresses. If you wish to use a different number of processors, modify the 4 (some versions of MPI
may require you to use the option flag -np 4 to set the number of processors, and some versions
of MPI may require that you use mpiexec to run a simulation). If you are running the code on a
cluster, you should follow your normal procedure for submitting jobs.

The code assumes you will be running everything in the main code directory, and by default uses
relative paths to that main directory to write the simulation files to disk. You are welcome to run
the code from another directory, but you should either have a data directory already created or
use the full path to the location where you wish to write data.

3.1 Text Input Files

Text input files contain multiple sections. With one exception, the order of the sections is not
important – the file is read multiple times by various parts of the code, and each time the file is
read the code starts from the beginning and scans through to find the appropriate section. Each
section is designated by a text string [fdfault.<name>], where <name> refers to which part
of the code will be reading this section. If the code expects to find a certain section and it reaches
the end of the text file without finding it, the code will abort. At minimum, the following sections
are required to fully specify a problem:

13

fdfault Documentation, Release 1.0

[fdfault.problem]
[fdfault.domain]
[fdfault.fields]
[fdfault.blockXYZ]
[fdfault.outputlist]
[fdfault.frontlist]

In addition to these sections, optional sections describe additional blocks and interfaces, as well as
other parameter settings. These include the following sections:

[fdfault.cartesian]
[fdfault.operator]
[fdfault.interfaceN]
[fdfault.friction]
[fdfault.slipweak]
[fdfault.stz]

If the problem has more than one block or more than one interface, the sections are designated
with the numeric value in place of XYZ or N included in the section header.

3.1.1 Problem Input

A problem is specified under [fdfault.problem]. The entries under this section are as fol-
lows:

Problem Name
Data where simulation output will be saved
Number of time steps
Time step size
Total time
Courant ratio
Frequency at which status information is written to the terminal
Runge-Kutta Integration Order (integer 1-4)

Most of these are straightforward. The main tricky part in this section is that you typically will
only specify two of the four options for determining the time step. You are free to specify any two
of these, with the exception of the time step and Courant ratio (the ratio between the grid spacing
and the distance a wave travels in one time step). If you specify both the time step and Courant
ratio, the code defaults to the given time step. If you specify more than two parameters, the code
defaults to the total time and either the time step or the Courant ratio.

14 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

3.1.2 Domain Input

Details of the spatial domain are determined by the [fdfault.domain] header. The following
arguments are required:

Number of dimensions (2 or 3)
Rupture mode (only meaningful for 2D problems, but necessary for 3D

→˓problems)
Number of grid points (3 integers, if 2D problem the third will be

→˓reset to 1)
Number of blocks (3 integers, if 2D problem the third will be reset to

→˓1)
Number of grid points for each block in x-direction
Number of grid points for each block in y-direction
Number of grid points for each block in z-direction
Number of interfaces
Type of each interface (list of strings)
Finite difference order (integer 2-4)
Material type (elastic or plastic)

For this section, the trickiest part is understanding how the blocks and sizes are set up. First, the
number of grid points is specified (which must have a length of 3), and then the number of blocks
in each dimension is specified (also must of of length 3). If the problem is 2D, then the third entry
in each list will be reset to 1 if it is not already 1. Depending on these entries, the code expects the
integers that follow to conform to a specific order. First comes the length of each block along the
x-direction. The code expects the number of entries to match the number of blocks, and the sum
of all entries must equal the total number of grid points along the x-direction. Similarly, the y and
z directions are specified in the subsequent entries. While it is recommended that the entries for
each direction are on separate lines, the spacing between entries, as well as the line spacing, are
ignored when reading the input file.

After the block dimensions are set, the code reads the number of interfaces, followed by the inter-
face types (it expects a number of strings corresponding to the number of interfaces). Again,
line breaks are ignored. The type of each interface must be one of the following: locked,
frictionless, slipweak, or stz.

The final two entries are fairly self explanatory, and determine the finite difference order (integer
2-4) and the material response (elastic or plastic).

3.1.3 Cartesian Input

The code automatically handles domain decomposition into a Cartesian grid based on the di-
mensionality of the problem and the number of processors specified when running the ex-
ecutable. However, you may also specify the number of processes manually by including
[fdfault.cartesian] in the input file. This section must contain a list of three integers

3.1. Text Input Files 15

fdfault Documentation, Release 1.0

specifying the desired number of processes in each of the three spatial dimensions (if a 2D prob-
lem is run, the number of processes in the 𝑧 direction is automatically set to one). It is up to the
user to ensure that the numbers set here match the total number of processes set when launching
the executable.

3.1.4 Fields Input

The initial stress fields are set with the [fdfault.fields] header. This section has three
entries:

Uniform initial stress tensor
Filename for spatially heterogeneous initial stress tensor
Filename for spatially heterogeneous elastic properties

The uniform initial stress tensor is a list of 6 numbers, and the order is 𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑦, 𝜎𝑦𝑧, 𝜎𝑧𝑧).
Components not involved in a 2D problem are in some cases used in the problem, particularly
for anti-plane (mode 3) problems, where the in-plane normal stress components determine the
compressive normal stresses acting on the fault. Line breaks are ignored.

If a heterogeneous stress tensor will be used, it is specified with a filename here. If no heteroge-
neous file is to be read, this entry should be none. The file should contain a sequence of double
precision binary floating point numbers (endianness should match the processor where the code
will be run). Components are entered one at a time, with the number of entries matching the grid
size using row major order (C order). For 2D mode 3 problems, the order is 𝜎𝑥𝑧, 𝜎𝑦𝑧. For 2D
mode 2 problems, the order is 𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦 (and for plasticity problems, 𝜎𝑧𝑧). For 3D problems,
the order is the same as for the uniform stress tensor. Entering heterogeneous stresses is greatly
simplified if you use the Python module.

Similarly, if a heterogeneous elastic properties will be used, it is specified with a filename here. If
no heterogeneous file is to be read, this entry should be none. The format is the same as the stress
tensor, but with three entries: density, first Lamé parameter, and shear modulus. Creation of these
files is simplified with the Python module.

Note: for large 3D problems, the arrays for a heterogeneous stress field or elastic property may be
too large to be handles by the Python module (Numpy seems to be limited to arrays that are 2 or
4 GB, depending on the version of Python that you use). In that case, you may need to generate
these files manually.

3.1.5 Operator Input

Optionally, the code uses artificial dissipation to damp out spurious oscillations arising from the
finite difference method. To use artificial dissipation, include a [fdfault.operator] section
with a single floating point number to designate the the artificial dissipation coefficient. Correct
selection of the dissipation coefficient is up to the user, and too large a value can result in numerical
instabilities.

16 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

3.1.6 Block Input

Each block has its own section in the input file, designated by [fdfault.blockXYZ] for the
block with indices (𝑋, 𝑌, 𝑍) (the code assumes zero indexing). For each block, the input file
entries set the material properties, boundary conditions, and geometry. The input file must contain
a header for each block in the simulation, and other block headers that do not match a block in the
simulation are ignored. Order is not important. Specific entries are as follows:

Material properties
Block lower left coordinate
Block side lengths
Block boundary conditions
Block boundary filenames

The number of entries expected in each item depends on the type of problem being solved, and are
explained below.

The material properties are the density 𝜌, Lamé constant 𝜆, and shear modulus 𝐺, and for plas-
ticity problems the parameters defined in the yield function and flow rule. Order for the plasticity
parameters is internal friction 𝜇, cohesion 𝑐, dilatancy 𝛽, and viscosity 𝜂.

The lower left coordinate of the block determines its location in space, and requires 2 numbers
for 2D problems and 3 numbers for 3D problems. Similarly, the block side lengths require the
same number of entries for 2D and 3D problems. These coordinate values are used to create
any boundary surfaces that are not set through a file by creating rectangular surfaces (in 3D) and
straight lines (in 2D) for the appropriate block sides. If all sides are given as a file, these entries
are ignored in creating the grid, though they are still used in adding surface tractions to frictional
faults and modifying friction parameters.

The block boundary conditions is a list of 4 boundary conditions for 2D problems, and 6 boundary
conditions for 3D problems. Order is left, right, front, back, top, bottom (where top and bot-
tom are only for 3D problems). Each boundary condition must be one of the following strings:
absorbing (no waves enter the domain), free (traction free surface), rigid (zero velocity),
or none (do not apply a boundary condition, used if block is coupled to another through an inter-
face).

Boundaries that are defined via a filename derive their data from files that contain binary data,
rather than assuming a rectangular block edge. This method can be used to create non-planar
block surfaces. The number of entries and order is the same as for the boundary conditions. Each
file must contain double precision floating point binary data, with all 𝑥 coordinates in row major
(C) order, followed by all 𝑦 coordinates, and if a 3D problem, all 𝑧 coordinates. Endianness is
set by the computer where the simulation will be run. When setting nonplanar boundaries, the
surfaces must conform at their edges, and the code checks this during initialization. While you can
easily create your own files for defining nonplanar boundaries, this is made much simpler with the
Python module.

3.1. Text Input Files 17

fdfault Documentation, Release 1.0

3.1.7 Interface Input

All interfaces are specified by a header with the form [fdfault.interfaceN], where N de-
termines the interface number (zero indexed). For problems with 𝑛 interfaces, the input file must
contain an interface header for all 𝑛 interfaces, or you will get an error. Interface headers are
followed by the following arguments:

Approximate normal direction
Minus block indices
Plus block indices

First, the list defines the approximate normal direction of the interface in the simulation based on
the simulation geometry. For rectangular blocks, this is the true normal direction of the block,
while if the block has boundaries specified through a file the normal direction may not be precisely
in this direction, or the normal direction may not be uniform across the entire block. The direction
is set by a string x, y, or z.

Following the direction specification, you must set the indices of the block on the “minus” side of
the interface (a list of 3 integers). This can be any block in the simulation, but must be the block
with the lowest set of indices that are joined by this interface. Order is not important for setting up
the interfaces – interface 0 can join any pair of neighboring blocks in the simulation – and the lists
can appear in the input file in any order.

Next, the block on the “plus” side of the interface is given by its indices. Because the blocks in
the simulation must form a regular grid, the “plus” block must differ in only one index from the
“minus” block, and the index that is different must be the same as the direction specified above
(this is checked by the code when initializing). For instance, if the minus block is (0, 0, 0), and
the direction is x, then the plus block must have the index (1, 0, 0). Line breaks are ignored when
reading in the indices.

3.1.8 Friction Input

The information above is all that is required for locked interfaces. For frictional inter-
faces, additional information must be provided. All frictional interfaces must include a
[fdfault.friction] header somewhere after the interface header. Note that the friction
header does not include an interface number – the code scans through the input file to find the
interface header for the interface in question, and then continues scanning until it finds the next
friction header. This trick lets you easily set multiple frictional interfaces to have the same specifi-
cations.

Friction headers contain the following information:

Number of load perturbations
List of load perturbations
Load perturbation filename

18 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

First is an integer that determines the number of surface traction perturbations that will be applied
to the interface during the simulation. Next is a list of perturbations, followed by a file containing
additional perturbations to the load.

Load Perturbations

Load perturbations have the following format:

type t0 x0 dx y0 dy s1 s2 s3

type is a string that determines the spatial characteristics of the perturbation. Options are
constant (spatially uniform), boxcar (spatially uniform inside a rectangular area, zero out-
side), ellipse (spatially uniform inside an elliptical area, zero outside), and linear (linear
function in each direction).

t0 determines the time scale over which the perturbation is added, with a linear ramp from zero
over the given time scale. If the perturbation is to be added from the start of the simulation, give 0.

x0 dx are constants determining the shape of the perturbation along first coordinate direction
of the interface (𝑥 for y and z interfaces, 𝑦 for x interfaces). For constant perturbations, these
parameters are ignored. For boxcar and ellipse perturbations, x0 is the center of the perturbation
and dx is the half width. If you want the width to span the entire interface width, enter 0 for dx.
For linear perturbations, x0 is the intercept and dx is the slope. If you want the linear gradient to
only extend in one spatial direction, enter 0 for dx in the direction where you want the perturbation
to be constant. Similarly, y0 dy set the same values for the other coordinate direction (𝑦 for z
interfaces and 𝑧 for x and y interfaces). For 2D problems, the second set of indices is ignored, but
still must be present in the input file.

In the simulations, the values of x0 dx y0 dy are only interpreted literally for rectangular
blocks. For non-rectangular blocks, these values are interpreted assuming the interface follows
a rectangular block on the minus side, using the values given under the block header. This means
that the values may not be interpreted exactly as you expect!

Finally, a trio of numbers set the vector surface traction applied to the interface. The first compo-
nent is the normal traction, and the next two numbers are the two shear tractions. For 2D problems,
the first shear component is the in-plane shear traction (only valid for mode 2 problems), and the
second is the out of plane shear traction (always in the 𝑧-direction and only valid for mode 3
problems). The code sets the unused shear traction component to zero. For 3D problems, the
exact meaning of the shear traction components are determined by the surface normal direction,
described as follows.

The different interface components do not truly correspond to the corresponding coordinate di-
rections. The code handles complex boundary conditions by rotating the fields into a coordinate
system defined by three mutually orthogonal unit vectors. The normal direction is defined to al-
ways point into the “positive” block and is uniquely defined by the boundary geometry. The two
tangential components are defined as follows for each different type of interface:

3.1. Text Input Files 19

fdfault Documentation, Release 1.0

• Depending on the orientation of the interface in the computational space, a different con-
vention is used to set the first tangent vector. For 'x' or 'y' oriented interfaces, the 𝑧
component of the first tangent vector is set to zero. This is done to ensure that for 2D prob-
lems, the second tangent vector points in the 𝑧-direction. For 'z' oriented interfaces, the 𝑦
component of the first tangent vector is set to zero.

• With one component of the first tangent vector defined, the other two components can be
uniquely determined to make the tangent vector orthogonal up to a sign. The sign is chosen
such that the tangent vector points in the direction where the grid points are increasing.

• The second tangent vector is defined by taking the right-handed cross product of the normal
and first tangent vectors, except for 'y' interfaces, where the left-handed cross product is
used. This is done to ensure that for 2D problems, the vertical component always points in
the +𝑧-direction.

File Perturbations

After all of the surface traction perturbations, the code takes a filename of a file that adds additional
tractions to the surface. The file contains a series of double precision floating point binary numbers
of length 3 × 𝑛1 × 𝑛2, where 𝑛1 and 𝑛2 are the number of grid points along the interface. The first
block of 𝑛1 × 𝑛2 is for the normal traction (in row major order), then the in-plane shear traction
component, and finally the out of plane shear traction component, with the same convention de-
scribed above for setting the tangential directions. Endianness is assumed to match the computer
where the simulation is being run.

Additional Friction Parameter Specifications

There are several specific types of frictional interfaces, two of which require additional parameters
be specified:

1. Frictionless interfaces do not support shear tractions. No additional parameters are required
when specifying frictionless interfaces.

2. Slip-Weakening interfaces require additional parameter specifications

3. STZ interfaces also require additional parameter specifications

For more information on how to set slip-weakening and STZ parameter values, consult the follow-
ing pages.

3.1.9 Slip Weakening Input

The basic format for slip-weakening interaces is analogous to those for setting the surface tractions:

20 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Number of parameter perturbations
List of parameter perturbations
Parameter perturbation filename

Each item in the list requires the same basic six parameters to describe the shape as for the load
perturbations (type t0 x0 dx y0 dy), interpreted in the same way as described above. For slip
weakening laws, there are six additional parameters that must be specified:

dc mus mud c0 tc trup

dc is the slip weakening distance, mus is the static friction coefficient, mud is the dynamic friction
coefficient, c0 is the frictional cohesion, tc is the characteristic weakening time, and trup is the
forced rupture time. The first four parameters are fairly standard, while the final two parameters
are used to impose kinematic forcing on the rupture front: tc is the time scale over which the
friction weakens from static to dynamic, and trup is the time at which this process initiates. If
trup is 0, then no kinematic forcing is used.

As with load perturbations, heterogeneous perturbations using an input file are also allowed. The
format is the same as with load perturbations (C order double precision floats, with parameters
given in the order listed above), and the ordering of the arrays is the same as for the perturbations
listed above. The Python module can help with generating the appropriate files. If no file is used,
the code must include none in place of the filename.

3.1.10 STZ Friction Input

The basic format for STZ interaces is analogous to those for setting the surface tractions, with
the main difference being that additional parameters are needed to set the initial value of the state
variable:

Initial effective temperature
Filename for heterogeneous initial effective temperature
Number of parameter perturbations
List of parameter perturbations
Parameter perturbation filename

First is the (uniform) initial value of the effective temperature, which is simply a floating point
number. Next is a file holding double precision floating point numbers in C order for all points
on the interface that set the initial value for the effective temperature (the sum of the grid-based
values and the overall constant determines the initial value). Endianness should be the same as the
computer where the simulations will be run. If no file is used, none should be entered in its place.

Next, the friction parameters are set, which uses both perturbations analogous to the load perturba-
tions. Each item in the perturbation list requires the same basic six parameters to describe the shape
as for the load perturbations (type t0 x0 dx y0 dy), interpreted in the same way as described in the
load section. For STZ friction laws, there are nine additional parameters that must be specified:

3.1. Text Input Files 21

fdfault Documentation, Release 1.0

V0 f0 a muy c0 R beta chiw V1

See the introduction for more details on the meaning of these parameters.

Fully heterogeneous parameter values can be set using a file holding grid-based data (again double
precision in C order, with endinanness corresponding to the machine where the simulation will be
run). The full arrays for all 9 parmeters must be given in the same order as the parameters in the
perturbation. If no file is used, none must be used as a placeholder.

3.1.11 Saving Simulation Data (Output)

The code allows for flexible specification of output. Any field values can be saved, and the code
allows for flexibility in specifying slices of the output fields in time and space. Writing files to disk
is done in parallel using MPI, with binary output being the only supported format, though several
scripts are included for converting the binary output to other formats (see the analysis section for
more details).

Internally, the code handles output by defining a list of “output units” that contain information on
what information is written to disk and how often to write that information to disk. The output units
also automatically output time and spatial grid information for the particular data that is written to
file. The code supports an arbitary number of output units, with the only limitations being memory
and disk usage considerations.

Specifying an output unit requires that you provide a name, a field, and then time and coordinate
information. For coordinate (3 space and 1 time), you must provide a minimum index, a maximum
index, and a stride. The minimum value is the first index that is saved, the maximum value is the last
index that is saved, and the stride tells how frequently in space or time to save this particular field.
Note if the stride is such that the maximum index is skipped over, the last index falling within the
desired range becomes the new maximum (this information is accounted for when writing output
unit metadata to disk). This applied to all three spatial dimensions as well as time, so a total of 12
index values must be supplied. The exact details of the index information depends on the field that
is chosen, as described below.

Field Types

The code supports output of two types of fields: grid-based fields, and interface-based fields. Grid-
based fields are defined over arbitrary ranges of grid points in the entire simulaiton domain, and
can be single points, 1D, 2D, or 3D slices of the simulation grid. Interface-based fields only exist
along interfaces between blocks, and thus are single points, 1D, or 2D slices of the co-located grid
points at the interface.

22 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Grid-Based Fields

Grid-based fields are fields that are defined over the entire simulation domain. This includes the
particle velocities and stress tensor, as well as fields associated with plastic strain. To define a
grid-based output unit, a name, field, and 4 sets of index values (minimum, maximum, and stride)
for time and 3 spatial dimensions are required. The name is simply a text string used to define the
file names, so you cannot use the same name twice. The field can be any of the following strings:

Field Corresponding String
Particle velocity, x-component vx
Particle velocity, y-component vy
Particle velocity, z-component vz
Stress tensor, xx-component sxx
Stress tensor, xy-component sxy
Stress tensor, xz-component sxz
Stress tensor, yy-component syy
Stress tensor, yz-component syz
Stress tensor, zz-component szz
Scalar measure of Plastic Strain gammap
Scalar measure of Plastic Strain Rate lambda

The field name is case-sensitive, as we will see shortly when describing interface-based fields.
Depending on the type of simulation that is being done, only certain fields are nonzero, so you
cannot specify a field that is not accounted for by the simulation: mode 2 2D simulations can only
use vx, vy, sxx, sxy, and syy (and szz for problems allowing plastic deformation); similarly
mode 3 2D simulations can only use vz, sxz, and syz. Finally, elastic simulations cannot use
either of the plasticity fields. If you select a field that is not defined for a given simulation, you will
get an error and the code will abort.

Indices need to be given for all three simulation dimensions even if the simulation is in 2D. The
code requires that the minimum index fall within the bounds for the simulation (i.e. it must be at
least zero and smaller than the total number of grid points in the particular direction), and that the
maximum index be greater than or equal to the minimum index. This means that if you make a
mistake and make the maximum index larger than the number of grid points, the code will simply
use the total number of grid points as the maximum value.

Interface-Based Fields

Interface-based fields are fields that only exist on a particular interface and are not defined over
the entire simulation domain. They include the slip, slip velocity, interface tractions, and state
variables, and most of these fields have a signed component version as well as a positive scalar
value version. As with grid-based fields, a name, field, and 4 sets of index triplets are required to
specify an output unit. The allowable fields for an interface-based field are as follows:

3.1. Text Input Files 23

fdfault Documentation, Release 1.0

Field Corresponding String
Slip, x-component Ux
Slip, y-component Uy
Slip, z-component Uz
Slip, scalar magnitude (line integral of scalar slip velocity) U
Slip velocity, x-component Vx
Slip velocity, y-component Vy
Slip velocity, z-component Vz
Slip velocity, scalar magnitude V
Normal traction Sn
Shear traction, x-component Sx
Shear traction, y-component Sy
Shear traction, z-component Sz
Shear traction, scalar magnitude S
State variable state

Note that these are distinguished from grid-based fields in that most fields start with a captial letter
(field names are case sensitive).

The different interface components do not truly correspond to the corresponding coordinate di-
rections. The code handles complex boundary conditions by rotating the fields into a coordinate
system defined by three mutually orthogonal unit vectors. The normal direction is defined to al-
ways point into the “positive” block and is uniquely defined by the boundary geometry. The two
tangential components are defined as follows for each different type of interface:

• Depending on the orientation of the interface in the computational space, a different con-
vention is used to set the first tangent vector. For 'x' or 'y' oriented interfaces, the 𝑧
component of the first tangent vector is set to zero. This is done to ensure that for 2D prob-
lems, the second tangent vector points in the 𝑧-direction. For 'z' oriented interfaces, the 𝑦
component of the first tangent vector is set to zero.

• With one component of the first tangent vector defined, the other two components can be
uniquely determined to make the tangent vector orthogonal up to a sign. The sign is chosen
such that the tangent vector points in the direction where the grid points are increasing.

• The second tangent vector is defined by taking the right-handed cross product of the normal
and first tangent vectors, except for 'y' interfaces, where the left-handed cross product is
used. This is done to ensure that for 2D problems, the vertical component always points in
the +𝑧-direction.

The consequence of this is that the letter used to designate the desired component is only valid
for rectangular geometries. For non-rectangular geometries, the components will be rotated into
the coordinate system described above. For interfaces in the “x” direction (i.e. connecting blocks
whose indices only differ in the 𝑥-direction), the 𝑦 component of output units will be along the
first tangent vector, and the 𝑧 component will be along the second tangent vector. Similarly, for
“y” interfaces the 𝑥 component is set by the first tangent vector and the 𝑧 component is determined
by the second tangent vector, and for “z” interfaces the first tangent vector is in the 𝑥-direction

24 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

and the second tangent vector corresponds to the 𝑦-direction. If you desire the components in a
different coordinate system, you can convert them from the output data. Note that this also means
that you can only specify certain components for interface output, depending on the direction of
the interface.

Additionally, the state variable is only valid for friction laws for which a state variable is defined.

Because interfaces are not defined over the entire domain, you cannot specify arbitrary values for
the grid indices. When the code sees that you have chosen a field appropriate for interface output,
it takes the three minimum spatial indices used to define the output unit and searches over all
interfaces until it finds one where the given indices are part of that interface. If none is found, an
error is raised and the code aborts. Index values on either the “minus” or “plus” side are equally
valid. Note also that since interfaces are 1D or 2D slices in the domain, that at least one set of
index values must have the same minimum and maximum indices, and that this index must lie on
some interface in the simulation.

One final note on interface output: because of how the code handles output in parallel, each output
unit can only handle data from a single interface. Whichever interface is found for the three
minimum spatial indices is used for output, even if the maximum spatial index extends to another
interface. If output over multiple interfaces is desired, you must save each interface separately.

Output List

Each output unit is part of a longer “output list” that is set in the [fdfault.outputlist]
block of the input file. The outputlist block consists of a series of individual output items,
each of which is specified as follows:

name
field
tmin tmax tstride
xmin xmax xstride
ymin ymax ystride
zmin zmax zstride

Line breaks are optional within a single output unit, but required between consecutive output units.
The code reads output units until it encounters a blank line, so you must terminate the list with a
blank line.

3.1.12 Rupture Front Times Input

In addition to the extensive set of options for saving field data from the simulation, the code can
also save rupture times (useful for determining rupture front contours). The rupture time is defined
as the earliest time when a particular interface field first exceeds a threshold. If rupture front output
is selected, the code will save a file for each interface that indicates the earliest time at which the
chosen field exceeds the threshold value. If the particular point never ruptures, a value of -1.

3.1. Text Input Files 25

fdfault Documentation, Release 1.0

is saved. Additionally, the spatial grid information for each interface is saved. Front output only
applies to frictional interfaces, and the code will automatically set up output for any frictional
interface in the simulation while ignoring others. For more details on interpreting the results of
rupture front output, see the analysis section.

The front output is set using the [fdfault.frontlist] section of the input file. This section
of the input file has the following format:

Boolean indicating if front output is desired
Field used to determine rupture time (required only if front output is

→˓turned on)
Field value used to determine rupture time (required only if front

→˓output is turned on)

The frontlist section requires one argument indicating whether or not rupture time output is
desired (0 means no output, 1 indicates that rupture times for all frictional interfaces should be
saved). If output is turned on, two additional arguments are needed: first, a field must be indicated
to be used to determine the rupture time, and a value for that field.

The field can be one of two strings: U if a slip threshold will be used to determine the rupture time,
or V if a slip rate threshold is desired for determining the rupture time. The field value must be a
numeric value, and the rupture time will be the earliest time at which the chosen field exceeds the
threshold value.

Rupture front output is optional, and can be disabled by simply giving 0 as the only argument
in the list (the 0 indicates “false” for front output). If this option is chosen, the remaining two
arguments can be omitted.

3.2 Input Using the Python Module

fdfault is a python module for setting up dynamic rupture problems for use with the C++ code.

3.2.1 Overview

The Python module closely resembles the structure of the text input files and hence the structure of
the C++ code, and has an interface for specifying all simulation parameters through the problem
class. The module is particularly useful for handling situations where inputs must be written to
file in binary format. The module also includes functions that facilitate finding coordinate values
nearest certain spatial locations for choosing indices for creating output units.

One benefit in using the Python module is that the code performs an extensive series of checks
prior to writing the simulation data to file. This, plus using the interfaces that are part of the
problem class, grealy improves the likelihood that the simulation will be set up correctly, and is
highly recommended if you will be using the code to simulate complex problems.

26 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

While the module contains all classes (and you can set up simulations yourself using them), mostly
you will be using the wrappers provided through the problem class, plus the constructors for
surface, curve, material, load, loadfile, swparam, swparamfile, stzparam,
stzparamfile, statefile, and output.

Details on the methods are provided in the documentation for the individual classes.

3.2.2 Requirements

The only external package required to use the Python module is NumPy, which uses numerical
arrays to hold parameter values and writes them to file in binary format. The code has been tested
starting with Numpy 1.9 and subsequent releases, though it will probably also work with some
older versions. The code supports both Python 2 and Python 3 and has been tested on both versions
of Python.

3.2.3 Main Classes

The Python module is set up as a collection of classes. Most of them operate under the hood
and correspond to an equivalent class in the C++ code and are not directly modified by the user.
Instead, the problem class is used, which contains a series of interfaces for modifying the under-
lying classes. Additional classes that are directly instantiated by the user include load and friction
perturbations and output units.

The problem Class

The main class used for creating problems is the problem class. problem holds all relevant
variables and classes needed to specify a simulation, and provides interfaces to automatically cre-
ate the necessary classes when modifying the simulation. The class also contains methods for
searching the grids that will be generated in a simulation in order to find specific points where
output is desired. After the simulation is set up, it also has a method to write all information to file
when complete.

class fdfault.problem(name)
Class describing a dynamic rupture problem.

This is the main class used in the python module. The problem class holds all relevant
information for setting up the simulation, and any modifications to a problem should be
done with the included interfaces.

To create a problem, a problem name (string) is required to initialize an instance of
problem

>>> import fdfault
>>> p = fdfault.problem('myproblem')

3.2. Input Using the Python Module 27

fdfault Documentation, Release 1.0

This will initialize a problem with the default attributes. This includes the following:

Variables

• name (str) – Problem name (string, must be provided when initializ-
ing)

• datadir (str) – Data directory where output will be saved (default is
‘data/’)

• nt (int) – Number of time steps (default is 0)

• dt (float) – Time step size (default is 0.)

• ttot (float) – Total simulation time (default is 0.)

• cfl (float) – Courant ratio (dt * wave speed / dx, must be less than
1., default 0.)

• ninfo (int) – Frequency at which information is printed to the termi-
nal during a simulation (default 10)

• rkorder (int) – Order of accuracy of time integration (default is 1)

• d (domain) – Initializing a problem also creates a new domain, which
can be modified using the methods below.

• outputlist (list) – Initializing a problem creates an empty output
list. To create output items, add them to the list using the appropriate
method.

• frt (front) – A new problem contains a front with output turned off.
To turn on front output, use the appropriate method.

The four variables related to the time step provide several ways to set the time step. You can
set the time step using any pair of the variables except the time step and the Courant ratio. If
you provide more than two, the code defaults to the total time and either the time step or the
Courant ratio if the time step is not provided.

Use the methods described below to modify the simulation. When the problem is fully set-
up, you can write the result to file

>>> p.write_output()

This will create the file myproblem.in in the current directory as well as any necessary
binary files.

__init__(name)
Creates a new instance of the problem class

Initializes a new instance of the problem class. Requires a problem name (string),
other parameters are set to the following defaults:

28 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

•datadir = 'data/' (path is relative to the main code directory)

•nt, dt, ttot, and cfl are set to zero. You must specify two of these to set the
time step, except the time step and the Courant ratio

•ninfo = 10

•rkorder = 1

•An empty output list is initialized

•front output is False

•A domain is created with a single block with 1 grid point in each direction, de-
fault material properties, and a 2nd order finite difference method. All boundary
conditions are set to 'none'

All properties can be modified using the provided interfaces through the problem class.

Parameters name (str) – Name for new problem

Returns New problem instance

Return type problem

add_load(newload, index=None)
Adds load to interface

Add a load perturbation to the interface with the given index. If no index is provided,
the load will be added to all interfaces. If the index is an integer, the load will be added
to the interface with that index. Finally, the index can be an interable (list or tuple) of
integers, and the load will be added to all interfaces in the iterable. Indices that are out
of bounds or indicate an interface that is not frictional will raise an error. Default value
is None (all interfaces).

newload must be a load perturbation (i.e. have type ~fdfault.load), or the code will
raise an error. newload will be appended to the load list

Parameters

• newload (load) – Load to be added

• index (int or tuple or list or None) – Interface to
which the load should be added. Can be a single integer, iterable of
integers, or None to add to all interfaces (default is None)

Returns None

add_output(item)
Adds output item to output list

Add new output item item to output list. item must have type output or the code
will raise an error. The item will be added to the end of the list (order is not important
for output lists)

3.2. Input Using the Python Module 29

fdfault Documentation, Release 1.0

Parameters item (output) – New output item

Returns None

add_pert(newpert, index=None)
Add new friction parameter perturbation to an interface

Method adds a frictional parameter perturbation to an interface. newpert must be
a parameter perturbation of the correct kind for the given interface type (i.e. if the
interface is of type slipweak, then newpert must have type swparam).

index indicates the index of the interface to which the perturbation will be added.
index can be a single integer index, an iterable containing multiple indices, or None
to add to all interfaces (default behavior is None). Out of bounds values will raise an
error.

Parameters

• newpert (pert (more precisely, one of the
derived classes of friction parameter
perturbations)) – New perturbation to be added. Must
have a type that matches the interface(s) in question.

• index (int or list or tuple or None) – Index of inter-
face to which the perturbation will be added (single index or iterable
of indices, or None for all interfaces, optional)

Returns None

check()
Checks problem for errors

No inputs, no return value, and the problem will not be modified.

This is run automatically when calling write_input. You may also run it manually
to see if the problem contains self-consistent input values.

In addition to checking values relevant to the problem class, check is run for all
relevant classes contained in a rupture problem. This includes domain (which will
also run check on itself, as well as any included output units (which are individually
checked against the total number of spatial grid points and time steps in the simulation).
However, it will only print a warning and the input file will still be written if any of
these situations fail (this is mostly to alert the user, as the C++ code will simply adjust
the relevant indices to fall within the values in the simulation).

Returns None

delete_block_surf(coords, loc)
Removes boundary surface for a particular block edge

Removes the bounding surface of a particular block edge. The block is selected by
using coords, which is a tuple or list of 3 integers indicated block coordinates. Within

30 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

that block, location is determined by loc which is an integer that indexes into a list.
Locations correspond to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 =
bottom, 5 = top. Note that the location must be 0 <= loc < 2*ndim

If coords or loc is out of bounds, the code will also signal an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary to be removed (0 = left, 1 =
right, 2 = front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc
must be between 0 and 3.

Returns None

delete_load(niface, index=-1)
Deletes load from index niface at position index from the list of loads

Deletes loads from a frictional interface. niface is an index refering to the desired
interface. Out of bounds values or interfaces that are not frictional will result in an
error.

index indicates the position in the load list that should be deleted. Default for index
is -1 (most recently added).

Parameters

• niface (int) – Interface from which the load should be removed.
niface must refer to a frictional interface

• index (int) – Index within the load perturbation that should be re-
moved (default is last)

Returns None

delete_loadfile(niface)
Deletes loadfile for given interface

Deletes the loadfile for the specified interface. niface is the index of the interface
from which to delete the loadfile, and values that are not valid indices, or indices that
refer to non-frictional interfaces will result in an error.

Parameters niface (int) – Index of interface for loadfile removal

Returns None

delete_output(index=-1)
Delete output item

Deletes the output item at the given location index within the output list. If no index
is provided, it pops the most recently added item.

3.2. Input Using the Python Module 31

fdfault Documentation, Release 1.0

Parameters index (int) – Index of output item to remove

Returns None

delete_paramfile(niface)
Deletes friction parameter file for given interface

Removes the friction parameter file for the interface with index niface. The interface
in question must be a frictional interface that can accept parameter files.

Parameters niface (int) – Index of interface that will have its paramfile
removed

Returns None

delete_pert(niface, index=-1)
Deletes frictional parameter perturbation from interface

niface is an integer indicating the index of the desired interface. If out of bounds,
will give an error.

index is an integer that indicates the position within the list of perturbations. Default
is most recently added (-1).

Parameters

• niface (int) – Index of interface from which to remove the param-
eter perturbation

• index (int) – Index within perturbation list of the given interface to
remove. Default is last item (-1, or most recently added)

Returns None

delete_statefile(niface)
Deletes statefile for given interface

Delete the statefile for a given interface. nifacemust be a valid index that refers to an
interface with a state variable. Will set the statefile attribute for the interface to None.

Parameters niface (int) – Index of interface that will have its statefile
removed

Returns None

find_nearest_point(point, known=None, knownloc=None)
Finds the coordinate indices closest to a desired set of grid values

Method takes a set of grid values (tuple or list of 2 or 3 floats) and finds the indices
of the grid point closest to that location (in terms of Euclidean distance). The method
returns a set of coordinates (tuple of length 3 of integers) of point that is closest to the
input point.

32 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

The method also allows you to search along a given interface. To do this, you must pass
known = 'x' (or 'y' or 'z' depending on the normal direction of the interface)
and the known index in knownloc (integer value, which does not necessarily need to
be on an interface – it just fixes that coordinate when performing the search)

The location is found using an iterative binary search algorithm. The search begins
along the x direction using binary search until the distance to the desired point’s x
coordinate is minimized. The search then proceeds in the y and z directions. The
algorithm then searches again in the x direction, y direction, and z direction, until the
coordinates do not change over an entire iteration. This iteration procedure needs to
take place because the coordinate directions are not independent. The algorithm is
usually fairly efficient and finds coordinates fairly quickly.

Parameters

• point (tuple or list) – Desired spatial location (tuple or list of
floats)

• known (str or None) – Spatial direction to fix during search (op-
tional, string)

• knownloc (int or None) – Fixed coordinate value along known
direction (optional, integer)

Returns Closest spatial coordinate (tuple of 3 integers)

Return type tuple

get_block_lx(coords)
Returns physical size of a block with a given set of coordinates. Note that this assumes
the block is rectangular. It can be overridden by setting the edge of a block to be a
curve (2D) or surface (3D), so this is not always the definitive size of a block.

Parameters coords (tuple or list) – Coordinates of desired block
(tuple or list of three integers)

Returns Dimensions of desired block (tuple of three floats)

Return type tuple

get_block_surf(coords, loc)
Returns block boundary surface for a block edge

Returns the surface assigned to a specific block along a specific edge. The block is cho-
sen using coords which is a tuple or list of 3 positive integers that corresponds to the
coordinates of the block. Within that block, loc determines the edge that is returned
(integer, corresponding to an index). Location indices correspond to the following: 0 =
left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top Note that the location must be 0
<= loc < 2*ndim (for 2D problems, loc cannot be 5 or 6).

Returns either a curve (2D problems) or surface (3D problems) or None

3.2. Input Using the Python Module 33

fdfault Documentation, Release 1.0

If coords or loc indices are out of bounds, the code will raise an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary (0 = left, 1 = right, 2 =
front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

Returns curve or surface corresponding to the selected block and location. If
the desired edge does not have a bounding surface, returns None.

Return type curve or surface or None

get_block_xm(coords)
Returns starting index (zero-indexed) of each block (list of three lists of integers)

Parameters coords (tuple or list) – Coordinates of desired block
(tuple or list of three integers)

Returns list of three lists (each list is a list of integers)

Return type list

get_bm(index)
Returns block in minus direction of interface index. Returns a tuple of 3 integers indi-
cating block coordinates of target block

Parameters index (int) – index of desired interface (zero-indexed)

Returns tuple

get_bounds(coords, loc=None)
Returns boundary types of a particular block

If loc (int) is provided, the method returns a specific location (str). Otherwise it returns
a list of all boundaries, which will have length 4 for 2D problems and length 6 for 3D
problems. loc serves effectively as an index into the list, and the indices correspond
to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top. Note that
the location must be 0 <= loc < 2*ndim

Parameters

• coords (tuple) – Block coordinate location (list or tuple of three
integers)

• loc (int or None) – Location of boundary that is desired (op-
tional). If loc is not provided, returns a list

Returns Boundary type (if loc provided, returns a string of the boundary
type for the desired location, of not returns a list of strings indicating all
boundary types)

34 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type str or list

get_bp(index)
Returns block in plus direction of interface index. Returns a tuple of 3 integers indicat-
ing block coordinates of target block

Parameters index (int) – index of desired interface (zero-indexed)

Returns tuple

get_cdiss()
Returns artificial dissipation coefficient

Returns Artificial dissipation coefficient

Return type float

get_cfl()
Returns Courant ratio (dt * wave speed / grid spacing)

Returns Courant ratio

Return type float

get_datadir()
Returns data directory (data directory can be a relative or absolute path)

Returns Data directory

Return type str

get_direction(index)
Returns direction (formally, normal direction in computational space) of interface with
given index Returns a string ‘x’, ‘y’, or ‘z’, which is the normal direction for a simula-
tion with rectangular blocks

Parameters index (int) – index of desired interface (zero-indexed)

Returns str

get_dt()
Returns time step size

Returns Time step size

Return type float

get_front_field()
Returns front field

Returns Rupture front field (string, “U” denotes slip and “V” denotes slip
velocity)

Return type str

3.2. Input Using the Python Module 35

fdfault Documentation, Release 1.0

get_front_output()
Returns status of front output (boolean)

Returns Status of front output

Return type bool

get_front_value()
Returns front threshold value. Front output is the earliest time at which the given field
exceeds this value

Returns Threshold value for rupture front output

Return type float

get_het_material()
Returns heterogeneous material properties for simulation

Returns a numpy array with shape (3,nx,ny,nz). First index indicates parameter
value (0 = density, 1 = Lame parameter, 2 = Shear modulus). The other three indicate
grid coordinates. If no heterogeneous material parameters are specified, returns None

Returns ndarray

get_het_stress()
Returns heterogeneous stress initial values.

Returns a numpy array with shape (ns,nx,ny,nz). First index indicates stress
component. The following three indices indicate grid coordinates.If no array is cur-
rently specified, returns None.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Returns ndarray

get_iftype(index=None)
Returns interface type of given index, if none provided returns full list

Parameters index (int) – (optional) index of desired interface (zero-
indexed). If not given or if None is given the entire list of interface types
is returned

Returns str or list

get_load(niface, index=None)
Returns load for index niface at position index. If no index provided, returns entire list
of perturbations

36 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters

• niface (int) – index of desire interface (zero-indexed)

• index (int) – (optional) index of perturbation. If not provided or
None, then returns entire list

Returns load or list

get_loadfile(niface)
Returns loadfile for interface with index niface

Loadfile sets any surface tractions set for the particular interface in question. Note
that these tractions are added to any any set by the constant initial stress tensor, initial
heterogeneous stress, or interface traction perturbations

Parameters niface – index of desired interface (zero-indexed)

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

get_material(coords)
Returns material properties for a given block

Returns the material class associated with block with coordinates coords. coords
must be a tuple or list of valid block indices

Parameters coords (tuple or list) – Coordinates of the target block
(tuple or list of 3 nonnegative integers)

Returns Material class with properties for this block

Return type material

get_mattype()
Returns material type (‘elastic’ or ‘plasitc’)

Returns Material type

Return type str

get_mode()
Returns rupture mode (2 or 3), only valid for 2D problems (stored at domain level)

Returns Rupture mode

Return type int

get_name()
Returns problem name

Returns Problem name

Return type str

3.2. Input Using the Python Module 37

fdfault Documentation, Release 1.0

get_nblocks()
Returns number of blocks points in (nx, ny, nz) format

Returns Number of blocks (tuple of three integers)

Return type tuple

get_nblocks_tot()
Returns total number of blocks

Returns Total number of blocks

Return type int

get_ndim()
Returns Number of spatial dimensions

Returns Number of spatial dimensions

Return type int

get_nifaces()
Returns number of interfaces

Returns Number of interfaces

Return type int

get_ninfo()
Returns frequency at which information is written to the terminal during a simulation

Returns Frequency of terminal output

Return type int

get_nloads(index)
Returns number of loads on interface with given index

Parameters index – index of desire interface (zero-indexed)

Returns int

get_nperts(index)
Returns number of frictional parameter perturbations (integer) on given interface with
given index

Parameters index (int) – index of desired interface (zero-indexed)

Returns int

get_nproc()
Returns number of processes (in x, y, z directions).

0 means MPI will do the domain decomposition in that direction automatically

38 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Number of processes in each spatial dimension (x, y, z) (tuple of
three integers)

Return type tuple

get_nt()
Returns number of time steps

Returns Number of time steps

Return type int

get_nx()
Returns number of grid points in (nx, ny, nz) format

Returns Number of grid points (tuple of three integers)

Return type tuple

get_nx_block()
Returns number of grid points in each block along each spatial dimension

Returns Number of grid points in each block (list of three lists)

Return type list

get_output(index=None)
Returns output item at given index (if none give, returns entire list)

Parameters index (int) – (optional) index of desired output unit. If not
given or if None is given the entire list of output units is returned

Returns output item or list of output items

Return type output or list

get_paramfile(niface)
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface with
index niface. Can return a subtype of paramfile corresponding to any of the specific
friction law types.

Parameters niface (int) – index of desired interface (zero-indexed)

Returns paramfile

get_pert(niface, index=None)
Returns perturbation for index niface at position index

Method returns a perturbation from a particular interface. niface must be a valid
integer index referring to an interface. index is the index into the perturbation list
for the particular index. If index is not provided or is None, the method returns the
entire list.

Parameters

3.2. Input Using the Python Module 39

fdfault Documentation, Release 1.0

• niface (int) – Index referring to an interface. (Must be a valid
integer index.)

• index (int or None) – Index into the perturbation list for the in-
dex in question (optional, if not provided or None, then returns entire
list)

Returns pert or list

get_rkorder()
Returns order of accuracy of time integration

Returns Order of accuracy of time integration

Return type int

get_sbporder()
Returns order of accuracy of finite difference method (stored at domain level)

Returns Order of accuracy of finite difference method

Return type int

get_state(niface)
Returns initial state variable value for interface with index niface

Parameters niface – index of desired interface (zero-indexed)

Returns Initial state variable

Return type float

get_statefile(niface)
Returns state file of given interface

If interface does not have a statefile returns None

Parameters niface – index of desired interface (zero-indexed)

Returns statefile or None

get_stress()
Returns uniform intial stress values

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Returns Initial stress tensor (list of floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

Return type list

40 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_ttot()
Returns total simulation time ttot

Returns Total simulation time

Return type float

get_x(coord)
Returns grid value for given spatial index

For a given problem set up, returns the location of a particular set of coordinate indices.
Note that since blocks are set up by setting values only on the edges, coordinates on the
interior are not specified a priori and instead determined using transfinite interpolation
to generate a regular grid on the block interiors. Calling get_x generates the interior
grid to find the coordinates of the desired point.

Within each call to get_x, the grid is generated on the fly only for the relevant block
where the desired point is located. It is not stored. This helps reduce memory require-
ments for large 3D problems (since the Python module does not run in parallel), but is
slower. Because the computational grid is regular, though, it can be done in a single
step in closed form.

Returns a numpy array of length 3 holding the spatial location (x, y, z).

Parameters coord (tuple or list) – Spatial coordinate where grid
values are desired (tuple or list of 3 integers)

Returns (x, y, z) coordinates of spatial location

Return type ndarray

set_block_lx(coords, lx)
Sets block with coordinates coords to have dimension lx

coords is a tuple of nonnegative integers that indicates the coordinates of the desired
block (0-indexed, must be less than the number of blocks in that particular direction
or the code will raise an error). lx is a tuple of two (2D) or three (3D) positive floats
indicating the block length in each spatial dimension. Note that this assumes each
block is rectangular. When a single block is modified, the code automatically adjusts
the lower left corner of all simulation blocks to be consistent with this change.

This can be overridden by setting a block edge to be a curve (2D) or surface (3D).
However, traction and friction parameter perturbations still make use of these block
lengths when altering interface tractions or friction parameters. More information on
how this works is provided in the pert documentation.

Finally, note that neighboring blocks must have conforming grids. When writing simu-
lation data to file, the code checks that all interfacial grids match, and raises an error if
it disagrees. So while the set_block_lx method may not complain about an error
like this, you will not be able to save the simulation to a file with such an error.

Parameters

3.2. Input Using the Python Module 41

fdfault Documentation, Release 1.0

• coords (tuple or list) – Coordinates (tuple or list of 3 nonneg-
ative integers)

• lx (tuple or list) – New dimensions of desired block (tuple or
list of 2 or 3 positive floats)

Returns None

set_block_surf(coords, loc, surf)
Sets boundary surface for a particular block edge

Changes the bounding surface of a particular block edge. The block is selected by
using coords, which is a tuple or list of 3 integers indicated block coordinates. Within
that block, location is determined by loc which is an integer that indexes into a list.
Locations correspond to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 =
bottom, 5 = top. Note that the location must be 0 <= loc < 2*ndim

For 2D problems, surf must be a curve. For 3D problems, surf must be a surface.
Other choices will raise an error. If coords or loc is out of bounds, the code will
also signal an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary (0 = left, 1 = right, 2 =
front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

• surf (curve or surface) – curve or surface corresponding to
the selected block and location

Returns None

set_bounds(coords, bounds, loc=None)
Sets boundary types of a particular block.

Changes the type of boundary conditions on a block. Acceptable values are ‘absorbing’
(incoming wave amplitude set to zero), ‘free’ (no traction on boundary), ‘rigid’ (no
displacement of boundary), or ‘none’ (boundary conditions set by imposing interface
conditions).

The block to be modified is determined by coords, which is a tuple or list of 3 integers
that match the coordinates of a block.

There are two ways to use set_bounds:

1.Set loc to be None (default) and provide a list of strings specifying boundary
type for bounds. The length of bounds is 4 for a 2D simulation and 6 for 3D.

2.Set loc to be an integer denoting location and give bounds as a single string.
The possible locations correspond to the following: 0 = left, 1 = right, 2 = front, 3

42 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

= back, 4 = bottom, 5 = top. 4 and 5 are only applicable to 3D simulations (0 <=
loc < 2*ndim).

Parameters

• coords (tuple or list) – Location of block to be modifies (tu-
ple or list of 3 integers)

• bounds (str or list) – New boundary condition type (string or
list of strings)

• loc (int or None) – If provided, only change one type of bound-
ary condition rather than all (optional, loc serves as an index into the
list if used)

Returns None

set_cdiss(cdiss)
Sets artificial dissipation coefficient

New artificial dissipation coefficient must be nonnegative. If it is set to zero, the code
will not use artificial dissipation in the simulation.

There is not a hard and fast rule for setting the coefficient, so some degree of trial and
error may be necessary. Values around 0.1 have worked well in the past, but that may
not be true for all meshes.

Parameters cdiss (float) – New artificial dissipation coefficient

Returns None

set_cfl(cfl)
Sets CFL ratio The CFL ratio must be between 0. and 1. If the provided value is not a
float, it will be converted into a float

The four variables related to the time step provide several ways to set the time step.
You can set the time step using any pair of the variables except the time step and the
Courant ratio. If you provide more than two, the code defaults to the total time and
either the time step or the Courant ratio if the time step is not provided.

Parameters cfl (float) – New value for the CFL ratio

Returns None

set_datadir(datadir)
Sets problem data directory to new value Method checks if datadir is a string and ends
in ‘/’, but does not check that it is a valid path

Parameters name (str) – New problem data directory (must be a string)

Returns None

3.2. Input Using the Python Module 43

fdfault Documentation, Release 1.0

set_domain_xm(xm)
Sets lower left corner of domain to spatial coordinate xm

Moves the lower left corner of the simulation. This does not affect block lengths, only
the minimum spatial location of the entire comain in each cartesian direction. Individ-
ual block locations are calculated automatically from this and the length information
for each block. Thus, you cannot set the location of each block directly, just the overall
value of the domain and then all other blocks are positioned based on the length of
other blocks.

If the simulation is 2D and a nonzero value for the z-coordinate is provided, the z
position of all blocks will be automatically set to zero.

Note that the location of any block can be overridden by setting the edges to be surfaces.
The corners must still match one another (this is checked when writing the simulation
data to file), and neighboring blocks must have conforming grids at the edges.

Parameters xm (tuple or list) – New lower left coordinate of simula-
tion domain (tuple of 2 or 3 floats)

Returns None

set_dt(dt)
Sets time step New time step cannot be negative (will trigger an error) If time step is
not a float, it is converted to a float

The four variables related to the time step provide several ways to set the time step.
You can set the time step using any pair of the variables except the time step and the
Courant ratio. If you provide more than two, the code defaults to the total time and
either the time step or the Courant ratio if the time step is not provided.

Parameters dt (float) – New time step

Returns None

set_front_field(field)
Sets rupture front field

Sets new value of rupture front field field. field must be a string (slip ('U') or
slip velocity ('V')). Other choices will raise an error.

Parameters field (str) – New rupture front field

Returns None

set_front_output(output)
Sets front output to be on or off

Sets rupture front output to be the specified value (boolean). Will raise an error if the
provided value cannot be converted into a boolean.

Parameters output (bool) – New value of output

44 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns None

set_front_value(value)
Sets front threshold value

Changes value of rupture front threshold. The rupture time is the earliest time at which
the chosen field exceeds this value. value is the new value (must be a positive num-
ber).

Parameters value (float) – New values of the threshold for rupture front
times.

Returns None

set_het_material(mat)
Sets heterogeneous material properties for simulation

New heterogeneous material properties must be a numpy array with shape
(3,nx,ny,nz). First index indicates parameter value (0 = density, 1 = Lame pa-
rameter, 2 = Shear modulus). The other three indicate grid coordinates

Parameters mat (ndarray) – New material properties array (numpy array
with shape (3,nx,ny,nz))

Returns None

set_het_stress(s)
Sets heterogeneous stress initial values

Sets initial heterogeneous stress. New stress must be a numpy array with shape
(ns,nx,ny,nz). First index indicates stress component. The following three in-
dices indicate grid coordinates.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Parameters s (ndarray) – New heterogeneous stress array (numpy array
with shape (3,nx,ny,nz)

Returns None

set_iftype(index, iftype)
Sets type of interface with a given index

Changes type of a particular interface. index is the index of the interface to be modi-
fied and iftype is a string denoting the interface type. Valid values for iftype are
'locked', 'frictionless', 'slipweak', and 'stz'. Any other values will
result in an error, as will an interface index that is out of bounds.

3.2. Input Using the Python Module 45

fdfault Documentation, Release 1.0

Parameters

• index (int) – Index (nonnegative integer) of interface to be modified

• iftype (str) – New interface type (see valid values above)

Returns None

set_loadfile(niface, newloadfile)
Sets loadfile for interface with index niface

niface indicates the index of the interface that will be modified, and must be a fric-
tional interface. newloadfile is the new loadfile (must have type loadfile). If
the index is bad or the loadfile type is not correct, the code will raise an error. Errors
can also result if the shape of the loadfile does not match with the interface.

Parameters

• niface – index of desired interface (zero-indexed)

• newloadfile (loadfile) – New loadfile to be used for the given
interface

Returns None

set_material(newmaterial, coords=None)
Sets block material properties for the block with indices given by coords

If coords is not provided, all blocks are changed to have the given material properties.
newmaterial must have a type material and coords must be a tuple or list of
three integers that match the coordinates of a block.

If set_material changes all blocks in the simulation, it also changes the ma-
terial type for the whole simulation (equivalent to calling set_mattype). If
set_material acts only on a single block, the new material type of that block must
match the one set in the fields type (i.e. the return value of get_mattype).

Parameters

• newmaterial (material) – New material properties

• coords (tuple or list) – Coordinates of block to be changed
(optional, omitting changes all blocks). coords must be a tuple or list
of three integers that match the coordinates of a block.

Returns None

set_mattype(mattype)
Sets field and block material type (‘elastic’ or ‘plastic’)

Sets the material type for the simulation. Options are ‘elastic’ for an elastic simulation
and ‘plastic’ for a plastic simulation. Anything else besides these options will cause
the code to raise an error.

46 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Once the simulation type is altered, all blocks material types are changed as well. This
is necessary to ensure that the right set of parameters are written to file. Note that all
blocks must therefore have the same material type, though you can ensure that a given
block always behaves elastically by setting an appropriate value for the yield criterion.

Parameters mattype (str) – New material type (‘elastic’ or ‘plastic’)

Returns None

set_mode(mode)
Sets rupture mode

Rupture mode is only valid for 2D problems, and is either 2 or 3 (other values will
cause an error, and non-integer values will be converted to integers). For 3D problems,
entering a different value of the rupture mode will alter the rupture mode cosmetically
but will have no effect on the simulation.

Parameters mode (int) – New value of rupture mode

Returns None

set_name(name)
Sets problem name

Parameters name (str) – New problem name (must be a string)

Returns None

set_nblocks(nblocks)
Sets number of blocks

set_nblocks alters the number of blocks in the simulation. The method adds or
deletes blocks from the list of blocks as needed. Depending on how the number of
blocks is changed, new blocks may only have a single grid point, or if added in a
direction where the number of blocks is already established the number of grid points
may be copied from the existing simulation. If in doubt, use get_nx_block to check
the number of grid points and use set_nx_block to modify if necessary.

Parameters nblocks (tuple) – New number of blocks (tuple of 3 positive
integers)

Returns None

set_ndim(ndim)
Sets number of dimensions

The new number of spatial dimensions must be an integer, either 2 or 3. If a different
value is given, the code will raise an error. If a non-integer value is given that is
acceptable, the code will convert it to an integer.

Note: Converting a 3D problem into a 2D problem will automatically collapse the
number of grid points and the number of blocks in the z direction to be 1. Any
modifications to these quantities that were done previously will be lost.

3.2. Input Using the Python Module 47

fdfault Documentation, Release 1.0

Parameters ndim (int) – New value for ndim (must be 2 or 3)

Returns None

set_ninfo(ninfo)
Sets frequency of information output

The simulation will write out information to the terminal after each ninfo time steps.
ninfo must be a positive integer (if less than zero, will trigger an error). ninfo is
converted into an integer.

Parameters ninfo (int) – New value of ninfo

Returns None

set_nproc(nproc)
Sets number of processes in domain decomposition manually

New number of processes nproc must be a tuple/list of nonnegative integers. If the
problem is 2D, the number of processes in the z direction will automatically be set to
1. Any number can be set to zero, in which case MPI will set the number of processes
in that direction automatically. If all three numbers are nonzero, then it is up to the user
to ensure that the total number of processors ($nx imes ny imes nz$) is the same as the
total number when running the executable.

Parameters nproc (tuple) – New number of processes (must be a tuple
of positive integers)

Returns None

set_nt(nt)
Sets number of time steps New number of time steps cannot be negative (will trigger
an error) If number of time steps is not an integer, it is converted to an integer

The four variables related to the time step provide several ways to set the time step.
You can set the time step using any pair of the variables except the time step and the
Courant ratio. If you provide more than two, the code defaults to the total time and
either the time step or the Courant ratio if the time step is not provided.

Parameters nt (int) – New number of time steps

Returns None

set_nx_block(nx_block)
Set number of grid points in each block as a list of lists.

Input must be a list or tuple of length 3, with each item a list of integers representing the
number of grid points for each block along the respective dimension. If the list lengths
do not match the number of blocks, the code will raise an error. The blocks must form
a regular cartesian grid with conforming edges, so all blocks along a single spatial
dimension must have the same number of grid points along that spatial dimension.

48 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

For example, if nblocks = (3,2,1), then nblock[0] has length 3, nblock[1] has length 2,
and nblock[2] has length 1. All blocks that are at position 0 in the x-direction will have
nblock[0][0] grid points in the x-direction, all blocks at position 1 in the x-direction
will have nblock[0][1] grid points in the x-direction, etc.

Parameters nx_block (list) – New number of grid points (list of 3 lists
of positive integers)

Returns None

set_paramfile(niface, newparamfile)
Sets paramfile for given interface

Method sets the file holding frictional parameters for an interface. Interface to be mod-
ified is set by niface, which must be a valid index for an interface.

newparamfilemust be a parameter perturbation file of the correct type for the given
interface type (i.e. if the interface is of type slipweak, then newpert must have
type swparamfile). Errors can also result if the shape of the paramfile does not
match with the interface.

Parameters

• niface (int) – index of desired interface (zero-indexed)

• newparamfile (paramfile (actual type must be
the appropriate subclass for the friction law
of the particular interface and have the right
shape)) – New frictional parameter file (type depends on interface in
question)

Returns None

set_rkorder(rkorder)
Sets order of low storage RK method (integer 1-4).

Value is converted to an integer, and error will be signaled if a different value is given
outside of this range.

Parameters rkorder (int) – New value of order of accuracy of integra-
tion

Returns None

set_sbporder(sbporder)
Sets finite difference order

Finite difference method order must be an integer 2-4. A value outside of this range will
result in an error. If a non-integer value is given that is acceptable, it will be converted
to an integer and there will be no error message.

Parameters sbporder (int) – New value of finite difference method order
(integer 2-4)

3.2. Input Using the Python Module 49

fdfault Documentation, Release 1.0

Returns None

set_state(niface, state)
Sets initial state variable for interface

Set the initial value for the state variable for a given interface. niface is the index
of the interface to be set (must be a valid integer index). The interface must have a
state variable associated with it, or an error will occur. state is the new state variable
(must be a float or some other valid number).

Parameters

• niface (int) – Index of interface to modify. Must be an interface
with a state variable

• state (float) – New value of state variable

Returns None

set_statefile(niface, newstatefile)
Sets state file for interface

Set the statefile for the indicated interface. niface must be a valid index to an in-
terface, out of bounds values will lead to an error. newstatefile``must have
type ``statefile and the interface must support a state variable. Errors can also
result if the shape of the statefile does not match with the interface.

Parameters

• niface (int) – Index of interface to be modified

• newstatefile (statefile) – New statefile for the interface in
question.

Returns None

set_stress(s)
Sets uniform intial stress

Changes initial uniform stress tensor. New stress tensor must be a list of six floats.

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Params s New stress tensor (list of 6 floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

Returns None

50 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

set_ttot(ttot)
Sets total simulation time Total time cannot be negative (will trigger an error) If total
time is not a float, it is converted to a float

The four variables related to the time step provide several ways to set the time step.
You can set the time step using any pair of the variables except the time step and the
Courant ratio. If you provide more than two, the code defaults to the total time and
either the time step or the Courant ratio if the time step is not provided.

Parameters ttot (float) – New value for total time

Returns None

write_input(filename=None, directory=None, endian=’=’)
Writes problem to input file

Method writes the current state of a problem to an input file, also writing any binary
data to file (i.e. block boundary curves, heterogeneous stress tensors, heterogeneous
material properties, heterogeneous interface tractions, heterogeneous state variables, or
heterogeneous friction parameters).

All input arguments are optional. Possible arguments include filename (string, de-
fault is problem name) which will set the input file name (the code adds on .in to
the provided filename), directory (string holding the path to the location where the
file will be written, default is current directory), and endian to set byte-ordering for
writing binary files (default is = (native), other options inlcude < (little) and > (big)).

When write_input is called, the code calls check, which verifies the validity of
the simulation and alerts the user to any problems. check examines if block surface
edges match, if neighboring blocks have matching grids, and other things that cannot
be checked when modifying the simulation. The same checks are run in the C++ code
when initializing a problem, so a problem that runs into trouble when calling check
is likely to have similar difficulties when running the simulation.

Parameters

• filename (str) – name of file (default is problem name); code will
add .in to this

• directory (str) – Location where input file should be written (de-
fault current directory)

• endian – Byte-ordering for files. Should match byte ordering of the
system where the simulation will be run (it helps to run the Python
script directly with native byte ordering enabled). Default is native (=),
other options include < for little endian and > for big endian.

Returns None

3.2. Input Using the Python Module 51

fdfault Documentation, Release 1.0

The material Class

The material class contains information regarding block material properties. This includes
whether the block is linear elastic or elastic-plastic in its deformation style, density, elastic mod-
ulii, and plastic failure criteria such as the internal friction coefficient, cohesion, dilatancy, and a
viscoplastic “viscosity.”

Each block in the domain is assigned a material with default properties when it is initialized. This
can be changed by assigning a new material to a particular block using the interface provided
in the problem class. The density and elastic modulii can also be overridden by creating a
heterogeneous array of material properties that varies in a point-by-point fashion rather than having
block material properties.

class fdfault.material(mattype, rho=2.67, lam=32.04, g=32.04, mu=0.5735,
c=0.0, beta=0.2867, eta=0.2775)

Class describing block material properties

When a new block is initialized, one is created with the following default properties. When
creating a new material yourself, you must select whether the block is elastic or plastic
by specifying the mattype attribute, but the other values will be given default values (see
below) if they are not specified.

Variables

• mattype (str) – Specifies if a block is elastic or plastic (value must
be 'elastic' or 'plastic')

• rho (float) – Density (default 2.67 MPa s^2 / km / m, see note below
about funny units)

• lam (float) – First Lame parameter (default is 32.04 GPa)

• g (float) – Shear modulus (default is 32.04 GPa)

• mu (float) – Internal friction coefficient (only relevant for plastic ma-
terials, default is 0.5735)

• c (float) – Cohesion (default is 0.)

• beta (float) – Plastic dilatancy, determines ratio of dilational to shear
strain (default 0.2867)

• eta (float) – Plastic viscosity, determines time scale over which
stresses in excees of the yield surface decay back to the yield surface
(default 0.2775 GPa s)

You are free to choose any self-consistent unit system that you like. For practical purposes, it
is best to have all parameters be of order unity to reduce round-off errors when dealing with
quantities of vastly different magnitudes. To facilitate this, the default parameters measure
distance in km but slip in m, and elastic modulii in GPa but stresses in MPa, which result
in quantities of order unity in all fields calculated in the solution for typical values found

52 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

in simulating earthquake rupture on seismogenic faults. The extra factor of 10^3 cancels
correctly in Hooke’s law, but does not in the momentum conservation eqaution, meaning that
the density must have funny units of MPa s^2 / km / m to correct for this.

__init__(mattype, rho=2.67, lam=32.04, g=32.04, mu=0.5735, c=0.0,
beta=0.2867, eta=0.2775)

Create a new instance of the material class

Initialize a new material. The user must specify whether the material type is elastic or
plastic, but all other parameters are optional (any not specified will take default values).
All parameters must be positive (rho, lam, g, mu) or nonnegative (beta, eta, c).

Parameters

• mattype (str) – Material type, must be 'elastic' or
'plastic'

• rho (float) – Density

• lam (float) – First Lame parameter

• g (float) – Shear modulus

• mu (float) – Internal friction coefficient

• c (float) – Cohesion

• beta (float) – Plastic dilatancy

• eta (float) – Plastic viscosity

Returns New material instance

Return type material

get_beta()
Returns plastic dilatancy (ratio of dilataional to shear strain)

Returns Plastic dilatancy

Return type float

get_c()
Returns cohesion

Returns Cohesion

Return type float

get_cp()
Returns compressional wave speed

Returns Compressional wave speed

Return type float

3.2. Input Using the Python Module 53

fdfault Documentation, Release 1.0

get_cs()
Returns shear wave speed

Returns Shear wave speed

Return type float

get_eta()
Returns plastic “viscosity”

Viscosity determines the time scale over which stresses can exceed the yield stress

:returns:Plastic “viscosity” :rtype: float

get_g()
returns shear modulus

get_lam()
Returns first Lame parameter

Returns First Lame parameter

Return type float

get_mu()
Returns internal friction coefficient

Returns Internal friction coefficient

Return type float

get_rho()
Returns Density

Returns Density

Return type float

get_type()
Returns material type

Returns Material type ('elastic' or 'plastic')

Return type str

get_zp()
Returns compressional impedance

Returns Compressional impedance

Return type float

get_zs()
Returns shear impedance

Returns Shear impedance

54 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type float

set_beta(beta)
Sets plastic dilatancy to a new value

Parameters beta (float) – New value of plastic dilatancy

Returns None

set_c(c)
Sets cohesion to a new value

Parameters c (float) – New value of cohesion

Returns None

set_eta(eta)
Sets plastic “viscosity” to a new value

Parameters eta (float) – New value of plastic viscosity

Returns None

set_g(g)
Sets shear modulus to a new value

Parameters g (float) – New value of shear modulus

Returns None

set_lam(lam)
Sets first Lame parameter to a new value

Parameters lam (float) – New value of first Lame parameter

Returns None

set_mu(mu)
Sets internal friction to a new value

Parameters mu (float) – New value of internal friction coefficient

Returns None

set_rho(rho)
Sets density to a new value

Parameters rho (float) – New value of density

Returns None

set_type(mattype)
Sets material type (must be either 'elastic' or 'plastic')

Parameters mattype (str) – New material type (must be either
'elastic' or 'plastic')

3.2. Input Using the Python Module 55

fdfault Documentation, Release 1.0

Returns None

write_input(f)
Writes material properties to input file

This method is called when writing each block to the input file. It is called automat-
ically, and writes the material properties in the correct location within the inputs for
each block. It also automatically handles whether or not the simulation is elastic or
plastic, writing out the plastic parameters only if needed.

Parameters f (file) – Input file handle

Returns None

The surface and curve Classes

The main classes used for handling complex geometries are the surface and curve classes.
surface is used in 3D problems, while curve is used in 2D problems. The only differences in
the classes are the number of dimensions; otherwise they are identical.

class fdfault.surface(n1, n2, direction, x, y, z)
The surface class represents a surface for defining interfaces and block boundaries

Each surface contains the following attributes:

Variables

• n1 – Number of grid points in the first spatial direction (x unless the
interface is an 'x' interface)

• n2 – Number of grid points in the second spatial direction (z unless the
interface is a 'z' interface)

• direction – Normal direction in computational space

• x – Numpy array holding x coordinates, must have shape (n1,n2)

• y – Numpy array holding y coordinates, must have shape (n1,n2)

• z – Numpy array holding z coordinates, must have shape (n1,n2)

__init__(n1, n2, direction, x, y, z)
Initialize a surface instance

Required arguments are n1 and n2, which are number of grid points in each direction, a
direction which indicates the surface orientation in computational space ('x', 'y', or
'z'), plus three arrays x, y, and z (must have shape (n1,n2) that hold the coordinates
for the new surface. Initializing with a negative number of grid points, with arrays that
do not have the correct shape, or with a bad string for the surface orientation will result
in an error.

Parameters

56 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• n1 (int) – Number of grid points along first dimension

• n2 (int) – Number of grid points along second dimension

• direction (str) – String indicating surface normal direction in
computational space (must be 'x', 'y', or 'z')

• x (ndarray) – Array holding surface x coordinates (must have shape
(n1,n2))

• y (ndarray) – Array holding surface y coordinates (must have shape
(n1,n2))

• z (ndarray) – Array holding surface z coordinates (must have shape
(n1,n2))

Returns New surface with specified properties

Return type surface

get_direction()
Returns approximate normal direction

Returns Normal direction in computational space

Return type str

get_n1()
Returns number of grid points along first dimension

Returns Number of grid points along first dimension (x unless interface di-
rection is 'x')

Return type int

get_n2()
Returns number of grid points along second dimension

Returns Number of grid points along second dimension (z unless interface
direction is 'z')

Return type int

get_x(i=None)
Returns x coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of x coordinate

3.2. Input Using the Python Module 57

fdfault Documentation, Release 1.0

Return type ndarray or float

get_y(i=None)
Returns y coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of y coordinate

Return type ndarray or float

get_z(i=None)
Returns z coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of z coordinate

Return type ndarray or float

has_same_edge(edge1, edge2, othersurf)
Compares the edges of two surfaces

The method compares the edges of two surfaces, using the indices 0-3 to indicate the
edges (one argument must be provided for each surface)

•0 means edge where second index is zero

•1 means edge where first index is zero

•2 means edge where second index is n2-1

•3 means edge where first index is n1-1

Returns a boolean.

Parameters

• edge1 (int) – Edge of first surface to be used. Must be integer 0-3

• edge2 (int) – Edge of second surface to be used. Must be integer
0-3

• othersurf (surface) – The second surface, must be a surface

Returns Whether or not the selected edges match

58 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type bool

write(filename, endian=’=’)
Write surface to binary file

Method writes the surface to a binary file. Input arguments include the desired filename
(required) and the byte ordering of the file ('=' native, '>' big endian, '<' little
endian; default is native)

Parameters

• filename (str) – Filename for output

• endian (str) – Byte ordering of output (optional, default is native)

Returns None

class fdfault.curve(n, direction, x, y)
The curve class represents a curve for defining interfaces and block boundaries in 2D prob-
lems

A curve is simply a surface class with the z spatial dimension removed. However, you
cannot use curves and surfaces interchangeably as the C++ code reads the files for 2D and
3D problems differently, thus appropriate typing is enforced.

Each curve contains the following attributes:

Variables

• n1 – Number of grid points (x for 'y' interfaces, y for 'x' interfaces)

• direction – Normal direction in computational space

• x – Numpy array holding x coordinates, must have shape (n1,)

• y – Numpy array holding y coordinates, must have shape (n1,)

__init__(n, direction, x, y)
Initialize a curve instance

Required arguments are n, which are number of grid points in each direction, a direction
which indicates the surface orientation in computational space ('x' or 'y'), plus three
arrays x and y (must have shape (n,) that hold the coordinates for the new surface.
Initializing with a negative number of grid points, with arrays that do not have the
correct shape, or with a bad string for the surface orientation will result in an error.

Parameters

• n (int) – Number of grid points

• direction (str) – String indicating curve normal direction in com-
putational space (must be 'x' or 'y')

• x (ndarray) – Array holding surface x coordinates (must have shape
(n1,))

3.2. Input Using the Python Module 59

fdfault Documentation, Release 1.0

• y (ndarray) – Array holding surface y coordinates (must have shape
(n1,))

Returns New curve with specified properties

Return type curve

get_direction()
Returns approximate normal direction

Returns Normal direction in computational space

Return type str

get_n1()
Returns number of grid points along first dimension

Returns Number of grid points along first dimension (x unless interface di-
rection is 'x')

Return type int

get_n2()
Returns number of grid points along second dimension

Returns Number of grid points along second dimension (z unless interface
direction is 'z')

Return type int

get_x(i=None)
Returns x coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of x coordinate

Return type ndarray or float

get_y(i=None)
Returns y coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of y coordinate

60 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type ndarray or float

get_z(i=None)
Returns z coordinate array

if no argument is provided, the method returns the entire array. Otherwise, i must be a
valid index tuple for the array.

Parameters i (tuple or None) – Index tuple (must be a valid index into
the array). Optional, if not provided or if None is given, this returns the
entire array.

Returns Value of z coordinate

Return type ndarray or float

has_same_edge(edge1, edge2, othersurf)
Compares the edges of two curves

The method compares the edges of two curves, using the indices 1 or 3 to indicate the
edges (one argument must be provided for each curve). Note that this definition is made
to be consistent with the surface class.

•1 means edge where first index is zero

•3 means edge where first index is n1-1

Returns a boolean.

Parameters

• edge1 (int) – Edge of first surface to be used. Must be integer 1 or 3

• edge2 (int) – Edge of second surface to be used. Must be integer 1
or 3

• othersurf (curve) – The second curve, must be a curve

Returns Whether or not the selected edges match

Return type bool

write(filename, endian=’=’)
Write curve to binary file

Method writes the curve to a binary file. Input arguments include the desired filename
(required) and the byte ordering of the file ('=' native, '>' big endian, '<' little
endian; default is native)

Parameters

• filename (str) – Filename for output

• endian (str) – Byte ordering of output (optional, default is native)

Returns None

3.2. Input Using the Python Module 61

fdfault Documentation, Release 1.0

The friction Class

The friction class is the parent class of all frictional interfaces. Information on setting load
perturbations is provided here, as this is common to all friction laws.

class fdfault.friction(ndim, index, direction, bm, bp)
Class representing a frictionless interface between blocks

This is the parent class of all other frictional interfaces. The friction class describes fric-
tionless interfaces. While this interface type does not require any parameter specifications, it
does calculate slip from traction and thus the interface tractions are relevant. Therefore, it al-
lows for the user to specify interface tractions that are added to the stress changes calculated
by the code. These tractions can be set either as “perturbations” (tractions following some
pre-specified mathematical form), or “load files” where the tractions are set point-by-point
and thus can be arbitrarily complex.

Frictionless interfaces have the following attributes:

Variables

• ndim – Number of dimensions in problem (2 or 3)

• iftype – Type of interface (‘locked’ for all standard interfaces)

• index – index of interface (used for identification purposes only, order
is irrelevant in simulation)

• bm – Indices of block in the “minus” direction (tuple of 3 integers)

• bp – Indices of block in the “plus” direction (tuple of 3 integers)

• direction – Normal direction in computational space (“x”, “y”, or
“z”)

• nloads – Number of load perturbations (length of loads list)

• loads – List of load perturbations

• lf – Loadfile holding traction at each point

__init__(ndim, index, direction, bm, bp)
Initializes an instance of the friction class

Create a new friction given an index, direction, and block coordinates.

Parameters

• ndim (int) – Number of spatial dimensions (must be 2 or 3)

• index (int) – Interface index, used for bookkeeping purposes, must
be nonnegative

62 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• direction (str) – String indicating normal direction of interface
in computational space, must be 'x', 'y', or 'z', with 'z' only
allowed for 3D problems)

• bm (tuple) – Coordinates of block in minus direction (tuple of length
3 of integers)

• bp (tuple) – Coordinates of block in plus direction (tuple of length 3
or integers, must differ from bm by 1 only along the given direction to
ensure blocks are neighboring one another)

Returns New instance of friction class

Return type friction

add_load(newload)
Adds a load to list of load perturbations

Method adds the load provided to the list of load perturbations. If the newload pa-
rameter is not a load perturbation, this will result in an error.

Parameters newload (fdfault.load) – New load to be added to the
interface (must have type load)

Returns None

add_pert(newpert)
Add new friction parameter perturbation to an interface

Method adds a frictional parameter perturbation to an interface. newpert must be
a parameter perturbation of the correct kind for the given interface type (i.e. if the
interface is of type slipweak, then newpert must have type swparam).

Parameters newpert (pert (more precisely, one of
the derived classes of friction parameter
perturbations)) – New perturbation to be added. Must have
a type that matches the interface(s) in question.

Returns None

delete_load(index=-1)
Deletes load at position index from the list of loads

Method deletes the load from the list of loads at position index. Default is most
recently added load if an index is not provided. index must be a valid index into the
list of loads.

Parameters index (int) – Position within load list to remove (optional,
default is -1)

Returns None

3.2. Input Using the Python Module 63

fdfault Documentation, Release 1.0

delete_loadfile()
Deletes the loadfile for the interface.

Returns None

delete_paramfile()
Deletes friction parameter file for the interface

Removes the friction parameter file for the interface. The interface must be a frictional
interface that can accept parameter files.

Returns None

delete_pert(index=-1)
Deletes frictional parameter perturbation from interface

index is an integer that indicates the position within the list of perturbations. Default
is most recently added (-1).

Parameters index (int) – Index within perturbation list of the given inter-
face to remove. Default is last item (-1, or most recently added)

Returns None

get_bm()
Returns block on negative side

Returns tuple of block indices on negative size

Returns Block indices on negative side (tuple of integers)

Return type tuple

get_bp()
Returns block on positive side

Returns tuple of block indices on positive size

Returns Block indices on positive side (tuple of integers)

Return type tuple

get_direction()
Returns interface orientation

Returns orientation (string indicating normal direction in computational space).

Returns Interface orientation in computational space (‘x’, ‘y’, or ‘z’)

Return type str

get_index()
Returns index

Returns the numerical index corresponding to the interface in question. Note that this
is just for bookkeeping purposes, the interfaces may be arranged in any order as long as

64 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

no index is repeated. The code will automatically handle the indices, so this is typically
not modified in any way.

Returns Interface index

Return type int

get_load(index=None)
Returns load at position index

Returns a load from the list of load perturbations at position index. If no index is
provided (or None is given), the method returns entire list. index must be a valid list
index given the number of loads.

Parameters index (int or None) – Index within load list (optional, de-
fault is None to return full list)

Returns load or list

get_loadfile()
Returns loadfile for interface

Loadfile sets any surface tractions set for the interface. Note that these tractions are
added to any any set by the constant initial stress tensor, initial heterogeneous stress, or
interface traction perturbations

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

get_nloads()
Returns number of load perturbations on the interface

Method returns the number of load perturbations presently in the list of loads.

Returns Number of load perturbations

Return type int

get_nperts()
Returns number of friction parameter perturbations on interface

Method returns the number of parameter perturbations for the list

Returns Number of parameter perturbations

Return type int

get_paramfile()
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface.
Can return a subtype of paramfile corresponding to any of the specific friction law
types.

Returns paramfile

3.2. Input Using the Python Module 65

fdfault Documentation, Release 1.0

get_pert(index=None)
Returns perturbation at position index

Method returns a perturbation from the interface. index is the index into the pertur-
bation list for the particular index. If index is not provided or is None, the method
returns the entire list.

Parameters index (int or None) – Index into the perturbation list for
the index in question (optional, if not provided or None, then returns
entire list)

Returns pert or list

get_type()
Returns string of interface type

Returns the type of the given interface (“locked”, “frictionless”, “slipweak”, or “stz”)

Returns Interface type

Return type str

set_index(index)
Sets interface index

Changes value of interface index. New index must be a nonnegative integer

Parameters index (int) – New value of index (nonnegative integer)

Returns None

set_loadfile(newloadfile)
Sets loadfile for interface

newloadfile is the new loadfile (must have type loadfile). If the index is bad
or the loadfile type is not correct, the code will raise an error. Errors can also result if
the shape of the loadfile does not match with the interface.

Parameters newloadfile (loadfile) – New loadfile to be used for the
given interface

Returns None

set_paramfile(newparamfile)
Sets paramfile for the interface

Method sets the file holding frictional parameters for the interface.

newparamfilemust be a parameter perturbation file of the correct type for the given
interface type (i.e. if the interface is of type slipweak, then newpert must have
type swparamfile). Errors can also result if the shape of the paramfile does not
match with the interface.

66 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters newparamfile (paramfile (actual type must
be the appropriate subclass for the friction law
of the particular interface and have the right
shape)) – New frictional parameter file (type depends on interface in
question)

Returns None

write_input(f, probname, directory, endian=’=’)
Writes interface details to input file

This routine is called for every interface when writing problem data to file. It writes
the appropriate section for the interface in the input file. It also writes any necessary
binary files holding interface loads, parameters, or state variables.

Parameters

• f (file) – File handle for input file

• probname (str) – problem name (used for naming binary files)

• directory (str) – Directory for output

• endian (str) – Byte ordering for binary files ('<' little endian, '>'
big endian, '=' native, default is native)

Returns None

class fdfault.load(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0, dy=0.0,
sn=0.0, s2=0.0, s3=0.0)

Class representing load perturbations to frictional interfaces

The load class represents interface traction perturbations that can be expressed in a simple
functional form. The load class holds information on the shape of the perturbation and the
three traction components to be applied to the interface.

Perturbations have the following attributes:

Variables

• perttype – String describing perturbation shape. See available types
below.

• t0 – Perturbation onset time (linear ramp function that attains its maxi-
mum at t0; t0 = 0. means perturbation is on at all times)

• x0 – Perturbation location along first spatial dimension (see below for
details)

• dx – Perturbation scale along first spatial dimension (see below for de-
tails)

• y0 – Perturbation location along second spatial dimension (see below
for details)

3.2. Input Using the Python Module 67

fdfault Documentation, Release 1.0

• dy – Perturbation scale along second spatial dimension (see below for
details)

• sn – Normal traction perturbation

• s2 – In-plane shear traction perturbation

• s3 – Out of plane shear traction perturbation

By default, all time, shape, and load parameters are set to zero.

There are several available types of perturbations:

•'constant' – A spatially uniform perturbation. All spatial information is ignored

•'boxcar' – Perturbation is constant within a rectangle centered at (x0,y0) with a
half width of (dx,dy) in each spatial dimension

•'ellipse' – Perturbation is constant within an ellipse centered at (x0,y0) with
half axis lengths of (x0,y0)

•'gaussian' – Perturbation follows a Gaussian function centered at (x0,y0) with
standard deviations (dx,dy) in each spatial dimension

•'linear' – Perturbation is a linear function with intercept x0 and slope 1/dx in the
first spatial dimension and intercept y0 and slope 1/dy in the second spatial dimen-
sion. If either dx or dy is zero, the linear function is constant in that particular spatial
dimension (i.e. set dy = 0. if you want to have a function that is only linear in the
first spatial dimension)

The shape variables are only interpreted literally for rectangular blocks. If the block is not
rectangular, then the shape variables are interpreted as if the block on the negative side were
rectangular with the dimensions that are provided when setting up the problem. For example,
if you run a problem with a dipping fault that has a trapezoidally shaped block on the minus
side of the fault, then x0 and dx would be measured in terms of depth rather than distance
along the interface, since the “rectangular” version of the block would have depth along the
fault dimension.

If you are in doubt regarding how a perturbation will be interpreted for a particular geometry,
it is usually less ambiguous to use a file to set values, as they explicitly set the value at each
grid point. However, for some simple forms, perturbations can be more convenient as they
use less memory and do not require loading information in parallel from external files.

The different traction components may not correspond to unique coordinate directions for
the interface. The code handles complex boundary conditions by rotating the fields into a
coordinate system defined by three mutually orthogonal unit vectors. The normal direction
is defined to always point into the “positive” block and is uniquely defined by the boundary
geometry. The two tangential components are defined as follows for each different type of
interface:

•Depending on the orientation of the interface in the computational space, a different
convention is used to set the first tangent vector. For 'x' or 'y' oriented interfaces,

68 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

the 𝑧 component of the first tangent vector is set to zero. This is done to ensure that
for 2D problems, the second tangent vector points in the 𝑧-direction. For 'z' oriented
interfaces, the 𝑦 component of the first tangent vector is set to zero.

•With one component of the first tangent vector defined, the other two components can
be uniquely determined to make the tangent vector orthogonal up to a sign. The sign
is chosen such that the tangent vector points in the direction where the grid points are
increasing.

•The second tangent vector is defined by taking the right-handed cross product of the
normal and first tangent vectors, except for 'y' interfaces, where the left-handed cross
product is used. This is done to ensure that for 2D problems, the vertical component
always points in the +𝑧-direction.

The consequence of this is that the letter used to designate the desired component is only
valid for rectangular geometries. For non-rectangular geometries, the components will be
rotated into the coordinate system described above. For interfaces in the “x” direction (i.e.
connecting blocks whose indices only differ in the 𝑥-direction), the 𝑦 component of output
units will be along the first tangent vector, and the 𝑧 component will be along the second
tangent vector. Similarly, for “y” interfaces the 𝑥 component is set by the first tangent vector
and the 𝑧 component is determined by the second tangent vector, and for “z” interfaces the
first tangent vector is in the 𝑥-direction and the second tangent vector corresponds to the
𝑦-direction.

__init__(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0, dy=0.0, sn=0.0,
s2=0.0, s3=0.0)

Initialize a new instance of an interface load perturbation

Method creates a new instance of a load perturbation. It calls the superclass routine to
initialize the spatial and temporal details of the perturbation, and creates the variables
holding the interface traction details. Default values are provided for all arguments (all
zeros, with a perttype of 'constant').

Parameters

• perttype (str) – Perturbation type (string, default is
'constant')

• t0 (float) – Linear ramp time scale (default 0.)

• x0 (float) – Perturbation location along first interface dimension
(default 0.)

• dx (float) – Perturbation scale along first interface dimension (de-
fault 0.)

• y0 (float) – Perturbation location along second interface dimension
(default 0.)

• dy (float) – Perturbation scale along second interface dimension
(default 0.)

3.2. Input Using the Python Module 69

fdfault Documentation, Release 1.0

• sn (float) – Interface normal traction perturbation (negative in com-
pression, default 0.)

• s2 (float) – Interface horizontal shear traction perturbation (default
0.)

• s3 (float) – Interface vertical shear traction perturbation (default 0.)

Returns New instance of perturbation

Return type fdfault.load

get_dx()
Returns perturbation scale along first interface coordinate

Returns Scale of perturbation along first interface coordinate

Return type float

get_dy()
Returns perturbation scale along second interface coordinate

Returns Scale of perturbation along second interface coordinate

Return type float

get_s2()
Returns in plane shear stress perturbation

Returns In plane stress perturbation

Return type float

get_s3()
Returns out of plane shear stress perturbation

Returns Out of plane shear stress perturbation

Return type float

get_sn()
Returns normal stress perturbation

Returns Normal stress perturbation

Return type float

get_t0()
Returns onset time

Returns Perturbation onset time

Return type float

get_type()
Returns perturbation type

70 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Perturbation type

Return type str

get_x0()
Returns perturbation location in first interface coordinate

Returns Location of perturbation along first interface coordinate

Return type float

get_y0()
Returns perturbation location in second interface coordinate

Returns Location of perturbation along second interface coordinate

Return type float

set_dx(dx)
Sets first coordinate of perturbation scale

Changes value of perturbation scale for first coordinate direction. New value must be
nonnegative.

Parameters dx (float) – New value of perturbation scale along second
coordinate

Returns None

set_dy(dy)
Sets second coordinate of perturbation scale

Changes value of perturbation scale for second coordinate direction. New value must
be nonnegative.

Parameters dy (float) – New value of perturbation scale along second
coordinate

Returns None

set_s2(s2)
Sets in-plane shear stress perturbation

Parameters s2 (float) – New value of in plane shear stress perturbation

Returns None

set_s3(s3)
Sets out of plane shear stress perturbation

Parameters s3 (float) – New value of out of plane shear stress perturba-
tion

Returns None

3.2. Input Using the Python Module 71

fdfault Documentation, Release 1.0

set_sn(sn)
Sets normal stress perturbation

Parameters sn (float) – New value of normal stress perturbation

Returns None

set_t0(t0)
Sets onset time

Changes value of onset time. New value must be nonnegative.

Parameters t0 (float) – New value of onset time

Returns None

set_type(perttype)
Sets perturbation type

Resets the perturbation type to perttype. Note that the new type must be among the
valid perturbation types.

Parameters perttype (str) – New value for perttype, must be a valid
perturbation type

Returns None

set_x0(x0)
Sets first coordinate of perturbation location

Parameters x0 (float) – New value of perturbation location along first
coordinate

Returns None

set_y0(y0)
Sets second coordinate of perturbation location

Parameters x0 (float) – New value of perturbation location along second
coordinate

Returns None

write_input(f)
Writes perturbation to input file

Method writes perturbation to input file (input file provided as input)

Parameters f (file) – Output file to which the perturbation will be written

Returns none

class fdfault.loadfile(n1, n2, sn, s2, s3)
The loadfile class is a class for loading interface tractions to simulation from file. It

72 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

includes arrays for normal and two components of shear tractions to be applied at the specific
boundary.

All loadfile members contain the following internal parameters:

Variables

• n1 – Number of grid points along first coordinate direction

• n2 – Number of grid points along the second coordinate direction

• sn – Normal stress perturbation (must be an (n1,n2) shaped numpy
array)

• s2 – In plane shear stress perturbation (must be an (n1,n2) shaped
numpy array)

• s3 – Out of plane shear stress perturbation (must be an (n1,n2) shaped
numpy array)

loadfile instances hold three numpy arrays with shape (n1,n2) for the normal and
two shear tractions actin on the interface. Load files do not include any information about
the shape of the boundary, and it is up to the user to ensure that that the parameter values
correspond to the coordinates of the interface. However, because parameter files explicitly
assign a value to each grid point, there is less ambiguity regarding the final values when
compared to perturbations. Depending on the orientation of the interface, the two coordinate
directions will have different orientations in space. The first coordinate direction is the 𝑥
direction for 𝑦 and 𝑧 interfaces (for 𝑥 interfaces, the first index is in the 𝑦 direction), and the
second coordinate is in the 𝑧 direction except for 𝑧 interfaces, where 𝑦 is the second index}.

The different traction components may not correspond to unique coordinate directions for
the interface. The code handles complex boundary conditions by rotating the fields into a
coordinate system defined by three mutually orthogonal unit vectors. The normal direction
is defined to always point into the “positive” block and is uniquely defined by the boundary
geometry. The two tangential components are defined as follows for each different type of
interface:

•Depending on the orientation of the interface in the computational space, a different
convention is used to set the first tangent vector. For 'x' or 'y' oriented interfaces,
the 𝑧 component of the first tangent vector is set to zero. This is done to ensure that
for 2D problems, the second tangent vector points in the 𝑧-direction. For 'z' oriented
interfaces, the 𝑦 component of the first tangent vector is set to zero.

•With one component of the first tangent vector defined, the other two components can
be uniquely determined to make the tangent vector orthogonal up to a sign. The sign
is chosen such that the tangent vector points in the direction where the grid points are
increasing.

•The second tangent vector is defined by taking the right-handed cross product of the
normal and first tangent vectors, except for 'y' interfaces, where the left-handed cross

3.2. Input Using the Python Module 73

fdfault Documentation, Release 1.0

product is used. This is done to ensure that for 2D problems, the vertical component
always points in the +𝑧-direction.

The consequence of this is that the letter used to designate the desired component is only
valid for rectangular geometries. For non-rectangular geometries, the components will be
rotated into the coordinate system described above. For interfaces in the “x” direction (i.e.
connecting blocks whose indices only differ in the 𝑥-direction), the 𝑦 component of output
units will be along the first tangent vector, and the 𝑧 component will be along the second
tangent vector. Similarly, for “y” interfaces the 𝑥 component is set by the first tangent vector
and the 𝑧 component is determined by the second tangent vector, and for “z” interfaces the
first tangent vector is in the 𝑥-direction and the second tangent vector corresponds to the
𝑦-direction.

When writing loadfile instances to disk, the code uses numpy to write information to
disk in binary format. Byte-ordering can be specified, and should correspond to the byte-
ordering on the system where the simulation will be run (default is native).

__init__(n1, n2, sn, s2, s3)
Initialize a new instance of a loadfile object

Create a new instance of a loadfile, which is a class describing interface boundary
traction perturbations in a file. Required information is the number of grid points for the
interface and one array for each of the three interface traction component perturbations.
All the array shapes must be (n1,n2) or the code will raise an error.

Parameters

• n1 (int) – Number of grid points along first coordinate direction

• n2 (int) – Number of grid points along the second coordinate direc-
tion

• sn (ndarray) – Interface normal traction perturbation array (negative
in compression)

• s2 (ndarray) – Interface horizontal shear traction perturbation array

• s3 (ndarray) – Interface vertical shear traction perturbation array

Returns New loadfile instance

Return type loadfile

get_n1()
Returns number of grid points in 1st coordinate direction

Returns Number of grid points in 1st coordinate direction (𝑥, except for 𝑥
interfaces, where 𝑦 is the first coordinate direction)

Return type int

get_n2()
Returns number of grid points in 2nd coordinate direction

74 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Number of grid points in 2nd coordinate direction (𝑧, except for 𝑧
interfaces, where 𝑦 is the second coordinate direction)

Return type int

get_s2(index=None)
Returns in plane shear stress at given indices

Returns in plane shear stress perturbation at the indices given by index. If no indices
are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into s2 array
(optional, if not provided returns entire array)

Returns In plane shear stress perturbation (either ndarray or float, depending
on value of index)

Return type ndarray or float

get_s3(index=None)
Returns out of plane shear stress at given indices

Returns out of plane shear stress perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into s3 array
(optional, if not provided returns entire array)

Returns Out of plane shear stress perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_sn(index=None)
Returns normal stress at given indices

Returns normal stress perturbation at the indices given by index. If no indices are
provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into sn array
(optional, if not provided returns entire array)

Returns Normal stress perturbation (either ndarray or float, depending on
value of index)

Return type ndarray or float

write(filename, endian=’=’)
Write perturbation data to file

Parameters

• filename (str) – Name of binary file to be written

3.2. Input Using the Python Module 75

fdfault Documentation, Release 1.0

• endian (str) – Byte-ordering for output. Options inclue '=' for
native, '<' for little endian, and '>' for big endian. Optional, default
is native

Returns None

The slipweak Class

The main class used for creating slip weakening interfaces is the slipweak class.

class fdfault.slipweak(ndim, index, direction, bm, bp)
Class representing a slip weakening frictional interface

This class describes slip weakening friction laws. This is a frictional interface with parameter
values. Tractions on the interface are set using load perturbations and load files. Parameter
values are set using parameter perturbations (the swparam class) and parameter files (the
swparamfile class). Parameters that can be specified include:

•The slip weakening distance 𝑑𝑐, dc

•The static friction value 𝜇𝑠, mus

•The dynamic friction value 𝜇𝑑, mud

•The frictional cohesion 𝑐0, c0

•The forced rupture time 𝑡𝑟𝑢𝑝, trup

•The characteristic weakening time 𝑡𝑐, tc

Slip weakening Frictional interfaces have the following attributes:

Variables

• ndim – Number of dimensions in problem (2 or 3)

• iftype – Type of interface (‘locked’ for all standard interfaces)

• index – index of interface (used for identification purposes only, order
is irrelevant in simulation)

• bm – Indices of block in the “minus” direction (tuple of 3 integers)

• bp – Indices of block in the “plus” direction (tuple of 3 integers)

• direction – Normal direction in computational space (“x”, “y”, or
“z”)

• nloads – Number of load perturbations (length of loads list)

• loads – List of load perturbations

• lf – Loadfile holding traction at each point

76 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• nperts – Number of parameter perturbations (length of perts list)

• perts – List of parameter perturbations (perturbations must be
swparam type)

• pf – Paramfile holding traction at each point

__init__(ndim, index, direction, bm, bp)
Initializes an instance of the slipweak class

Create a new slipweak given an index, direction, and block coordinates.

Parameters

• ndim (int) – Number of spatial dimensions (must be 2 or 3)

• index (int) – Interface index, used for bookkeeping purposes, must
be nonnegative

• direction (str) – String indicating normal direction of interface
in computational space, must be 'x', 'y', or 'z', with 'z' only
allowed for 3D problems)

• bm (tuple) – Coordinates of block in minus direction (tuple of length
3 of integers)

• bp (tuple) – Coordinates of block in plus direction (tuple of length 3
or integers, must differ from bm by 1 only along the given direction to
ensure blocks are neighboring one another)

Returns New instance of slipweak class

Return type slipweak

add_load(newload)
Adds a load to list of load perturbations

Method adds the load provided to the list of load perturbations. If the newload pa-
rameter is not a load perturbation, this will result in an error.

Parameters newload (fdfault.load) – New load to be added to the
interface (must have type load)

Returns None

add_pert(newpert)
Add new friction parameter perturbation to an interface

Method adds a frictional parameter perturbation to an interface. newpert must must
have type swparam).

Parameters newpert (swparam) – New perturbation to be added

Returns None

3.2. Input Using the Python Module 77

fdfault Documentation, Release 1.0

delete_load(index=-1)
Deletes load at position index from the list of loads

Method deletes the load from the list of loads at position index. Default is most
recently added load if an index is not provided. index must be a valid index into the
list of loads.

Parameters index (int) – Position within load list to remove (optional,
default is -1)

Returns None

delete_loadfile()
Deletes the loadfile for the interface.

Returns None

delete_paramfile()
Deletes friction parameter file for the interface

Removes the friction parameter file for the interface. The interface must be a frictional
interface that can accept parameter files.

Returns None

delete_pert(index=-1)
Deletes frictional parameter perturbation from interface

index is an integer that indicates the position within the list of perturbations. Default
is most recently added (-1).

Parameters index (int) – Index within perturbation list of the given inter-
face to remove. Default is last item (-1, or most recently added)

Returns None

get_bm()
Returns block on negative side

Returns tuple of block indices on negative size

Returns Block indices on negative side (tuple of integers)

Return type tuple

get_bp()
Returns block on positive side

Returns tuple of block indices on positive size

Returns Block indices on positive side (tuple of integers)

Return type tuple

78 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_direction()
Returns interface orientation

Returns orientation (string indicating normal direction in computational space).

Returns Interface orientation in computational space (‘x’, ‘y’, or ‘z’)

Return type str

get_index()
Returns index

Returns the numerical index corresponding to the interface in question. Note that this
is just for bookkeeping purposes, the interfaces may be arranged in any order as long as
no index is repeated. The code will automatically handle the indices, so this is typically
not modified in any way.

Returns Interface index

Return type int

get_load(index=None)
Returns load at position index

Returns a load from the list of load perturbations at position index. If no index is
provided (or None is given), the method returns entire list. index must be a valid list
index given the number of loads.

Parameters index (int or None) – Index within load list (optional, de-
fault is None to return full list)

Returns load or list

get_loadfile()
Returns loadfile for interface

Loadfile sets any surface tractions set for the interface. Note that these tractions are
added to any any set by the constant initial stress tensor, initial heterogeneous stress, or
interface traction perturbations

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

get_nloads()
Returns number of load perturbations on the interface

Method returns the number of load perturbations presently in the list of loads.

Returns Number of load perturbations

Return type int

3.2. Input Using the Python Module 79

fdfault Documentation, Release 1.0

get_nperts()
Returns number of friction parameter perturbations on interface

Method returns the number of parameter perturbations for the list

Returns Number of parameter perturbations

Return type int

get_paramfile()
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface.
Can return a subtype of paramfile corresponding to any of the specific friction law
types.

Returns Paramfile for this interface

Return type paramfile

get_pert(index=None)
Returns perturbation at position index

Method returns a perturbation from the interface. index is the index into the pertur-
bation list for the particular index. If index is not provided or is None, the method
returns the entire list.

Parameters index (int or None) – Index into the perturbation list for
the index in question (optional, if not provided or None, then returns
entire list)

Returns pert or list

get_type()
Returns string of interface type

Returns the type of the given interface (“locked”, “frictionless”, “slipweak”, or “stz”)

Returns Interface type

Return type str

set_index(index)
Sets interface index

Changes value of interface index. New index must be a nonnegative integer

Parameters index (int) – New value of index (nonnegative integer)

Returns None

set_loadfile(newloadfile)
Sets loadfile for interface

newloadfile is the new loadfile (must have type loadfile). If the index is bad
or the loadfile type is not correct, the code will raise an error. Errors can also result if
the shape of the loadfile does not match with the interface.

80 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters newloadfile (loadfile) – New loadfile to be used for the
given interface

Returns None

set_paramfile(newparamfile)
Sets paramfile for the interface

Method sets the file holding frictional parameters for the interface.

newparamfile must be a parameter perturbation file of type swparam. Errors can
also result if the shape of the paramfile does not match with the interface.

Parameters newparamfile (swparamfile) – New frictional parameter
file

Returns None

write_input(f, probname, directory, endian=’=’)
Writes interface details to input file

This routine is called for every interface when writing problem data to file. It writes
the appropriate section for the interface in the input file. It also writes any necessary
binary files holding interface loads, parameters, or state variables.

Parameters

• f (file) – File handle for input file

• probname (str) – problem name (used for naming binary files)

• directory (str) – Directory for output

• endian (str) – Byte ordering for binary files ('<' little endian, '>'
big endian, '=' native, default is native)

Returns None

class fdfault.swparam(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0, dy=0.0,
dc=0.0, mus=0.0, mud=0.0, c0=0.0, trup=0.0, tc=0.0)

Class representing slip weakening parameter perturbations to frictional interfaces

The swparam class represents slip weakening parameter perturbations that can be expressed
in a simple functional form. The swparam class holds information on the shape of the
perturbation and the six parameter values for the interface.

Perturbations have the following attributes:

Variables

• perttype – String describing perturbation shape. See available types
below.

• t0 – Perturbation onset time (linear ramp function that attains its maxi-
mum at t0; t0 = 0. means perturbation is on at all times)

3.2. Input Using the Python Module 81

fdfault Documentation, Release 1.0

• x0 – Perturbation location along first spatial dimension (see below for
details)

• dx – Perturbation scale along first spatial dimension (see below for de-
tails)

• y0 – Perturbation location along second spatial dimension (see below
for details)

• dy – Perturbation scale along second spatial dimension (see below for
details)

• dc – Slip weakening distance perturbation

• mus – Static friction coefficient perturbation

• mud – Dynamic friction coefficient perturbation

• c0 – Frictional Cohesion perturbation

• trup – Rupture time perturbation

• tc – Characteristic weakening time perturbation

By default, all time, shape, and friction parameters are set to zero.

There are several available types of perturbations:

•'constant' – A spatially uniform perturbation. All spatial information is ignored

•'boxcar' – Perturbation is constant within a rectangle centered at (x0,y0) with a
half width of (dx,dy) in each spatial dimension

•'ellipse' – Perturbation is constant within an ellipse centered at (x0,y0) with
half axis lengths of (x0,y0)

•'gaussian' – Perturbation follows a Gaussian function centered at (x0,y0) with
standard deviations (dx,dy) in each spatial dimension

•'linear' – Perturbation is a linear function with intercept x0 and slope 1/dx in the
first spatial dimension and intercept y0 and slope 1/dy in the second spatial dimen-
sion. If either dx or dy is zero, the linear function is constant in that particular spatial
dimension (i.e. set dy = 0. if you want to have a function that is only linear in the
first spatial dimension)

The shape variables are only interpreted literally for rectangular blocks. If the block is not
rectangular, then the shape variables are interpreted as if the block on the negative side were
rectangular with the dimensions that are provided when setting up the problem. For example,
if you run a problem with a dipping fault that has a trapezoidally shaped block on the minus
side of the fault, then x0 and dx would be measured in terms of depth rather than distance
along the interface, since the “rectangular” version of the block would have depth along the
fault dimension.

82 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

If you are in doubt regarding how a perturbation will be interpreted for a particular geometry,
it is usually less ambiguous to use a file to set values, as they explicitly set the value at each
grid point. However, for some simple forms, perturbations can be more convenient as they
use less memory and do not require loading information in parallel from external files.

__init__(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0, dy=0.0, dc=0.0,
mus=0.0, mud=0.0, c0=0.0, trup=0.0, tc=0.0)

Initialize a new instance of an slip weakening parameter perturbation

Method creates a new instance of a slip weakening parameter perturbation. It calls
the superclass routine to initialize the spatial and temporal details of the perturbation,
and creates the variables holding the parameter values specific to the slip weaken-
ing law. Default values are provided for all arguments (all zeros, with a perttype of
'constant').

Parameters

• perttype (str) – Perturbation type (string, default is
'constant')

• t0 (float) – Linear ramp time scale (default 0.)

• x0 (float) – Perturbation location along first interface dimension
(default 0.)

• dx (float) – Perturbation scale along first interface dimension (de-
fault 0.)

• y0 (float) – Perturbation location along second interface dimension
(default 0.)

• dy (float) – Perturbation scale along second interface dimension
(default 0.)

• dc (float) – Slip weakening distance perturbation (negative in com-
pression, default 0.)

• mus (float) – Static friction coefficient perturbation (default 0.)

• mud (float) – Dynamic friction coefficient perturbation (default 0.)

• c0 (float) – Frictional cohesion perturbation (negative in compres-
sion, default 0.)

• trup (float) – Forced rupture time perturbation (default 0.)

• tc (float) – Characteristic weakening time perturbation (default 0.)

Returns New instance of slip weakening parameter perturbation

Return type swparam

get_c0()
Returns frictional cohesion perturbation

3.2. Input Using the Python Module 83

fdfault Documentation, Release 1.0

Returns Frictional cohesion perturbation

Return type float

get_dc()
Returns slip weakening distance perturbation

Returns Slip weakening distance perturbation

Return type float

get_dx()
Returns perturbation scale along first interface coordinate

Returns Scale of perturbation along first interface coordinate

Return type float

get_dy()
Returns perturbation scale along second interface coordinate

Returns Scale of perturbation along second interface coordinate

Return type float

get_mud()
Returns dynamic friction coefficient perturbation

Returns Dynamic friction coefficient perturbation

Return type float

get_mus()
Returns static friction coefficient perturbation

Returns Static friction coefficient perturbation

Return type float

get_t0()
Returns onset time

Returns Perturbation onset time

Return type float

get_tc()
Returns characteristic weakening time perturbation

Returns Characteristic weakening time perturbation

Return type float

get_trup()
Returns forced rupture time perturbation

Returns Forced rupture time perturbation

84 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type float

get_type()
Returns perturbation type

Returns Perturbation type

Return type str

get_x0()
Returns perturbation location in first interface coordinate

Returns Location of perturbation along first interface coordinate

Return type float

get_y0()
Returns perturbation location in second interface coordinate

Returns Location of perturbation along second interface coordinate

Return type float

set_c0(c0)
Sets frictional cohesion perturbation

Parameters c0 (float) – New value of frictional cohesion perturbation

Returns None

set_dc(dc)
Sets slip weakening distance perturbation

Parameters dc (float) – New value of slip weakening distance perturba-
tion

Returns None

set_dx(dx)
Sets first coordinate of perturbation scale

Changes value of perturbation scale for first coordinate direction. New value must be
nonnegative.

Parameters dx (float) – New value of perturbation scale along second
coordinate

Returns None

set_dy(dy)
Sets second coordinate of perturbation scale

Changes value of perturbation scale for second coordinate direction. New value must
be nonnegative.

3.2. Input Using the Python Module 85

fdfault Documentation, Release 1.0

Parameters dy (float) – New value of perturbation scale along second
coordinate

Returns None

set_mud(mud)
Sets dynamic friction coefficient perturbation

Parameters mud (float) – New value of dynamic friction coefficient per-
turbation

Returns None

set_mus(mus)
Sets static friction coefficient perturbation

Parameters mus (float) – New value of static friction coefficient pertur-
bation

Returns None

set_t0(t0)
Sets onset time

Changes value of onset time. New value must be nonnegative.

Parameters t0 (float) – New value of onset time

Returns None

set_tc(tc)
Sets characteristic weakening time perturbation

Parameters tc (float) – New value of characteristic weakening time per-
turbation

Returns None

set_trup(trup)
Sets forced rupture time perturbation

Parameters trup (float) – New value of forced rupture time perturbation

Returns None

set_type(perttype)
Sets perturbation type

Resets the perturbation type to perttype. Note that the new type must be among the
valid perturbation types.

Parameters perttype (str) – New value for perttype, must be a valid
perturbation type

Returns None

86 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

set_x0(x0)
Sets first coordinate of perturbation location

Parameters x0 (float) – New value of perturbation location along first
coordinate

Returns None

set_y0(y0)
Sets second coordinate of perturbation location

Parameters x0 (float) – New value of perturbation location along second
coordinate

Returns None

write_input(f)
Writes perturbation to input file

Method writes perturbation to input file (input file provided as input)

Parameters f (file) – Output file to which the perturbation will be written

Returns none

class fdfault.swparamfile(n1, n2, dc, mus, mud, c0, trup, tc)
The swparamfile class is a class for loading heterogeneous friction parameter values
from file. It is only used for slip weakening interfaces.

All swparamfile instances contain the following internal parameters:

Variables

• n1 – Number of grid points along first coordinate direction

• n2 – Number of grid points along the second coordinate direction

• dc – Array holding slip weakening distance perturbation (numpy array
with shape (n1,n2))

• mus – Array holding static friction coefficient perturbation (numpy array
with shape (n1,n2))

• mud – Array holding dynamic friction coefficient perturbation (numpy
array with shape (n1,n2))

• c0 – Array holding frictional cohesion perturbation (numpy array with
shape (n1,n2))

• trup – Array holding forced rupture time perturbation (numpy array
with shape (n1,n2))

• tc – Array holding characteristic failure time perturbation (numpy array
with shape (n1,n2))

3.2. Input Using the Python Module 87

fdfault Documentation, Release 1.0

swparamfile will also define six numpy array with shape (n1,n2) holding the various
friction parameters (slip weakening distance, static friction coefficient, dynamic friction co-
efficient, frictional cohesion, forced rupture time, and characteristic failure time. Slip weak-
ening parameter files do not include any information about the shape of the boundary, and it
is up to the user to ensure that that the parameter values correspond to the coordinates of the
interface. However, because parameter files explicitly assign a value to each grid point, there
is less ambiguity regarding the final values when compared to perturbations. Depending on
the orientation of the interface, the two coordinate directions will have different orientations
in space. The first coordinate direction is the 𝑥 direction for 𝑦 and 𝑧 interfaces (for 𝑥 in-
terfaces, the first index is in the 𝑦 direction), and the second coordinate is in the 𝑧 direction
except for 𝑧 interfaces, where 𝑦 is the second index}.

When writing swparamfile instances to disk, the code uses numpy to write information
to disk in binary format. Byte-ordering can be specified, and should correspond to the byte-
ordering on the system where the simulation will be run (default is native).

__init__(n1, n2, dc, mus, mud, c0, trup, tc)
Initialize a new instance of a swparamfile object

Create a new instance of a swparamfile, which is a class describing slip weakening
parameter perturbations in a file. Required information is the number of grid points for
the interface and one array for each of the six parameter perturbations. All the array
shapes must be (n1,n2) or the code will raise an error.

Parameters

• n1 (int) – Number of grid points along first coordinate direction

• n2 (int) – Number of grid points along the second coordinate direc-
tion

• dc (ndarray) – Slip weakening distance perturbation array

• mus (ndarray) – Static friction coefficient perturbation array

• mud (ndarray) – Dynamic friction coefficient perturbation array

• c0 (ndarray) – Frictional cohesion perturbation array

• trup (ndarray) – Forced rupture time perturbation array

• tc (ndarray) – Characteristic weakening time perturbation array

Returns New swparamfile instance

Return type swparamfile

get_c0(index=None)
Returns frictional cohesion at given indices

Returns frictional cohesion perturbation at the indices given by index. If no indices
are provided, the method returns the entire array.

88 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters index (float, tuple, or None) – Index into frictional
cohesion array (optional, if not provided returns entire array)

Returns Frictional cohesion perturbation (either ndarray or float, depending
on value of index)

Return type ndarray or float

get_dc(index=None)
Returns slip weakening distance at given indices

Returns slip weakening distance perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into slip
weakening distance array (optional, if not provided returns entire array)

Returns Slip weakening distance perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_mud(index=None)
Returns dynamic friction coefficient at given indices

Returns dynamic friction coefficient perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into dynamic
friction coefficient array (optional, if not provided returns entire array)

Returns Dynamic friction coefficient perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_mus(index=None)
Returns static friction coefficient at given indices

Returns static friction coefficient perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into static
friction coefficient array (optional, if not provided returns entire array)

Returns Static friction coefficient perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_n1()
Returns number of grid points in 1st coordinate direction

3.2. Input Using the Python Module 89

fdfault Documentation, Release 1.0

Returns Number of grid points in 1st coordinate direction (𝑥, except for 𝑥
interfaces, where 𝑦 is the first coordinate direction)

Return type int

get_n2()
Returns number of grid points in 2nd coordinate direction

Returns Number of grid points in 2nd coordinate direction (𝑧, except for 𝑧
interfaces, where 𝑦 is the second coordinate direction)

Return type int

get_tc(index=None)
Returns characteristic failure time at given indices

Returns characteristic failure time perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into character-
istic failure time array (optional, if not provided returns entire array)

Returns Characteristic failure time perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_trup(index=None)
Returns force rupture time at given indices

Returns forced rupture time perturbation at the indices given by index. If no indices
are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into forced
rupture time array (optional, if not provided returns entire array)

Returns Static forced rupture time perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

write(filename, endian=’=’)
Write perturbation data to file

Parameters

• filename (str) – Name of binary file to be written

• endian (str) – Byte-ordering for output. Options inclue '=' for
native, '<' for little endian, and '>' for big endian. Optional, default
is native

Returns None

90 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

The stz Class

The main class used for creating STZ interfaces is the stz class. This also includes setting the
STZ parameters through perturbations and files, as well as setting the initial state variable.

class fdfault.stz(ndim, index, direction, bm, bp)
Class representing a Shear Transformation Zone (STZ) Theory Frictional Interface

STZ Frictional Interfaces are an interface with a state variable, in this case an effective
temperature. The interface also requires setting the interface tractions and parameter values
in addition to the initial value of the state variable. All of these can be set using some
combination of perturbations and files. Parameters include:

•Reference velocity 𝑉0 , v0

•Reference activation barrier 𝑓0, f0

•Frictional direct effect 𝑎, a

•Frictional yield coefficient 𝜇𝑦, muy

•Effective temperature specific heat 𝑐0, c0

•Effective temperature relaxation rate 𝑅, R

•Effective temperature relaxation barrier 𝛽, beta

•Effective temperature activation barrier 𝜒𝑤, chiw

•Reference velocity for effective temperature activation 𝑉1, v1

STZ Frictional interfaces have the following attributes:

Variables

• ndim – Number of dimensions in problem (2 or 3)

• iftype – Type of interface (‘locked’ for all standard interfaces)

• index – index of interface (used for identification purposes only, order
is irrelevant in simulation)

• bm – Indices of block in the “minus” direction (tuple of 3 integers)

• bp – Indices of block in the “plus” direction (tuple of 3 integers)

• direction – Normal direction in computational space (“x”, “y”, or
“z”)

• nloads – Number of load perturbations (length of loads list)

• loads – List of load perturbations

• lf – Loadfile holding traction at each point

• nperts – Number of parameter perturbations (length of perts list)

3.2. Input Using the Python Module 91

fdfault Documentation, Release 1.0

• perts – List of parameter perturbations (each must be stzparam)

• pf – Paramfile holding traction at each point

• state – Initial value of state variable

• sf – Statefile holding heterogeneous initial state variable values

__init__(ndim, index, direction, bm, bp)
Initializes an instance of the stz class

Create a new stz given an index, direction, and block coordinates.

Parameters

• ndim (int) – Number of spatial dimensions (must be 2 or 3)

• index (int) – Interface index, used for bookkeeping purposes, must
be nonnegative

• direction (str) – String indicating normal direction of interface
in computational space, must be 'x', 'y', or 'z', with 'z' only
allowed for 3D problems)

• bm (tuple) – Coordinates of block in minus direction (tuple of length
3 of integers)

• bp (tuple) – Coordinates of block in plus direction (tuple of length 3
or integers, must differ from bm by 1 only along the given direction to
ensure blocks are neighboring one another)

Returns New instance of stz class

Return type stz

add_load(newload)
Adds a load to list of load perturbations

Method adds the load provided to the list of load perturbations. If the newload pa-
rameter is not a load perturbation, this will result in an error.

Parameters newload (fdfault.load) – New load to be added to the
interface (must have type load)

Returns None

add_pert(newpert)
Add new friction parameter perturbation to an interface

Method adds a frictional parameter perturbation to an interface. newpert must must
have type stzparam).

Parameters newpert (stzparam) – New perturbation to be added

Returns None

92 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

delete_load(index=-1)
Deletes load at position index from the list of loads

Method deletes the load from the list of loads at position index. Default is most
recently added load if an index is not provided. index must be a valid index into the
list of loads.

Parameters index (int) – Position within load list to remove (optional,
default is -1)

Returns None

delete_loadfile()
Deletes the loadfile for the interface.

Returns None

delete_paramfile()
Deletes friction parameter file for the interface

Removes the friction parameter file for the interface. The interface must be a frictional
interface that can accept parameter files.

Returns None

delete_pert(index=-1)
Deletes frictional parameter perturbation from interface

index is an integer that indicates the position within the list of perturbations. Default
is most recently added (-1).

Parameters index (int) – Index within perturbation list of the given inter-
face to remove. Default is last item (-1, or most recently added)

Returns None

delete_statefile()
Deletes statefile for the interface

Delete the statefile for the interface. Will set the statefile attribute for the interface to
None.

Returns None

get_bm()
Returns block on negative side

Returns tuple of block indices on negative size

Returns Block indices on negative side (tuple of integers)

Return type tuple

get_bp()
Returns block on positive side

3.2. Input Using the Python Module 93

fdfault Documentation, Release 1.0

Returns tuple of block indices on positive size

Returns Block indices on positive side (tuple of integers)

Return type tuple

get_direction()
Returns interface orientation

Returns orientation (string indicating normal direction in computational space).

Returns Interface orientation in computational space (‘x’, ‘y’, or ‘z’)

Return type str

get_index()
Returns index

Returns the numerical index corresponding to the interface in question. Note that this
is just for bookkeeping purposes, the interfaces may be arranged in any order as long as
no index is repeated. The code will automatically handle the indices, so this is typically
not modified in any way.

Returns Interface index

Return type int

get_load(index=None)
Returns load at position index

Returns a load from the list of load perturbations at position index. If no index is
provided (or None is given), the method returns entire list. index must be a valid list
index given the number of loads.

Parameters index (int or None) – Index within load list (optional, de-
fault is None to return full list)

Returns load or list

get_loadfile()
Returns loadfile for interface

Loadfile sets any surface tractions set for the interface. Note that these tractions are
added to any any set by the constant initial stress tensor, initial heterogeneous stress, or
interface traction perturbations

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

get_nloads()
Returns number of load perturbations on the interface

Method returns the number of load perturbations presently in the list of loads.

94 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Number of load perturbations

Return type int

get_nperts()
Returns number of friction parameter perturbations on interface

Method returns the number of parameter perturbations for the list

Returns Number of parameter perturbations

Return type int

get_paramfile()
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface.
Can return a subtype of paramfile corresponding to any of the specific friction law
types.

Returns Paramfile for this interface

Return type paramfile

get_pert(index=None)
Returns perturbation at position index

Method returns a perturbation from the interface. index is the index into the pertur-
bation list for the particular index. If index is not provided or is None, the method
returns the entire list.

Parameters index (int or None) – Index into the perturbation list for
the index in question (optional, if not provided or None, then returns
entire list)

Returns pert or list

get_state()
Returns initial state variable value for interface

Returns Initial state variable

Return type float

get_statefile()
Returns state file of interface

If interface does not have a statefile returns None

Parameters niface – index of desired interface (zero-indexed)

Returns statefile or None

get_type()
Returns string of interface type

Returns the type of the given interface (“locked”, “frictionless”, “slipweak”, or “stz”)

3.2. Input Using the Python Module 95

fdfault Documentation, Release 1.0

Returns Interface type

Return type str

set_index(index)
Sets interface index

Changes value of interface index. New index must be a nonnegative integer

Parameters index (int) – New value of index (nonnegative integer)

Returns None

set_loadfile(newloadfile)
Sets loadfile for interface

newloadfile is the new loadfile (must have type loadfile). If the index is bad
or the loadfile type is not correct, the code will raise an error. Errors can also result if
the shape of the loadfile does not match with the interface.

Parameters newloadfile (loadfile) – New loadfile to be used for the
given interface

Returns None

set_paramfile(newparamfile)
Sets paramfile for the interface

Method sets the file holding frictional parameters for the interface.

newparamfile must be a parameter perturbation file of type stzparam. Errors
can also result if the shape of the paramfile does not match with the interface.

Parameters newparamfile (stzparamfile) – New frictional parame-
ter file

Returns None

set_state(newstate)
Sets initial state variable for interface

Set the initial value for the state variable. state is the new state variable (must be a
float or some other valid number).

Parameters state (float) – New value of state variable

Returns None

set_statefile(newstatefile)
Sets state file for interface

Set the statefile for the interface.‘‘newstatefile‘‘must have type statefile. Errors
can also result if the shape of the statefile does not match with the interface.

96 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters newstatefile (statefile) – New statefile for the inter-
face in question.

Returns None

write_input(f, probname, directory, endian=’=’)
Writes interface details to input file

This routine is called for every interface when writing problem data to file. It writes
the appropriate section for the interface in the input file. It also writes any necessary
binary files holding interface loads, parameters, or state variables.

Parameters

• f (file) – File handle for input file

• probname (str) – problem name (used for naming binary files)

• directory (str) – Directory for output

• endian (str) – Byte ordering for binary files ('<' little endian, '>'
big endian, '=' native, default is native)

Returns None

class fdfault.stzparam(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0,
dy=0.0, v0=0.0, f0=0.0, a=0.0, muy=0.0, c0=0.0, R=0.0,
beta=0.0, chiw=0.0, v1=0.0)

Class representing STZ Theory parameter perturbations to frictional interfaces

The stzparam class represents STZ Theory parameter perturbations that can be expressed
in a simple functional form. The stzparam class holds information on the shape of the
perturbation and the nine parameter values for the interface.

Perturbations have the following attributes:

Variables

• perttype – String describing perturbation shape. See available types
below.

• t0 – Perturbation onset time (linear ramp function that attains its maxi-
mum at t0; t0 = 0. means perturbation is on at all times)

• x0 – Perturbation location along first spatial dimension (see below for
details)

• dx – Perturbation scale along first spatial dimension (see below for de-
tails)

• y0 – Perturbation location along second spatial dimension (see below
for details)

3.2. Input Using the Python Module 97

fdfault Documentation, Release 1.0

• dy – Perturbation scale along second spatial dimension (see below for
details)

• v0 – Reference slip rate perturbation

• f0 – Friction activation barrier perturbation

• a – Frictional direct effect perturbation

• muy – Yielding friction coefficient perturbation

• c0 – Effective temperature specific heat perturbation

• R – Effective temperature relaxation rate perturbation

• beta – Effective temperature relaxation barrier perturbation

• chiw – Effective temperature activation barrier perturbation

• v1 – Effective temperature reference slip rate perturbation

By default, all time, shape, and friction parameters are set to zero.

There are several available types of perturbations:

•'constant' – A spatially uniform perturbation. All spatial information is ignored

•'boxcar' – Perturbation is constant within a rectangle centered at (x0,y0) with a
half width of (dx,dy) in each spatial dimension

•'ellipse' – Perturbation is constant within an ellipse centered at (x0,y0) with
half axis lengths of (x0,y0)

•'gaussian' – Perturbation follows a Gaussian function centered at (x0,y0) with
standard deviations (dx,dy) in each spatial dimension

•'linear' – Perturbation is a linear function with intercept x0 and slope 1/dx in the
first spatial dimension and intercept y0 and slope 1/dy in the second spatial dimen-
sion. If either dx or dy is zero, the linear function is constant in that particular spatial
dimension (i.e. set dy = 0. if you want to have a function that is only linear in the
first spatial dimension)

The shape variables are only interpreted literally for rectangular blocks. If the block is not
rectangular, then the shape variables are interpreted as if the block on the negative side were
rectangular with the dimensions that are provided when setting up the problem. For example,
if you run a problem with a dipping fault that has a trapezoidally shaped block on the minus
side of the fault, then x0 and dx would be measured in terms of depth rather than distance
along the interface, since the “rectangular” version of the block would have depth along the
fault dimension.

If you are in doubt regarding how a perturbation will be interpreted for a particular geometry,
it is usually less ambiguous to use a file to set values, as they explicitly set the value at each
grid point. However, for some simple forms, perturbations can be more convenient as they
use less memory and do not require loading information in parallel from external files.

98 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

__init__(perttype=’constant’, t0=0.0, x0=0.0, dx=0.0, y0=0.0, dy=0.0, v0=0.0,
f0=0.0, a=0.0, muy=0.0, c0=0.0, R=0.0, beta=0.0, chiw=0.0, v1=0.0)

Initialize a new instance of an STZ parameter perturbation

Method creates a new instance of a STZ parameter perturbation. It calls the superclass
routine to initialize the spatial and temporal details of the perturbation, and creates
the variables holding the parameter values specific to the STZ law. Default values are
provided for all arguments (all zeros, with a perttype of 'constant').

Parameters

• perttype (str) – Perturbation type (string, default is
'constant')

• t0 (float) – Linear ramp time scale (default 0.)

• x0 (float) – Perturbation location along first interface dimension
(default 0.)

• dx (float) – Perturbation scale along first interface dimension (de-
fault 0.)

• y0 (float) – Perturbation location along second interface dimension
(default 0.)

• dy (float) – Perturbation scale along second interface dimension
(default 0.)

• v0 (float) – Reference slip rate perturbation (default 0.)

• f0 (float) – Friction activation barrier perturbation (default 0.)

• a (float) – Frictional direct effect perturbation (default 0.)

• muy (float) – Yielding friction coefficient perturbation (default 0.)

• c0 (float) – Effective temperature specific heat perturbation (default
0.)

• R (float) – Effective temperature relaxation rate perturbation (default
0.)

• beta (float) – Effective temperature relaxation barrier perturbation
(default 0.)

• chiw (float) – Effective temperature activation barrier perturbation
(default 0.)

• v1 (float) – Effective temperature reference slip rate perturbation
(default 0.)

Returns New instance of slip weakening parameter perturbation

Return type stzparam

3.2. Input Using the Python Module 99

fdfault Documentation, Release 1.0

get_R()
Returns effective temperature relaxation rate perturbation

Returns Effective temperature relaxation rate perturbation

Return type float

get_a()
Returns frictional direct effect perturbation

Returns frictional direct effect perturbation

Return type float

get_beta()
Returns effective temperature relaxation activation barrier perturbation

Returns Effective temperature relaxation activation barrier perturbation

Return type float

get_c0()
Returns effective temperature specific heat perturbation

Returns Effective temperature specific heat perturbation

Return type float

get_chiw()
Returns effective temperature activation barrier perturbation

Returns Effective temperature activation barrier perturbation

Return type float

get_dx()
Returns perturbation scale along first interface coordinate

Returns Scale of perturbation along first interface coordinate

Return type float

get_dy()
Returns perturbation scale along second interface coordinate

Returns Scale of perturbation along second interface coordinate

Return type float

get_f0()
Returns activation barrier perturbation

Returns activation barrier perturbation

Return type float

100 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_muy()
Returns yielding friction coefficient perturbation

Returns yielding friction coefficient perturbation

Return type float

get_t0()
Returns onset time

Returns Perturbation onset time

Return type float

get_type()
Returns perturbation type

Returns Perturbation type

Return type str

get_v0()
Returns reference slip rate perturbation

Returns reference slip rate perturbation

Return type float

get_v1()
Returns effective temperature reference slip rate perturbation

Returns Effective temperature reference slip rate perturbation

Return type float

get_x0()
Returns perturbation location in first interface coordinate

Returns Location of perturbation along first interface coordinate

Return type float

get_y0()
Returns perturbation location in second interface coordinate

Returns Location of perturbation along second interface coordinate

Return type float

set_R(R)
Sets effective temperature relaxation rate perturbation

Parameters R (float) – Value of effective temperature relaxation perturba-
tion

Returns None

3.2. Input Using the Python Module 101

fdfault Documentation, Release 1.0

set_a(a)
Sets frictional direct effect perturbation

Parameters a (float) – Value of frictional direct effect perturbation

Returns None

set_beta(beta)
Sets effective temperature relaxation activation barrier perturbation

Parameters beta (float) – Value effective temperature relaxation activa-
tion barrier perturbation

Returns None

set_c0(c0)
Sets effective temperature specific heat perturbation

Parameters c0 (float) – Value of effective temperature specific heat per-
turbation

Returns None

set_chiw(chiw)
Sets effective temperature activation barrier perturbation

Parameters chiw (float) – Value of effective temperature activation bar-
rier perturbation

Returns None

set_dx(dx)
Sets first coordinate of perturbation scale

Changes value of perturbation scale for first coordinate direction. New value must be
nonnegative.

Parameters dx (float) – New value of perturbation scale along second
coordinate

Returns None

set_dy(dy)
Sets second coordinate of perturbation scale

Changes value of perturbation scale for second coordinate direction. New value must
be nonnegative.

Parameters dy (float) – New value of perturbation scale along second
coordinate

Returns None

set_f0(f0)
Sets activation barrier perturbation

102 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters f0 (float) – Value of activation barrier perturbation

Returns None

set_muy(muy)
Sets yielding friction coefficient perturbation

Parameters muy (float) – Value yielding friction coefficient perturbation

Returns None

set_t0(t0)
Sets onset time

Changes value of onset time. New value must be nonnegative.

Parameters t0 (float) – New value of onset time

Returns None

set_type(perttype)
Sets perturbation type

Resets the perturbation type to perttype. Note that the new type must be among the
valid perturbation types.

Parameters perttype (str) – New value for perttype, must be a valid
perturbation type

Returns None

set_v0(v0)
Sets reference slip rate perturbation

Parameters v0 (float) – Value of reference slip rate perturbation

Returns None

set_v1(v1)
Sets effective temperature reference slip rate perturbation

Parameters v1 (float) – Value of effective temperature reference slip rate
perturbation

Returns None

set_x0(x0)
Sets first coordinate of perturbation location

Parameters x0 (float) – New value of perturbation location along first
coordinate

Returns None

set_y0(y0)
Sets second coordinate of perturbation location

3.2. Input Using the Python Module 103

fdfault Documentation, Release 1.0

Parameters x0 (float) – New value of perturbation location along second
coordinate

Returns None

write_input(f)
Writes perturbation to input file

Method writes perturbation to input file (input file provided as input)

Parameters f (file) – Output file to which the perturbation will be written

Returns none

class fdfault.stzparamfile(n1, n2, v0, f0, a, muy, c0, R, beta, chiw, v1)
The stzparamfile class is a class for loading heterogeneous friction parameter values
from file. It is only used for STZ interfaces.

All stzparamfile instances contain the following internal parameters:

Variables

• n1 – Number of grid points along first coordinate direction

• n2 – Number of grid points along the second coordinate direction

• v0 – Array holding reference slip rate perturbation (numpy array with
shape (n1,n2))

• f0 – Array holding friction activation barrier perturbation (numpy array
with shape (n1,n2))

• a – Array holding frictional direct effect perturbation (numpy array with
shape (n1,n2))

• muy – Array holding yielding friction coefficient perturbation (numpy
array with shape (n1,n2))

• c0 – Array holding effective temperature specific heat perturbation
(numpy array with shape (n1,n2))

• R – Array holding effective temperature relaxation rate perturbation
(numpy array with shape (n1,n2))

• beta – Array holding effective temperature relaxation activation barrier
perturbation (numpy array with shape (n1,n2))

• chiw – Array holding effective temperature activation barrier perturba-
tion (numpy array with shape (n1,n2))

• v1 – Array holding effective temperature reference slip rate perturbation
(numpy array with shape (n1,n2))

stzparamfile will also define nine numpy array with shape (n1,n2) holding the vari-
ous friction parameters (reference slip rate, friction activation barrier, frictional direct effect,

104 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

yielding friction coefficient, effective temperature specific heat, effective temperature relax-
ation rate, effective temperature relaxation activation barrier, effective temperature activation
barrier, and effective temperature reference slip rate. STZ parameter files do not include any
information about the shape of the boundary, and it is up to the user to ensure that that the
parameter values correspond to the coordinates of the interface. However, because param-
eter files explicitly assign a value to each grid point, there is less ambiguity regarding the
final values when compared to perturbations. Depending on the orientation of the interface,
the two coordinate directions will have different orientations in space. The first coordinate
direction is the 𝑥 direction for 𝑦 and 𝑧 interfaces (for 𝑥 interfaces, the first index is in the 𝑦
direction), and the second coordinate is in the 𝑧 direction except for 𝑧 interfaces, where 𝑦 is
the second index}.

When writing stzparamfile instances to disk, the code uses numpy to write information
to disk in binary format. Byte-ordering can be specified, and should correspond to the byte-
ordering on the system where the simulation will be run (default is native).

__init__(n1, n2, v0, f0, a, muy, c0, R, beta, chiw, v1)
Initialize a new instance of a stzparamfile object

Create a new instance of a stzparamfile, which is a class describing STZ parameter per-
turbations in a file. Required information is the number of grid points for the interface
and one array for each of the nine parameter perturbations. All the array shapes must
be (n1,n2) or the code will raise an error.

Parameters

• n1 (int) – Number of grid points along first coordinate direction

• n2 (int) – Number of grid points along the second coordinate direc-
tion

• v0 (ndarray) – Reference slip rate perturbation array

• f0 (ndarray) – Friction activation barrier perturbation array

• a (ndarray) – Frictional direct effect perturbation array

• muy (ndarray) – Yielding friction coefficient perturbation array

• c0 (ndarray) – Effective temperature specific heat perturbation array

• R (ndarray) – Effective temperature relaxation rate perturbation ar-
ray

• beta (ndarray) – Effective temperature relaxation barrier perturba-
tion array

• chiw (ndarray) – Effective temperature activation barrier perturba-
tion array

• v1 (ndarray) – Effective temperature reference slip rate perturbation
array

3.2. Input Using the Python Module 105

fdfault Documentation, Release 1.0

Returns New swparamfile instance

Return type swparamfile

get_R(index=None)
Returns effective temperature relaxation rate at given indices

Returns effective temperature relaxation rate perturbation at the indices given by
index. If no indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into effective
temperature relaxation rate array (optional, if not provided returns entire
array)

Returns Effective temperature relaxation rate perturbation (either ndarray or
float, depending on value of index)

Return type ndarray or float

get_a(index=None)
Returns frictional direct effect at given indices

Returns frictional direct effect perturbation at the indices given by index. If no indices
are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into frictional
direct effect array (optional, if not provided returns entire array)

Returns Frictional direct effect perturbation (either ndarray or float, depend-
ing on value of index)

Return type ndarray or float

get_beta(index=None)
Returns effective temperature relaxation activation barrier at given indices

Returns effective temperature relaxation activation barrier perturbation at the indices
given by index. If no indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into effective
temperature relaxation activation barrier array (optional, if not provided
returns entire array)

Returns Effective temperature relaxation activation barrier perturbation (ei-
ther ndarray or float, depending on value of index)

Return type ndarray or float

get_c0(index=None)
Returns effective temperature specific heat at given indices

Returns effective temperature specific heat perturbation at the indices given by index.
If no indices are provided, the method returns the entire array.

106 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters index (float, tuple, or None) – Index into effective
temperature specific heat array (optional, if not provided returns entire
array)

Returns Effective temperature specific heat perturbation (either ndarray or
float, depending on value of index)

Return type ndarray or float

get_chiw(index=None)
Returns effective temperature activation barrier at given indices

Returns effective temperature activation barrier perturbation at the indices given by
index. If no indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into effective
temperature activation barrier array (optional, if not provided returns en-
tire array)

Returns Effective temperature activation barrier perturbation (either ndarray
or float, depending on value of index)

Return type ndarray or float

get_f0(index=None)
Returns friction activation barrier at given indices

Returns friction activation barrier perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into friction
activation barrier array (optional, if not provided returns entire array)

Returns Friction activation barrier perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_muy(index=None)
Returns yielding friction coefficient at given indices

Returns yielding friction coefficient perturbation at the indices given by index. If no
indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into yielding
friction coefficient array (optional, if not provided returns entire array)

Returns Yielding friction coefficient perturbation (either ndarray or float, de-
pending on value of index)

Return type ndarray or float

get_n1()
Returns number of grid points in 1st coordinate direction

3.2. Input Using the Python Module 107

fdfault Documentation, Release 1.0

Returns Number of grid points in 1st coordinate direction (𝑥, except for 𝑥
interfaces, where 𝑦 is the first coordinate direction)

Return type int

get_n2()
Returns number of grid points in 2nd coordinate direction

Returns Number of grid points in 2nd coordinate direction (𝑧, except for 𝑧
interfaces, where 𝑦 is the second coordinate direction)

Return type int

get_v0(index=None)
Returns reference slip rate at given indices

Returns reference slip rate perturbation at the indices given by index. If no indices
are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into reference
slip rate array (optional, if not provided returns entire array)

Returns Reference slip rate perturbation (either ndarray or float, depending
on value of index)

Return type ndarray or float

get_v1(index=None)
Returns effective temperature reference slip rate at given indices

Returns effective temperature reference slip rate perturbation at the indices given by
index. If no indices are provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into effective
temperature reference slip rate array (optional, if not provided returns en-
tire array)

Returns Effective temperature reference slip rate perturbation (either ndarray
or float, depending on value of index)

Return type ndarray or float

write(filename, endian=’=’)
Write perturbation data to file

Parameters

• filename (str) – Name of binary file to be written

• endian (str) – Byte-ordering for output. Options inclue '=' for
native, '<' for little endian, and '>' for big endian. Optional, default
is native

Returns None

108 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

class fdfault.statefile(n1, n2, state)
The statefile class is a class for loading heterogeneous initial state variable values from
file. It is only used for friction laws that require an additional state variable in addition to the
slip/slip rate to specify frictional strength

All statefile instances contain the following internal parameters:

Variables

• n1 – Number of grid points along first coordinate direction

• n2 – Number of grid points along the second coordinate direction

• state – Array holding state variable perturbation (numpy array with
shape (n1,n2))

statefilewill also define a numpy array with shape (n1,n2) holding the state variable.
State files do not include any information about the shape of the boundary, and it is up to the
user to ensure that that the parameter values correspond to the coordinates of the interface.
However, because parameter files explicitly assign a value to each grid point, there is less
ambiguity regarding the final values when compared to perturbations. Depending on the
orientation of the interface, the two coordinate directions will have different orientations in
space. The first coordinate direction is the 𝑥 direction for 𝑦 and 𝑧 interfaces (for 𝑥 interfaces,
the first index is in the 𝑦 direction), and the second coordinate is in the 𝑧 direction except for
𝑧 interfaces, where 𝑦 is the second index}.

When writing statefile instances to disk, the code uses numpy to write information to
disk in binary format. Byte-ordering can be specified, and should correspond to the byte-
ordering on the system where the simulation will be run (default is native).

__init__(n1, n2, state)
Initialize a new instance of a statefile object

Create a new instance of a statefile, which is a class describing interface state variable
value perturbations in a file. Required information is the number of grid points for the
interface and one array for the state variable. The array shape must be (n1,n2) or the
code will raise an error.

Parameters

• n1 (int) – Number of grid points along first coordinate direction

• n2 (int) – Number of grid points along the second coordinate direc-
tion

• sn (ndarray) – State variable perturbation array

Returns New statefile instance

Return type statefile

get_state(index=None)
Returns state variable at given indices

3.2. Input Using the Python Module 109

fdfault Documentation, Release 1.0

Returns state variable perturbation at the indices given by index. If no indices are
provided, the method returns the entire array.

Parameters index (float, tuple, or None) – Index into state vari-
able array (optional, if not provided returns entire array)

Returns State variable perturbation (either ndarray or float, depending on
value of index)

Return type ndarray or float

write(filename, endian=’=’)
Write perturbation data to file

Parameters

• filename (str) – Name of binary file to be written

• endian (str) – Byte-ordering for output. Options inclue '=' for
native, '<' for little endian, and '>' for big endian. Optional, default
is native

Returns None

The output Class

The output class contains information on saving simulation data to file.

Each problem contains a list of “output units,” each of which saves a particular set of data points
from the simulation to file. An output unit is given a name, selects a field from the simulation,
and picks grid and time points to output. The corresponding spatial grid and time information is
automatically output for each item.

Output items fall into two main groups: fields that are defined in the volume (particle velocities,
stress components, and plastic strain/strain rate). These are defined for every grid point in the
simulation, and so there are no restrictions on the range that the spatial points can take other than
them being within the domain and the min/max values are self-consistent.

Other fields such as slip, slip rate, interface tractions, and state variables, are only defined on a
particular interface between blocks. These output units require more careful specification of their
limits, as the points chosen must lie on an interface. The Python and C++ code check the validity
of these limits (the Python code only checks that the points make up a 2D slice, while the C++
code ensures that the 2D slice lies on an interface in the simulation).

The grid point limits can be used to specify a single point, 1D, 2D, or 3D selection of the domain
for output by setting the min/max values to be identical or different.

Output can only be done for specific grid points within the computational domain. However, a
helper function find_nearest_point can be used for a given problem to find the nearest grid
point to a spatial location for complex domains.

110 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Acceptable field names for volume output:

• 'vx' - x particle velocity

• 'vy' - y particle velocity

• 'vz' - z particle velocity

• 'sxx' - xx stress component

• 'sxy' - xy stress component

• 'sxz' - xz stress component

• 'syy' - yy stress component

• 'syz' - yz stress component

• 'szz' - zz stress component

• 'gammap' - scalar plastic strain

• 'lambda' - scalar plastic strain rate

Acceptable field names for interface output (coordinates must form a 2D (1D for 2D problems)
slice through the domain along a single interface between two blocks. Note that if your slice
extends through multiple interfaces, only one will be saved due to how parallel I/O is handled in
the code.

• 'U' - scalar slip (line integral of slip velocity)

• 'Ux' - x slip component (signed)

• 'Uy' - y slip component (signed)

• 'Uz' - z slip component (signed)

• 'V' - scalar slip velocity (vector magnitude of components)

• 'Vx' - x slip velocity component (signed)

• 'Vy' - y slip velocity component (signed)

• 'Vz' - z slip velocity component (signed)

• 'Sn' - Interface normal traction (negative in compression)

• 'S' - scalar interface shear traction (vector magnitude)

• 'Sx' - x shear traction component (signed)

• 'Sy' - y shear traction component (signed)

• 'Sz' - z shear traction component (signed)

The different interface components do not truly correspond to the corresponding coordinate di-
rections. The code handles complex boundary conditions by rotating the fields into a coordinate

3.2. Input Using the Python Module 111

fdfault Documentation, Release 1.0

system defined by three mutually orthogonal unit vectors. The normal direction is defined to al-
ways point into the “positive” block and is uniquely defined by the boundary geometry. The two
tangential components are defined as follows for each different type of interface:

• Depending on the orientation of the interface in the computational space, a different con-
vention is used to set the first tangent vector. For 'x' or 'y' oriented interfaces, the 𝑧
component of the first tangent vector is set to zero. This is done to ensure that for 2D prob-
lems, the second tangent vector points in the 𝑧-direction. For 'z' oriented interfaces, the 𝑦
component of the first tangent vector is set to zero.

• With one component of the first tangent vector defined, the other two components can be
uniquely determined to make the tangent vector orthogonal up to a sign. The sign is chosen
such that the tangent vector points in the direction where the grid points are increasing.

• The second tangent vector is defined by taking the right-handed cross product of the normal
and first tangent vectors, except for 'y' interfaces, where the left-handed cross product is
used. This is done to ensure that for 2D problems, the vertical component always points in
the +𝑧-direction.

The consequence of this is that the letter used to designate the desired component is only valid
for rectangular geometries. For non-rectangular geometries, the components will be rotated into
the coordinate system described above. For interfaces in the “x” direction (i.e. connecting blocks
whose indices only differ in the 𝑥-direction), the 𝑦 component of output units will be along the
first tangent vector, and the 𝑧 component will be along the second tangent vector. Similarly, for
“y” interfaces the 𝑥 component is set by the first tangent vector and the 𝑧 component is determined
by the second tangent vector, and for “z” interfaces the first tangent vector is in the 𝑥-direction
and the second tangent vector corresponds to the 𝑦-direction. If you desire the components in a
different coordinate system, you can convert them from the output data. Note that this also means
that you can only specify certain components for interface output, depending on the direction of
the interface.

class fdfault.output(name, field, tm=0, tp=0, ts=1, xm=0, xp=0, xs=1, ym=0, yp=0,
ys=1, zm=0, zp=0, zs=1)

Class representing a simulation dataset to be written to file.

Attributes include a name (used for setting the file name of the resulting files), output field,
and grid point information. Initializing an output unit requires specifying a name and field,
the grid point information is optional.

Variables

• name – Name used in files for saving data

• field – Field to be saved to file (see list of acceptable values above)

• tm – Minimum time index to be written to file (inclusive)

• tp – Maximum time index to be written to file (inclusive)

• ts – Stride for time output (will skip over appropriate number of time
steps so that every ts time steps are saved between tm and tp)

112 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• xm – Minimum x index to be written to file (inclusive)

• xp – Maximum x index to be written to file (inclusive)

• xs – Stride for x output (will skip over appropriate number of x grid
points so that one per every xs points are saved between xm and xp)

• ym – Minimum y index to be written to file (inclusive)

• yp – Maximum y index to be written to file (inclusive)

• ys – Stride for y output (will skip over appropriate number of y grid
points so that one per every ys points are saved between ym and yp)

• zm – Minimum z index to be written to file (inclusive)

• zp – Maximum z index to be written to file (inclusive)

• zs – Stride for z output (will skip over appropriate number of z grid
points so that one per every zs points are saved between zm and zp)

__init__(name, field, tm=0, tp=0, ts=1, xm=0, xp=0, xs=1, ym=0, yp=0, ys=1,
zm=0, zp=0, zs=1)

Initialize a new ouput unit

Creates a new output unit. Required arguments are the name and field to be saved.
Specifying additional parameters gives the user control over what data is saved. Time
and three spatial dimensions can be set with a triplet of integers representing minus,
plius, and stride values. Minus sets the first index that is saved, plus sets the last, and
stride controls how frequently the data is saves (stride of 1 means every value is saved,
2 means every other point is saved, etc.). Specifying values out of bounds such as
minus > plus or any number less than zero will result in an error. If values that are
outside the simulation range are given, the code will give a warning but not an error.

All triplets have default values of minus = 0, plus = 0, and stride = 1, and are optional.

Parameters

• name (str) – Name used in files for saving data

• field (str) – Field to be saved to file (see list of acceptable values
above)

• tm (int) – Minimum time index to be written to file (inclusive)

• tp (int) – Maximum time index to be written to file (inclusive)

• ts (int) – Stride for time output (will skip over appropriate number
of time steps so that every ts time steps are saved between tm and tp)

• xm (int) – Minimum x index to be written to file (inclusive)

• xp (int) – Maximum x index to be written to file (inclusive)

3.2. Input Using the Python Module 113

fdfault Documentation, Release 1.0

• xs (int) – Stride for x output (will skip over appropriate number of x
grid points so that one per every xs points are saved between xm and
xp)

• ym (int) – Minimum y index to be written to file (inclusive)

• yp (int) – Maximum y index to be written to file (inclusive)

• ys (int) – Stride for y output (will skip over appropriate number of y
grid points so that one per every ys points are saved between ym and
yp)

• zm (int) – Minimum z index to be written to file (inclusive)

• zp (int) – Maximum z index to be written to file (inclusive)

• zs (int) – Stride for z output (will skip over appropriate number of z
grid points so that one per every zs points are saved between zm and
zp)

Returns New instance of output unit

Return type output

get_field()
Returns output field

Returns Output field

Return type str

get_name()
Returns output unit name

Returns Output unit name

Return type str

get_time_indices()
Returns all index info for time output as (tm, tp, ts)

Returns Set of time step info indices (tm, tp, ts)

Return type tuple

get_tm()
Returns minimum time step for output

Returns minimum time step index

Return type int

get_tp()
Returns maximum time step for output

Returns maximum time step index

114 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Return type int

get_ts()
Returns time stride for output

Returns time stride

Return type int

get_x_indices()
Returns all index info for x output as (xm, xp, xs)

Returns all x grid point information (xm, xp, xs)

Return type tuple

get_xm()
Returns minimum x grid point for output

Returns minimum x grid point

Return type int

get_xp()
Returns maximum x grid point for output

Returns maximum x grid point

Return type int

get_xs()
Returns x stride for output

Returns x stride

Return type int

get_y_indices()
Returns all index info for y output as (ym, yp, ys)

Returns Index information for the y direction (ym, yp, ys)

Return type tuple

get_ym()
Returns minimum y grid point for output

Returns minimum y grid point

Return type int

get_yp()
Returns maximum y grid point for output

Returns maximum y grid index

Return type int

3.2. Input Using the Python Module 115

fdfault Documentation, Release 1.0

get_ys()
Returns y stride for output

Returns y stride for data output

Return type int

get_z_indices()
Returns all index info for z output as (zm, zp, zs)

Returns z output information (zm, zp, zs)

Return type tuple

get_zm()
Returns minimum z grid point for output

Returns minimum z grid point

Return type int

get_zp()
Returns maximum z grid point for output

Returns maximum z grid point

Return type int

get_zs()
Returns z stride for output

Returns z stride

Return type int

set_field(field)
Sets output file (must be a valid block or interface field)

Parameters field (str) – New output field (must match option above)

Returns None

set_name(name)
Set output unit name (if not a string, the code will produce an error)

Parameters name (str) – New name for output unit

Returns None

set_time_indices(tm, tp, ts)
Sets all time indices

Method sets all three values of tm, tp, and ts

Parameters

• tm (int) – New value of minimum time index

116 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• tp (int) – New value of maximum time index

• ts (int) – New value of time stride

Returns None

set_tm(tm)
Sets minimum time index for output

New minimum must be nonnegative and less than tp

Parameters tm (int) – New value of minimum time step

Returns None

set_tp(tp)
Sets maximum time index for output

New value of maximum time must be nonnegative and not less than tm

Parameters tp (int) – New value of minimum time index

Returns None

set_ts(ts)
Sets t stride for output

Stride must be a positive integer.

Parameters ts (int) – New value of time stride

Returns None

set_x_indices(xm, xp, xs)
Sets all x indices

Method sets all three values of xm, xp, and xs

Parameters

• xm (int) – New value of minimum x index

• xp (int) – New value of maximum x index

• xs (int) – New value of x stride

Returns None

set_xm(xm)
Sets minimum x index for output

New minimum must be nonnegative and less than xp

Parameters xm (int) – New value of minimum x grid point

Returns None

3.2. Input Using the Python Module 117

fdfault Documentation, Release 1.0

set_xp(xp)
Sets maximum x index for output

New value of maximum x index must be nonnegative and not less than xm

Parameters xp (int) – New value of maximum x index

Returns None

set_xs(xs)
Sets x stride for output

Stride must be a positive integer.

Parameters xs (int) – New value of x stride

Returns None

set_y_indices(ym, yp, ys)
Sets all y indices

Method sets all three values of ym, yp, and ys

Parameters

• ym (int) – New value of minimum y index

• yp (int) – New value of maximum y index

• ys (int) – New value of y stride

Returns None

set_ym(ym)
Sets minimum y index for output

New minimum must be nonnegative and less than yp

Parameters ym (int) – New value of minimum y grid point

Returns None

set_yp(yp)
Sets maximum y index for output

New value of maximum y index must be nonnegative and not less than ym

Parameters yp (int) – New value of maximum y index

Returns None

set_ys(ys)
Sets y stride for output

Stride must be a positive integer.

Parameters ys (int) – New value of y stride

118 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns None

set_z_indices(zm, zp, zs)
Sets all z indices

Method sets all three values of zm, zp, and zs

Parameters

• zm (int) – New value of minimum z index

• zp (int) – New value of maximum z index

• zs (int) – New value of z stride

Returns None

set_zm(zm)
Sets minimum z index for output

New minimum must be nonnegative and less than zp

Parameters zm (int) – New value of minimum z grid point

Returns None

set_zp(zp)
Sets maximum z index for output

New value of maximum z index must be nonnegative and not less than zm

Parameters zp (int) – New value of maximum z index

Returns None

set_zs(zs)
Sets z stride for output

Stride must be a positive integer.

Parameters zs (int) – New value of z stride

Returns None

write_input(f)
Writes output unit to file

Method writes the information for the output unit to file. The information is inserted
into a list of output units that are formatted for input into the C++ code.

Parameters f (file) – file handle for output file

Returns None

3.2. Input Using the Python Module 119

fdfault Documentation, Release 1.0

3.2.4 Additional Classes

The classes below are not normally accessed by the user. Instead, use the interfaces provided in
the problem class, which modify the underlying classes in a more robust way and prevent you
from setting up a problem incorrectly. However, full documentation for the additional classes are
included here for completeness.

The block Class

The block class represents a block of material in a simulation. Blocks are not meant to be inter-
acted with directly – when using the problem class to set up a simulation, blocks are automati-
cally added or deleted as needed using the provided interfaces. This documentation is provided for
completeness, but should not need to be used in regular use of the code.

The class contains information on the number of grid points in the block, the location of the block
within the simulation, the material properties using the material class, the types of boundary
conditions at the block edges, and any complex geometries specified through the surface and
curve classes.

class fdfault.block(ndim, mode, nx, mat)
Class representing a block in a simulation

A block contains the following internal variables:

Variables

• ndim – Number of dimensions (2 or 3)

• mode – Rupture mode (2 or 3, relevant only for 2D problems)

• nx – Number of grid points (tuple of 3 positive integers)

• xm – Coordinates of lower left corner in simulation (tuple of 3 nonnega-
tive integers)

• coords – Location of block within simulation domain (tuple of 3 non-
negative integers)

• lx – Block length in each spatial dimension (tuple of 3 positive floats,
can be overridden by setting a curve or surface to one of the edges)

Parameters

• m (material) – Material properties (see material class)

• bounds (list) – List of boundary conditions. Position indicates
boundary location (0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5
= top). Possible strings for boundary condition include 'absorbing'

120 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

(no incoming wave), 'free' (traction free surface), 'rigid' (no dis-
placement), or 'none' (boundary conditions determined by interface
conditions)

• surfs (list) – List of bounding surfaces. Position indicates boundary
location (0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top).
For 2D problems, you can only populate the list with curves, and 3D
problems require surfaces. If the default rectangular surface is to be used,
use None for a particular surface.

__init__(ndim, mode, nx, mat)
Initialize a new block instance

Creates a new block instance with the given dimensionality, rupture mode, number of
grid points, and material type. If the problem is 2d, the number of z grid points will
be automatically set to one. By default, the block length is unity in each direction, the
lower left coordinate is (0.,0.,0.), all boundary conditions are set to 'none',
material properties take on their default values, and there are no irregular edge shapes.
All of these default properties can be modified using the provided interfaces.

Parameters

• ndim (int) – Number of spatial dimensions (must be 2 or 3)

• mode (int) – Slip mode (2 or 3, only relevant if the problem is in 2D)

• nx (tuple or list) – Tuple of length 3 with number of grid points
(nx,ny,nz)

• mat (str) – Block material type (string, must be 'elastic' or
'plastic'). The method initializes a default set of material prop-
erties based on this type.

Returns New block instance

Return type block

check()
Checks for errors before writing input file

Checks that edges of bounding surfaces match. If the edges are not defined as surfaces,
the code temporarily creates them to check that they match.

Returns None

checksurfs(tmpsurfs)
Checks that surface boundaries match

Input is a list of surfaces, with order corresponding to (left, right, front, back, top,
bottom). In 2D problems, there is no top or bottom surface.

Parameters tmpsurfs (list) – List of surfaces to compare (lenth 4 or 6)

3.2. Input Using the Python Module 121

fdfault Documentation, Release 1.0

Returns None

delete_surf(loc)
Removes boundary surface for a particular block edge

Removes the bounding surface of a particular block edge. Location is determined by
loc which is an integer that indexes into a list. Locations correspond to the following:
0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top. Note that the location must
be 0 <= loc < 2*ndim

If loc is out of bounds, the code will also signal an error.

Parameters loc (int) – Location of desired boundary to be removed (0 =
left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top). For 2D problems,
loc must be between 0 and 3.

Returns None

get_bounds(loc=None)
Returns boundary types

If loc (int) is provided, the method returns a specific location (str). Otherwise it returns
a list of all boundaries, which will have length 4 for 2D problems and length 6 for 3D
problems. loc serves effectively as an index into the list, and the indices correspond
to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top. Note that
the location must be 0 <= loc < 2*ndim

Parameters loc (int or None) – Location of boundary that is desired
(optional). If loc is not provided, returns a list

Returns Boundary type (if loc provided, returns a string of the boundary
type for the desired location, of not returns a list of strings indicating all
boundary types)

Return type str or list

get_coords()
Returns block coordinates (tuple of integer indices in each coordinate direction)

Returns Block coordinates (tuple of 3 integers)

Return type tuple

get_lx()
Returns block lengths as (lx, ly, lz) tuple

Returns Block dimensions (tuple of 3 floats) in x, y, and z dimensions

Return type tuple

get_material()
Returns material

Returns the material class associated with this block

122 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Material class with properties for this block

Return type material

get_mode()
Returns rupture mode (2 or 3), only valid for 2D problems (stored at domain level)

Returns Rupture mode

Return type int

get_ndim()
Returns Number of spatial dimensions

Returns Number of spatial dimensions

Return type int

get_nx()
Returns number of grid points in (nx, ny, nz) format for the given block

Returns Number of grid points (tuple of three integers)

Return type tuple

get_surf(loc)
Returns block boundary surface for a block edge

Returns the surface assigned to a specific edge. loc determines the edge that is re-
turned (integer, corresponding to an index). Location indices correspond to the follow-
ing: 0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top Note that the location
must be 0 <= loc < 2*ndim (for 2D problems, loc cannot be 5 or 6).

Returns either a curve (2D problems) or surface (3D problems) or None

If loc indices are out of bounds, the code will raise an error.

Parameters loc (int) – Location of desired boundary (0 = left, 1 = right,
2 = front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

Returns curve or surface corresponding to the selected location. If the de-
sired edge does not have a bounding surface, returns None.

Return type curve or surface or None

get_x(coord)
Returns grid value for given spatial index

For a given problem set up, returns the location of a particular set of coordinate indices.
Note that since blocks are set up by setting values only on the edges, coordinates on the
interior are not specified a priori and instead determined using transfinite interpolation
to generate a regular grid on the block interiors. Calling get_x generates the interior
grid to find the coordinates of the desired point.

3.2. Input Using the Python Module 123

fdfault Documentation, Release 1.0

Within each call to get_x, the grid is generated on the fly only for the relevant block
where the desired point is located. It is not stored. This helps reduce memory require-
ments for large 3D problems (since the Python module does not run in parallel), but is
slower. Because the computational grid is regular, though, it can be done in a single
step in closed form.

Returns a numpy array of length 3 holding the spatial location (x, y, z).

Parameters coord (tuple or list) – Spatial coordinate where grid
values are desired (tuple or list of 3 integers or 2 integers for 2D prob-
lems)

Returns (x, y, z) coordinates of spatial location

Return type ndarray

get_xm()
Returns starting index (zero-indexed) of block (tuple of 3 integers)

Returns Coordinates of lower left corner (tuple of 3 integers)

Return type tuple

make_tempsurfs()
Create temporary surface list

This method generates all six (four in 2D) bounding surfaces (curves in 2D). Note that
these surfaces are not usually stored for rectangular block edges to save memory, as
they are trivial to create. The temporary surfaces can be used to check that the edges of
the surfaces/curves match or to use transfinite interpolation to generate the grid.

Returns List of all bounding surfaces (not stored beyond the time they are
needed)

Return type list

set_bounds(bounds, loc=None)
Sets boundary types

Changes the type of boundary conditions on a block. Acceptable values are ‘absorbing’
(incoming wave amplitude set to zero), ‘free’ (no traction on boundary), ‘rigid’ (no
displacement of boundary), or ‘none’ (boundary conditions set by imposing interface
conditions).

There are two ways to use set_bounds:

1.Set loc to be None (default) and provide a list of strings specifying boundary
type for bounds. The length of bounds is 4 for a 2D simulation and 6 for 3D.

2.Set loc to be an integer denoting location and give bounds as a single string.
The possible locations correspond to the following: 0 = left, 1 = right, 2 = front, 3
= back, 4 = bottom, 5 = top. 4 and 5 are only applicable to 3D simulations (0 <=
loc < 2*ndim).

124 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters

• bounds (str or list) – New boundary condition type (string or
list of strings)

• loc (int or None) – If provided, only change one type of bound-
ary condition rather than all (optional, loc serves as an index into the
list if used)

Returns None

set_coords(coords)
Sets block coordinates to a new value

Set block coordinates to coords, and tuple of nonnegative integers denoting the loca-
tion of the block in the domain.

Parameters coords (tuple or list) – New coordaintes (tuple or list
of nonnegative integers)

Returns None

set_lx(lx)
Sets block lengths

Changes block length to lx (tuple of 2 (2D only) or 3 floats) where the block length in
each dimension is given by (lx,ly,lz)

Parameters lx (tuple or list) – New value of block lengths (tuple of
2 (2D) or 3 floats)

Returns None

set_material(mat)
Sets block material properties

Sets new material properties stored in an instance of the material class.

Parameters

• newmaterial (material) – New material properties

• coords (tuple or list) – Coordinates of block to be changed
(optional, omitting changes all blocks). coords must be a tuple or list
of three integers that match the coordinates of a block.

Returns None

set_mattype(mattype)
Sets block material type (‘elastic’ or ‘plastic’)

Sets the material type for the block. Options are ‘elastic’ for an elastic simulation and
‘plastic’ for a plastic simulation. Anything else besides these options will cause the
code to raise an error.

3.2. Input Using the Python Module 125

fdfault Documentation, Release 1.0

Parameters mattype (str) – New material type (‘elastic’ or ‘plastic’)

Returns None

set_mode(mode)
Sets rupture mode

Rupture mode is only valid for 2D problems, and is either 2 or 3 (other values will
cause an error, and non-integer values will be converted to integers). For 3D problems,
entering a different value of the rupture mode will alter the rupture mode cosmetically
but will have no effect on the simulation.

Parameters mode (int) – New value of rupture mode

Returns None

set_ndim(ndim)
Sets number of dimensions

The new number of spatial dimensions must be an integer, either 2 or 3. If a different
value is given, the code will raise an error. If a non-integer value is given that is
acceptable, the code will convert it to an integer.

Note: Converting a 3D problem into a 2D problem will automatically collapse the
number of grid points and the number of blocks in the z direction to be 1. Any
modifications to these quantities that were done previously will be lost.

Parameters ndim (int) – New value for ndim (must be 2 or 3)

Returns None

set_nx(nx)
Sets number of grid points

Changes the number of grid points to the specified tuple/list of 3 nonnegative integers.
Bad values of nx will raise an error.

Parameters nx (tuple or list) – New value of number of grid points
(tuple of 3 positive integers)

Returns None

set_surf(loc, surf)
Sets boundary surface for a particular block edge

Changes the bounding surface of a particular block edge. Location is determined by
loc which is an integer that indexes into a list. Locations correspond to the following:
0 = left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top. Note that the location must
be 0 <= loc < 2*ndim

For 2D problems, surf must be a curve. For 3D problems, surf must be a surface.
Other choices will raise an error. If loc is out of bounds, the code will also signal an
error.

126 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters

• loc (int) – Location of desired boundary (0 = left, 1 = right, 2 =
front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

• surf (curve or surface) – curve or surface corresponding to
the selected block and location

Returns None

set_xm(xm)
Sets block lower left coordinate

Changes lower left coordinate of a block to the provided tuple/list of integers.

Parameters xm (tuple or list) – New value of lower left coordinate
(list/tuple of integers)

Returns None

write_input(f, probname, directory, endian=’=’)
Writes block information to input file

Method writes information for block to file. It also writes all relevant surface data to
file to describe non-rectangular geometries. Inputs inlcude the file handle for the input
file, the problem name (used for naming surface files), the destination directory for all
files, and endianness (optional, default is native) for binary surface files.

Parameters

• f (file) – file handle for input file

• probname (str) – Problem name

• directory (str) – Directory where output should be written

• endian (str) – Byte-ordering for binary files for surface data. Pos-
sible values are '<' (little endian), '>' (big endian), or '=' (native,
default)

Returns None

The domain Class

The domain class holds information regarding the physical problem setup. This includes the
problem dimension, rupture mode, if a problem is an elastic or plastic simulation, number of
blocks and interfaces, grid spacing, finite difference method, and parallelization.

The user does not typically interact directly with domain objects, as all problems automatically
contain one (and can only handle one) domain. All methods in domain contain interfaces through

3.2. Input Using the Python Module 127

fdfault Documentation, Release 1.0

the problem object, and these wrapper functions should be the preferred method for altering a
problem. Documentation is provided here for completeness.

class fdfault.domain
Class describing rupture problem domain

When initializing a domain, one is created with default attributes, including:

Variables

• ndim (int) – Number of spatial dimensions (2 or 3; default is 2)

• mode (int) – Rupture mode (2 or 3, default is 2; only relevant for 2D
problems)

• mattype (str) – Simulation material type ('elastic' or
'plastic', default is 'elastic')

• nx (tuple) – Number of grid points (tuple of 3 integers, default
(1,1,1)). This cannot be modified as it is set automatically when mod-
ifying nx_block.

• nblocks (tuple) – Number of blocks in each spatial dimension (tuple
of 3 integers). Blocks must form a Cartesian grid.

• nx_block (tuple) – Number of grid points for each block along
each spatial dimension. Represented as a tuple of lists. Default is ([1],
[1], [1]). Note that modifying nx_block automatically changes nx to
match.

• xm_block (tuple) – Grid location of minimum grid point in each
block in each spatial dimension. This is also calculated automatically
based on the values of nx_block, and cannot be modified directly.
Represented as a tuple of lists, default is ([0], [0], [0]).

• nifaces (int) – Number of interfaces (integer, default is zero). This
is automatically set when nblocks is changed, and is not set by the
user. Order is not important here, but when generating interfaces the code
orders them by first creating all 'x' interfaces, then all 'y' interfaces,
then all 'z' interfaces.

• iftype (list) – List holding type of all interfaces (list of strings).
Can be modified by changing interface type for a single interface. When
a new interface is created it is by default a 'locked' interface.

• sbporder (int) – Finite difference method order (integer 2-4, default
2).

• nproc (tuple) – Number of processes in each dimension for paral-
lelization. Represented as a tuple of integers (default (0,0,0)). A zero
in a given dimension indicates that the number of processes in that di-
rection will be set automatically. Thus, (0,0,0) indicates that the entire

128 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

decomposition process will be automated, while (0,2,1) fixes the number
of processes in the y and z directions (x will still be determined automat-
ically). Note that specifying all three numbers requires that the product
of all three numbers match the total number of processes selected when
running the simulation.

• cdiss (float) – Artificial dissipation coefficient (float, default 0.). A
nonzero value will turn on artificial dissipation in the simulation. It is up
to the user to select this value correctly.

__init__()
Create a new instance of a domain class

Initializes a new domain with a 2D mode 2 rupture containing a single elastic block.
The block has the default material properties, one grid point in each direction, unit
length in each direction, and the block is located at (0., 0., 0.) in space. The domain
has a default finite difference order of 2 and no artificial dissipation. All defaults can
be modified using the provided interfaces in the class.

Returns New domain instance with default properties

Return type domain

add_load(newload, index=None)
Adds load to interface

Add a load perturbation to the interface with the given index. If no index is provided,
the load will be added to all interfaces. If the index is an integer, the load will be added
to the interface with that index. Finally, the index can be an interable (list or tuple) of
integers, and the load will be added to all interfaces in the iterable. Indices that are out
of bounds or indicate an interface that is not frictional will raise an error. Default value
is None (all interfaces).

newload must be a load perturbation (i.e. have type load), or the code will raise an
error. newload will be appended to the load list

Parameters

• newload (load) – Load to be added

• index (int or tuple or list or None) – Interface to
which the load should be added. Can be a single integer, iterable of
integers, or None to add to all interfaces (default is None)

Returns None

add_pert(newpert, index=None)
Add new friction parameter perturbation to an interface

Method adds a frictional parameter perturbation to an interface. newpert must be
a parameter perturbation of the correct kind for the given interface type (i.e. if the
interface is of type slipweak, then newpert must have type swparam).

3.2. Input Using the Python Module 129

fdfault Documentation, Release 1.0

index indicates the index of the interface to which the perturbation will be added.
index can be a single integer index, an iterable containing multiple indices, or None
to add to all interfaces (default behavior is None). Out of bounds values will raise an
error.

Parameters

• newpert (pert (more precisely, one of the
derived classes of friction parameter
perturbations)) – New perturbation to be added. Must
have a type that matches the interface(s) in question.

• index (int or list or tuple or None) – Index of inter-
face to which the perturbation will be added (single index or iterable
of indices, or None for all interfaces, optional)

Returns None

check()
Checks domain for errors

No inputs, no return value, and the problem will not be modified.

This is run automatically when calling write_input. You may also run it manually
to see if the problem contains self-consistent input values. Checks that all block corners
match and all neighboring block edge grids conform.

Returns None

delete_block_surf(coords, loc)
Removes boundary surface for a particular block edge

Removes the bounding surface of a particular block edge. The block is selected by
using coords, which is a tuple or list of 3 integers indicated block coordinates. Within
that block, location is determined by loc which is an integer that indexes into a list.
Locations correspond to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 =
bottom, 5 = top. Note that the location must be 0 <= loc < 2*ndim

If coords or loc is out of bounds, the code will also signal an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary to be removed (0 = left, 1 =
right, 2 = front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc
must be between 0 and 3.

Returns None

delete_load(niface, index=-1)
Deletes load from index niface at position index from the list of loads

130 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Deletes loads from a frictional interface. niface is an index refering to the desired
interface. Out of bounds values or interfaces that are not frictional will result in an
error.

index indicates the position in the load list that should be deleted. Default for index
is -1 (most recently added).

Parameters

• niface (int) – Interface from which the load should be removed.
niface must refer to a frictional interface

• index (int) – Index within the load perturbation that should be re-
moved (default is last)

Returns None

delete_loadfile(niface)
Deletes loadfile for given interface

Deletes the loadfile for the specified interface. niface is the index of the interface
from which to delete the loadfile, and values that are not valid indices, or indices that
refer to non-frictional interfaces will result in an error.

Parameters niface (int) – Index of interface for loadfile removal

Returns None

delete_paramfile(niface)
Deletes friction parameter file for given interface

Removes the friction parameter file for the interface with index niface. The interface
in question must be a frictional interface that can accept parameter files.

Parameters niface (int) – Index of interface that will have its paramfile
removed

Returns None

delete_pert(niface, index=-1)
Deletes frictional parameter perturbation from interface

niface is an integer indicating the index of the desired interface. If out of bounds,
will give an error.

index is an integer that indicates the position within the list of loads. Default is most
recently added (-1).

Parameters

• niface (int) – Index of interface from which to remove the param-
eter perturbation

3.2. Input Using the Python Module 131

fdfault Documentation, Release 1.0

• index (int) – Index within perturbation list of the given interface to
remove. Default is last item (-1, or most recently added)

Returns None

delete_statefile(niface)
Deletes statefile for given interface

Delete the statefile for a given interface. nifacemust be a valid index that refers to an
interface with a state variable. Will set the statefile attribute for the interface to None.

Parameters niface (int) – Index of interface that will have its statefile
removed

Returns None

find_nearest_point(point, known=None, knownloc=None)
Finds the coordinate indices closest to a desired set of grid values

Method takes a set of grid values (tuple or list of 2 or 3 floats) and finds the indices
of the grid point closest to that location (in terms of Euclidean distance). The method
returns a set of coordinates (tuple of length 3 of integers) of point that is closest to the
input point.

The method also allows you to search along a given interface. To do this, you must pass
known = 'x' (or 'y' or 'z' depending on the normal direction of the interface)
and the known index in knownloc (integer value, which does not necessarily need to
be on an interface – it just fixes that coordinate when performing the search)

The location is found using an iterative binary search algorithm. The search begins
along the x direction using binary search until the distance to the desired point’s x
coordinate is minimized. The search then proceeds in the y and z directions. The
algorithm then searches again in the x direction, y direction, and z direction, until the
coordinates do not change over an entire iteration. This iteration procedure needs to
take place because the coordinate directions are not independent. The algorithm is
usually fairly efficient and finds coordinates fairly quickly.

Parameters

• point (tuple or list) – Desired spatial location (tuple or list of
floats)

• known (str or None) – Spatial direction to fix during search (op-
tional, string)

• knownloc (int or None) – Fixed coordinate value along known
direction (optional, integer)

Returns Closest spatial coordinate (tuple of 3 integers)

Return type tuple

132 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_block_lx(coords)
Returns physical size of a block with a given set of coordinates. Note that this assumes
the block is rectangular. It can be overridden by setting the edge of a block to be a
curve (2D) or surface (3D), so this is not always the definitive size of a block.

Parameters coords (tuple or list) – Coordinates of desired block
(tuple or list of three integers)

Returns Dimensions of desired block (tuple of three floats)

Return type tuple

get_block_surf(coords, loc)
Returns block boundary surface for a block edge

Returns the surface assigned to a specific block along a specific edge. The block is cho-
sen using coords which is a tuple or list of 3 positive integers that corresponds to the
coordinates of the block. Within that block, loc determines the edge that is returned
(integer, corresponding to an index). Location indices correspond to the following: 0 =
left, 1 = right, 2 = front, 3 = back, 4 = bottom, 5 = top Note that the location must be 0
<= loc < 2*ndim (for 2D problems, loc cannot be 5 or 6).

Returns either a curve (2D problems) or surface (3D problems) or None

If coords or loc indices are out of bounds, the code will raise an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary (0 = left, 1 = right, 2 =
front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

Returns curve or surface corresponding to the selected block and location. If
the desired edge does not have a bounding surface, returns None.

Return type curve or surface or None

get_block_xm(coords)
Returns starting index (zero-indexed) of each block (list of three lists of integers)

Parameters coords (tuple or list) – Coordinates of desired block
(tuple or list of three integers)

Returns list of three lists (each list is a list of integers)

Return type list

get_bm(index)
Returns block in minus direction of interface index. Returns a tuple of 3 integers indi-
cating block coordinates of target block

3.2. Input Using the Python Module 133

fdfault Documentation, Release 1.0

Parameters index (int) – index of desired interface (zero-indexed)

Returns tuple

get_bounds(coords, loc=None)
Returns boundary types of a particular block. If loc (int) is provided, the method
returns a specific location (str). Otherwise it returns a list of all boundaries, which will
have length 4 for 2D problems and length 6 for 3D problems. loc serves effectively
as an index into the list, and the indices correspond to the following: 0 = left, 1 = right,
2 = front, 3 = back, 4 = bottom, 5 = top. Note that the location must be 0 <= loc <
2*ndim

Parameters

• coords (tuple) – Block coordinate location (list or tuple of three
integers)

• loc (int or None) – Location of boundary that is desired (op-
tional). If loc is not provided, returns a list

Returns Boundary type (if loc provided, returns a string of the boundary
type for the desired location, of not returns a list of strings indicating all
boundary types)

Return type str or list

get_bp(index)
Returns block in plus direction of interface index. Returns a tuple of 3 integers indicat-
ing block coordinates of target block

Parameters index (int) – index of desired interface (zero-indexed)

Returns tuple

get_cdiss()
Returns artificial dissipation coefficient

Returns Artificial dissipation coefficient

Return type float

get_direction(index)
Returns direction (formally, normal direction in computational space) of interface with
given index Returns a string ‘x’, ‘y’, or ‘z’, which is the normal direction for a simula-
tion with rectangular blocks

Parameters index (int) – index of desired interface (zero-indexed)

Returns str

get_het_material()
Returns heterogeneous material properties for simulation

134 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns a numpy array with shape (3,nx,ny,nz). First index indicates parameter
value (0 = density, 1 = Lame parameter, 2 = Shear modulus). The other three indicate
grid coordinates. If no heterogeneous material parameters are specified, returns None

Returns ndarray

get_het_stress()
Returns heterogeneous stress initial values.

Returns a numpy array with shape (ns,nx,ny,nz). First index indicates stress
component. The following three indices indicate grid coordinates.If no array is cur-
rently specified, returns None.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Returns ndarray

get_iftype(index=None)
Returns interface type of given index, if none provided returns full list

Parameters index (int) – (optional) index of desired interface (zero-
indexed). If not given or if None is given the entire list of interface types
is returned

Returns str or list

get_load(niface, index=None)
Returns load for index niface at position index. If no index provided, returns entire list
of perturbations

Parameters

• niface (int) – index of desire interface (zero-indexed)

• index (int) – (optional) index of perturbation. If not provided or
None, then returns entire list

Returns load or list

get_loadfile(niface)
Returns loadfile for interface with index niface

Loadfile sets any surface tractions set for the particular interface in question. Note
that these tractions are added to any any set by the constant initial stress tensor, initial
heterogeneous stress, or interface traction perturbations

Parameters niface – index of desired interface (zero-indexed)

3.2. Input Using the Python Module 135

fdfault Documentation, Release 1.0

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

get_material(coords)
Returns material properties for a given block

Returns the material class associated with block with coordinates coords. coords
must be a tuple or list of valid block indices

Parameters coords (tuple or list) – Coordinates of the target block
(tuple or list of 3 nonnegative integers)

Returns Material class with properties for this block

Return type material

get_mattype()
Returns material type (‘elastic’ or ‘plasitc’)

Returns Material type

Return type str

get_mode()
Returns rupture mode (2 or 3), only valid for 2D problems (stored at domain level)

Returns Rupture mode

Return type int

get_nblocks()
Returns number of blocks points in (nx, ny, nz) format

Returns Number of blocks (tuple of three integers)

Return type tuple

get_nblocks_tot()
Returns total number of blocks

Returns Total number of blocks

Return type int

get_ndim()
Returns Number of spatial dimensions

Returns Number of spatial dimensions

Return type int

get_nifaces()
Returns number of interfaces

136 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns Number of interfaces

Return type int

get_nloads(index)
Returns number of loads on interface with given index

Parameters index – index of desire interface (zero-indexed)

Returns int

get_nperts(index)
Returns number of perturbations (integer) on given interface with given index

Parameters index (int) – index of desired interface (zero-indexed)

Returns int

get_nproc()
Returns number of processes (in x, y, z directions).

0 means MPI will do the domain decomposition in that direction automatically

Returns Number of processes in each spatial dimension (x, y, z) (tuple of
three integers)

Return type tuple

get_nx()
Returns number of grid points in (nx, ny, nz) format

Returns Number of grid points (tuple of three integers)

Return type tuple

get_nx_block()
Returns number of grid points in each block along each spatial dimension

Returns Number of grid points in each block (list of three lists)

Return type list

get_paramfile(niface)
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface with
index niface. Can return a subtype of paramfile corresponding to any of the specific
friction law types.

Parameters niface (int) – index of desired interface (zero-indexed)

Returns paramfile

get_pert(niface, index=None)
Returns perturbation for index niface at position index

Method returns a perturbation from a particular interface. niface must be a valid
integer index referring to an interface. index is the index into the perturbation list

3.2. Input Using the Python Module 137

fdfault Documentation, Release 1.0

for the particular index. If index is not provided or is None, the method returns the
entire list.

Parameters

• niface (int) – Index referring to an interface. (Must be a valid
integer index.)

• index (int or None) – Index into the perturbation list for the in-
dex in question (optional, if not provided or None, then returns entire
list)

Returns pert or list

get_sbporder()
Returns order of accuracy of finite difference method (stored at domain level)

Returns Order of accuracy of finite difference method

Return type int

get_state(niface)
Returns initial state variable value for interface with index niface

Parameters niface – index of desired interface (zero-indexed)

Returns Initial state variable

Return type float

get_statefile(niface)
Returns state file of given interface

If interface does not have a statefile returns None

Parameters niface – index of desired interface (zero-indexed)

Returns statefile or None

get_stress()
Returns uniform intial stress values

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Returns Initial stress tensor (list of floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

Return type list

138 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_x(coord)
Returns grid value for given spatial index

For a given problem set up, returns the location of a particular set of coordinate indices.
Note that since blocks are set up by setting values only on the edges, coordinates on the
interior are not specified a priori and instead determined using transfinite interpolation
to generate a regular grid on the block interiors. Calling get_x generates the interior
grid to find the coordinates of the desired point.

Within each call to get_x, the grid is generated on the fly only for the relevant block
where the desired point is located. It is not stored. This helps reduce memory require-
ments for large 3D problems (since the Python module does not run in parallel), but is
slower. Because the computational grid is regular, though, it can be done in a single
step in closed form.

Returns a numpy array of length 3 holding the spatial location (x, y, z).

Parameters coord (tuple or list) – Spatial coordinate where grid
values are desired (tuple or list of 3 integers)

Returns (x, y, z) coordinates of spatial location

Return type ndarray

set_block_lx(coords, lx)
Sets block with coordinates coords to have dimension lx

coords is a tuple of nonnegative integers that indicates the coordinates of the desired
block (0-indexed, must be less than the number of blocks in that particular direction
or the code will raise an error). lx is a tuple of two (2D) or three (3D) positive floats
indicating the block length in each spatial dimension. Note that this assumes each
block is rectangular. When a single block is modified, the code automatically adjusts
the lower left corner of all simulation blocks to be consistent with this change.

This can be overridden by setting a block edge to be a curve (2D) or surface (3D).
However, traction and friction parameter perturbations still make use of these block
lengths when altering interface tractions or friction parameters. More information on
how this works is provided in the pert documentation.

Finally, note that neighboring blocks must have conforming grids. When writing simu-
lation data to file, the code checks that all interfacial grids match, and raises an error if
it disagrees. So while the set_block_lx method may not complain about an error
like this, you will not be able to save the simulation to a file with such an error.

Parameters

• coords (tuple or list) – Coordinates (tuple or list of 3 nonneg-
ative integers)

• lx (tuple or list) – New dimensions of desired block (tuple or
list of 2 or 3 positive floats)

3.2. Input Using the Python Module 139

fdfault Documentation, Release 1.0

Returns None

set_block_surf(coords, loc, surf)
Sets boundary surface for a particular block edge

Changes the bounding surface of a particular block edge. The block is selected by
using coords, which is a tuple or list of 3 integers indicated block coordinates. Within
that block, location is determined by loc which is an integer that indexes into a list.
Locations correspond to the following: 0 = left, 1 = right, 2 = front, 3 = back, 4 =
bottom, 5 = top. Note that the location must be 0 <= loc < 2*ndim

For 2D problems, surf must be a curve. For 3D problems, surf must be a surface.
Other choices will raise an error. If coords or loc is out of bounds, the code will
also signal an error.

Parameters

• coords (tuple or list) – Coordaintes of desired block (tuple or
list of 3 integers)

• loc (int) – Location of desired boundary (0 = left, 1 = right, 2 =
front, 3 = back, 4 = bottom, 5 = top). For 2D problems, loc must be
between 0 and 3.

• surf (curve or surface) – curve or surface corresponding to
the selected block and location

Returns None

set_bounds(coords, bounds, loc=None)
Sets boundary types of a particular block.

Changes the type of boundary conditions on a block. Acceptable values are ‘absorbing’
(incoming wave amplitude set to zero), ‘free’ (no traction on boundary), ‘rigid’ (no
displacement of boundary), or ‘none’ (boundary conditions set by imposing interface
conditions).

The block to be modified is determined by coords, which is a tuple or list of 3 integers
that match the coordinates of a block.

There are two ways to use set_bounds:

1.Set loc to be None (default) and provide a list of strings specifying boundary
type for bounds. The length of bounds is 4 for a 2D simulation and 6 for 3D.

2.Set loc to be an integer denoting location and give bounds as a single string.
The possible locations correspond to the following: 0 = left, 1 = right, 2 = front, 3
= back, 4 = bottom, 5 = top. 4 and 5 are only applicable to 3D simulations (0 <=
loc < 2*ndim).

Parameters

140 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

• coords (tuple or list) – Location of block to be modifies (tu-
ple or list of 3 integers)

• bounds (str or list) – New boundary condition type (string or
list of strings)

• loc (int or None) – If provided, only change one type of bound-
ary condition rather than all (optional, loc serves as an index into the
list if used)

Returns None

set_cdiss(cdiss)
Sets artificial dissipation coefficient

New artificial dissipation coefficient must be nonnegative. If it is set to zero, the code
will not use artificial dissipation in the simulation.

There is not a hard and fast rule for setting the coefficient, so some degree of trial and
error may be necessary. Values around 0.1 have worked well in the past, but that may
not be true for all meshes.

Parameters cdiss (float) – New artificial dissipation coefficient

Returns None

set_domain_xm(xm)
Sets lower left corner of domain to spatial coordinate xm

Moves the lower left corner of the simulation. This does not affect block lengths, only
the minimum spatial location of the entire comain in each cartesian direction. Individ-
ual block locations are calculated automatically from this and the length information
for each block. Thus, you cannot set the location of each block directly, just the overall
value of the domain and then all other blocks are positioned based on the length of
other blocks.

If the simulation is 2D and a nonzero value for the z-coordinate is provided, the z
position of all blocks will be automatically set to zero.

Note that the location of any block can be overridden by setting the edges to be surfaces.
The corners must still match one another (this is checked when writing the simulation
data to file), and neighboring blocks must have conforming grids at the edges.

Parameters xm (tuple or list) – New lower left coordinate of simula-
tion domain (tuple of 2 or 3 floats)

Returns None

set_het_material(mat)
Sets heterogeneous material properties for simulation

3.2. Input Using the Python Module 141

fdfault Documentation, Release 1.0

New heterogeneous material properties must be a numpy array with shape
(3,nx,ny,nz). First index indicates parameter value (0 = density, 1 = Lame pa-
rameter, 2 = Shear modulus). The other three indicate grid coordinates

An array with the wrong shape will result in an error.

Parameters mat (ndarray) – New material properties array (numpy array
with shape (3,nx,ny,nz))

Returns None

set_het_stress(s)
Sets heterogeneous stress initial values

Sets initial heterogeneous stress. New stress must be a numpy array with shape
(ns,nx,ny,nz). First index indicates stress component. The following three in-
dices indicate grid coordinates.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Providing arrays of the incorrect size will result in an error.

Parameters s (ndarray) – New heterogeneous stress array (numpy array
with shape (3,nx,ny,nz)

Returns None

set_iftype(index, iftype)
Sets type of interface with a given index

Changes type of a particular interface. index is the index of the interface to be modi-
fied and iftype is a string denoting the interface type. Valid values for iftype are
'locked', 'frictionless', 'slipweak', and 'stz'. Any other values will
result in an error, as will an interface index that is out of bounds.

Parameters

• index (int) – Index (nonnegative integer) of interface to be modified

• iftype (str) – New interface type (see valid values above)

Returns None

set_loadfile(niface, newloadfile)
Sets loadfile for interface with index niface

niface indicates the index of the interface that will be modified, and must be a fric-
tional interface. newloadfile is the new loadfile (must have type loadfile). If

142 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

the index is bad or the loadfile type is not correct, the code will raise an error. Errors
can also result if the shape of the loadfile does not match with the interface.

Parameters

• niface – index of desired interface (zero-indexed)

• newloadfile (loadfile) – New loadfile to be used for the given
interface

Returns None

set_material(newmaterial, coords=None)
Sets block material properties for the block with indices given by coords

If coords is not provided, all blocks are changed to have the given material properties.
newmaterial must have a type material and coords must be a tuple or list of
three integers that match the coordinates of a block.

If set_material changes all blocks in the simulation, it also changes the ma-
terial type for the whole simulation (equivalent to calling set_mattype). If
set_material acts only on a single block, the new material type of that block must
match the one set in the fields type (i.e. the return value of get_mattype).

Parameters

• newmaterial (material) – New material properties

• coords (tuple or list) – Coordinates of block to be changed
(optional, omitting changes all blocks). coords must be a tuple or list
of three integers that match the coordinates of a block.

Returns None

set_mattype(mattype)
Sets field and block material type (‘elastic’ or ‘plastic’)

Sets the material type for the simulation. Options are ‘elastic’ for an elastic simulation
and ‘plastic’ for a plastic simulation. Anything else besides these options will cause
the code to raise an error.

Once the simulation type is altered, all blocks material types are changed as well. This
is necessary to ensure that the right set of parameters are written to file. Note that all
blocks must therefore have the same material type, though you can ensure that a given
block always behaves elastically by setting an appropriate value for the yield criterion.

Parameters mattype (str) – New material type (‘elastic’ or ‘plastic’)

Returns None

set_mode(mode)
Sets rupture mode

3.2. Input Using the Python Module 143

fdfault Documentation, Release 1.0

Rupture mode is only valid for 2D problems, and is either 2 or 3 (other values will
cause an error, and non-integer values will be converted to integers). For 3D problems,
entering a different value of the rupture mode will alter the rupture mode cosmetically
but will have no effect on the simulation.

Parameters mode (int) – New value of rupture mode

Returns None

set_nblocks(nblocks)
Sets number of blocks

set_nblocks alters the number of blocks in the simulation. The method adds or
deletes blocks from the list of blocks as needed. Depending on how the number of
blocks is changed, new blocks may only have a single grid point, or if added in a
direction where the number of blocks is already established the number of grid points
may be copied from the existing simulation. If in doubt, use get_nx_block to check
the number of grid points and use set_nx_block to modify if necessary.

Parameters nblocks (tuple) – New number of blocks (tuple of 3 positive
integers)

Returns None

set_ndim(ndim)
Sets number of dimensions

The new number of spatial dimensions must be an integer, either 2 or 3. If a different
value is given, the code will raise an error. If a non-integer value is given that is
acceptable, the code will convert it to an integer.

Note: Converting a 3D problem into a 2D problem will automatically collapse the
number of grid points and the number of blocks in the z direction to be 1. Any
modifications to these quantities that were done previously will be lost.

Parameters ndim (int) – New value for ndim (must be 2 or 3)

Returns None

set_nproc(nproc)
Sets number of processes in domain decomposition manually

New number of processes nproc must be a tuple/list of nonnegative integers. If the
problem is 2D, the number of processes in the z direction will automatically be set to
1. Any number can be set to zero, in which case MPI will set the number of processes
in that direction automatically. If all three numbers are nonzero, then it is up to the user
to ensure that the total number of processors ($nx imes ny imes nz$) is the same as the
total number when running the executable.

Parameters nproc (tuple) – New number of processes (must be a tuple
of positive integers)

144 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns None

set_nx_block(nx_block)
Set number of grid points in each block as a list of lists.

Input must be a list or tuple of length 3, with each item a list of integers representing the
number of grid points for each block along the respective dimension. If the list lengths
do not match the number of blocks, the code will raise an error. The blocks must form
a regular cartesian grid with conforming edges, so all blocks along a single spatial
dimension must have the same number of grid points along that spatial dimension.

For example, if nblocks = (3,2,1), then nblock[0] has length 3, nblock[1] has length 2,
and nblock[2] has length 1. All blocks that are at position 0 in the x-direction will have
nblock[0][0] grid points in the x-direction, all blocks at position 1 in the x-direction
will have nblock[0][1] grid points in the x-direction, etc.

Parameters nx_block (list) – New number of grid points (list of 3 lists
of positive integers)

Returns None

set_paramfile(niface, newparamfile)
Sets paramfile for given interface

Method sets the file holding frictional parameters for an interface. Interface to be mod-
ified is set by niface, which must be a valid index for an interface.

newparamfilemust be a parameter perturbation file of the correct type for the given
interface type (i.e. if the interface is of type slipweak, then newpert must have
type swparamfile). Errors can also result if the shape of the paramfile does not
match with the interface.

Parameters

• niface (int) – index of desired interface (zero-indexed)

• newparamfile (paramfile (actual type must be
the appropriate subclass for the friction law
of the particular interface and have the right
shape)) – New frictional parameter file (type depends on interface in
question)

Returns None

set_sbporder(sbporder)
Sets finite difference order

Finite difference method order must be an integer 2-4. A value outside of this range will
result in an error. If a non-integer value is given that is acceptable, it will be converted
to an integer and there will be no error message.

3.2. Input Using the Python Module 145

fdfault Documentation, Release 1.0

Parameters sbporder (int) – New value of finite difference method order
(integer 2-4)

Returns None

set_state(niface, state)
Sets initial state variable for interface

Set the initial value for the state variable for a given interface. niface is the index
of the interface to be set (must be a valid integer index). The interface must have a
state variable associated with it, or an error will occur. state is the new state variable
(must be a float or some other valid number).

Parameters

• niface (int) – Index of interface to modify. Must be an interface
with a state variable

• state (float) – New value of state variable

Returns None

set_statefile(niface, newstatefile)
Sets state file for interface

Set the statefile for the indicated interface. niface must be a valid index to an in-
terface, out of bounds values will lead to an error. newstatefile``must have
type ``statefile and the interface must support a state variable. Errors can also
result if the shape of the statefile does not match with the interface.

Parameters

• niface (int) – Index of interface to be modified

• newstatefile (statefile) – New statefile for the interface in
question.

Returns None

set_stress(s)
Sets uniform intial stress

Changes initial uniform stress tensor. New stress tensor must be a list of six floats.

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Params s New stress tensor (list of 6 floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

146 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns None

write_input(f, probname, directory, endian=’=’)
Writes domain information to input file

Method writes the current state of a domain to an input file, also writing any binary
data to file (i.e. block boundary curves, heterogeneous stress tensors, heterogeneous
material properties, heterogeneous interface tractions, heterogeneous state variables, or
heterogeneous friction parameters).

Arguments include the input file f (file handle), problem name probname
(string), output directory directory,and endianness of binary files
``endian. endian has a default value of = (native), other options inlcude < (little)
and > (big).

When write_input is called, the code calls check, which verifies the validity of
the simulation and alerts the user to any problems. check examines if block surface
edges match, if neighboring blocks have matching grids, and other things that cannot
be checked when modifying the simulation. The same checks are run in the C++ code
when initializing a problem, so a problem that runs into trouble when calling check
is likely to have similar difficulties when running the simulation.

Parameters

• f (file) – file handle for text input file

• probname (str) – problem name (used for any binary files)

• directory (str) – Location where input file should be written

• endian – Byte-ordering for files. Should match byte ordering of the
system where the simulation will be run (it helps to run the Python
script directly with native byte ordering enabled). Default is native (=),
other options include < for little endian and > for big endian.

Returns None

The fields Class

The fields class holds information regarding initial conditions and material properties. This
includes the initial stresses (which can be spatially uniform or spatially heterogeneous) as well as
heterogeneous elastic properties of the medium. While this information more accurately exists at
the block level, because of how the C++ code is parallelized there are some performance benefits
to placing all grid data in a single array to facilitate data sharing between processors.

The user does not typically interact with fields objects, as one is created automatically when
initializing a domain. The problem class contains wrapper functions that perform any relevant
modifications of the fields for a given simulation. Documentation is provided here for complete-
ness.

3.2. Input Using the Python Module 147

fdfault Documentation, Release 1.0

class fdfault.fields(ndim, mode)
Class representing fields in a dynamic rupture problem

When initializing a fields object, one is created holding default attributes, including

Variables

• ndim (int) – Number of spatial dimensions (2 or 3; default is 2)

• mode (int) – Rupture mode (2 or 3, default is 2; only relevant for 2D
problems)

• material (str) – Simulation material type ('elastic' or
'plastic', default is 'elastic')

• s0 (list) – Initial stress tensor (list of floats, ordering is
[sxx,sxy,sxz,syy,syz,szz], default is zero for all compo-
nents). All components must be specified for any problem type, how-
ever, the code will only refer to the relevant values. Note that for mode
3 problems, the in-plane normal stresses sxx and syy will be used to
determine the normal stress on any faults in the simulation, even though
the normal stresses do not change during the simulation.

__init__(ndim, mode)
Initializes an instance of the fields class

Creates a new instance of the fields class. Attributes required to create a new in-
stance is the number of dimensions and rupture mode. By default, the new fields
instance is an elastic simulation with a stress tensor initialized to zero. The simulation
also does not have a heterogeneous stress or heterogeneous material properties.

Parameters

• ndim (int) – Number of dimensions in the simulation (must be 2 or
3)

• mode (int) – Rupture mode (2 or 3, only relevant for 2D problems)

Returns New instance of the fields class

Return type fields

get_het_material()
Returns heterogeneous material properties for simulation

Returns a numpy array with shape (3,nx,ny,nz). First index indicates parameter
value (0 = density, 1 = Lame parameter, 2 = Shear modulus). The other three indicate
grid coordinates. If no heterogeneous material parameters are specified, returns None

Returns ndarray

get_het_stress()
Returns heterogeneous stress initial values.

148 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Returns a numpy array with shape (ns,nx,ny,nz). First index indicates stress
component. The following three indices indicate grid coordinates.If no array is cur-
rently specified, returns None.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Returns ndarray

get_material()
Returns material type (‘elastic’ or ‘plasitc’)

Returns Material type

Return type str

get_stress()
Returns uniform intial stress values

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Returns Initial stress tensor (list of floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

Return type list

set_het_material(mat)
Sets heterogeneous material properties for simulation

New heterogeneous material properties must be a numpy array with shape
(3,nx,ny,nz). First index indicates parameter value (0 = density, 1 = Lame pa-
rameter, 2 = Shear modulus). The other three indicate grid coordinates

An array with the wrong shape will result in an error.

Parameters mat (ndarray) – New material properties array (numpy array
with shape (3,nx,ny,nz))

Returns None

set_het_stress(s)
Sets heterogeneous stress initial values

3.2. Input Using the Python Module 149

fdfault Documentation, Release 1.0

Sets initial heterogeneous stress. New stress must be a numpy array with shape
(ns,nx,ny,nz). First index indicates stress component. The following three in-
dices indicate grid coordinates.

For 2D mode 3 problems, indices for ns are (0 = sxz, 1 = syz)

For elastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy). For
plastic 2D mode 2 problems, indices for ns are (0 = sxx, 1 = sxy, 2 = syy, 3 = szz).

For 3D problems, indices for ns are (0 = sxx, 1 = sxy, 2 = sxz, 3 = syy, 4 = syz, 5 =
szz)

Providing arrays of the incorrect size will result in an error.

Parameters s (ndarray) – New heterogeneous stress array (numpy array
with shape (3,nx,ny,nz)

Returns None

set_material(material)
Sets field and block material type (‘elastic’ or ‘plastic’)

Sets the material type for the simulation. Options are ‘elastic’ for an elastic simulation
and ‘plastic’ for a plastic simulation. Anything else besides these options will cause
the code to raise an error.

Parameters mattype (str) – New material type (‘elastic’ or ‘plastic’)

Returns None

set_stress(s)
Sets uniform intial stress

Changes initial uniform stress tensor. New stress tensor must be a list of six floats.

Note that 2D simulations do not use all stress components. Mode 2 elastic simula-
tions only use sxx, sxy, and syy, and mode 3 elastic simulations use sxz, and syz
(though the normal stresses sxx and syy can be set to constant values that are ap-
plied to any frictional failure criteria). Mode 2 plastic simulations use szz, and mode
3 plastic simulations use all three normal stress components in evaluating the yield
criterion.

Params s New stress tensor (list of 6 floats). Format is
[sxx,sxy,sxz,syy,syz,szz]

Returns None

write_input(f, probname, directory, endian=’=’)
Writes field information to input file

Method writes the current state of a domain to an input file, also writing any binary
data to file (i.e. block boundary curves, heterogeneous stress tensors, heterogeneous

150 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

material properties, heterogeneous interface tractions, heterogeneous state variables, or
heterogeneous friction parameters).

Arguments include the input file f (file handle), problem name probname
(string), output directory directory,and endianness of binary files
``endian. endian has a default value of = (native), other options inlcude < (little)
and > (big).

Parameters

• f (file) – file handle for text input file

• probname (str) – problem name (used for any binary files)

• directory (str) – Location where input file should be written

• endian – Byte-ordering for files. Should match byte ordering of the
system where the simulation will be run (it helps to run the Python
script directly with native byte ordering enabled). Default is native (=),
other options include < for little endian and > for big endian.

Returns None

The front Class

The front class holds information about rupture time output. Rupture times are found by record-
ing the earliest time at which a given field (slip or slip rate) exceeds a threshold value.

An instance of front is automatically generated for all problems, so the user should not use this
directly, but rather modify the front for the problem using the provided interfaces in the problem
class.

class fdfault.front
Class holding information regarding rupture front output.

Relevant internal variables include:

Variables

• out – Boolean indicating if front output is on/off (Default False)

• field – Field to use for determining rupture time (rupture time is ear-
liest time this field exceeds the threshold). Default is 'V' (scalar slip
velocity), can also be 'U' (slip).

• value – Threshold value (default is 0.001)

__init__()
Initializes rupture front

Create a new instance of the front class with default properties (output is False,
output field is 'V', and output threshold value is 0.001).

3.2. Input Using the Python Module 151

fdfault Documentation, Release 1.0

Returns New rupture front class:

Return type front

get_field()
Returns front field

Returns Rupture front field (string, “U” denotes slip and “V” denotes slip
velocity)

Return type str

get_output()
Returns status of front output (boolean)

Returns Status of front output

Return type bool

get_value()
Returns front threshold value. Front output is the earliest time at which the given field
exceeds this value

Returns Threshold value for rupture front output

Return type float

set_field(field)
Sets rupture front field

Sets new value of rupture front field field. field must be a string (slip ('U') or
slip velocity ('V')). Other choices will raise an error.

Parameters field (str) – New rupture front field

Returns None

set_output(newoutput)
Sets front output to be on or off

Sets rupture front output to be the specified value (boolean). Will raise an error if the
provided value cannot be converted into a boolean.

Parameters newoutput (bool) – New value of output

Returns None

set_value(value)
Sets front threshold value

Changes value of rupture front threshold. The rupture time is the earliest time at which
the chosen field exceeds this value. value is the new value (must be a positive num-
ber).

152 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Parameters value (float) – New values of the threshold for rupture front
times.

Returns None

write_input(f)
Writes front information to input file

Method writes the current state of a front to an input file.

Input argument the input file f (file handle).

Parameters f (file) – file handle for text input file

Returns None

The interface Class

The interface class and its derived classes describe interfaces that link neighboring blocks
together. The code includes several types of interfaces: the standard interface class is for a
locked interface where no relative slip is allowed between the neighboring blocks. Other interface
types allow for frictional slip following several possible constitutive friction laws. The other types
are derived from the main interface class and thus inherit much of their functionality.

The interface class will not usually be invoked directly. This is because interfaces are created
automatically based on the number of blocks in the simulation. When the user changes the number
of blocks in the simulation, locked interfaces are automatically created between all neighboring
blocks. To modify the type of interface, it is preferred to use the set_iftype method of a
problem to ensure that only the correct interfaces remain in the simulation.

Other interface types include: friction, which describes frictionless interfaces; paramfric,
which is a generic class for interfaces with parameters describing their behavior; statefric,
which is a generic class for friction laws with a state variable; slipweak, which describes slip
weakening and kinematically forced rupture interfaces; and stz, which describes friction laws
governed by Shear Transformation Zone Theory. As with basic interfaces, none of these will be
invoked directly, and paramfric and statefric only create template methods for the generic
behavior of the corresponding type of interfaces and thus are not used in setting up a problem.

class fdfault.interface(ndim, index, direction, bm, bp)
Class representing a locked interface between blocks

This is the parent class of all other interfaces. The interface class describes locked
interfaces, while other interfaces require additional information to describe how relative slip
can occur between the blocks.

Interfaces have the following attributes:

Variables

• ndim – Number of dimensions in problem (2 or 3)

3.2. Input Using the Python Module 153

fdfault Documentation, Release 1.0

• iftype – Type of interface (‘locked’ for all standard interfaces)

• index – index of interface (used for identification purposes only, order
is irrelevant in simulation)

• bm – Indices of block in the “minus” direction (tuple of 3 integers)

• bp – Indices of block in the “plus” direction (tuple of 3 integers)

• direction – Normal direction in computational space (“x”, “y”, or
“z”)

__init__(ndim, index, direction, bm, bp)
Initializes an instance of the interface class

Create a new interface given an index, direction, and block coordinates.

Parameters

• ndim (int) – Number of spatial dimensions (must be 2 or 3)

• index (int) – Interface index, used for bookkeeping purposes, must
be nonnegative

• direction (str) – String indicating normal direction of interface
in computational space, must be 'x', 'y', or 'z', with 'z' only
allowed for 3D problems)

• bm (tuple) – Coordinates of block in minus direction (tuple of length
3 of integers)

• bp (tuple) – Coordinates of block in plus direction (tuple of length 3
or integers, must differ from bm by 1 only along the given direction to
ensure blocks are neighboring one another)

Returns New instance of interface class

Return type interface

add_load(newload)
Adds a load to list of load perturbations

Method adds the load provided to the list of load perturbations. If the newload pa-
rameter is not a load perturbation, this will result in an error.

Parameters newload (load) – New load to be added to the interface (must
have type load)

Returns None

add_pert(newpert)
Add new friction parameter perturbation to an interface

154 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

Method adds a frictional parameter perturbation to an interface. newpert must be
a parameter perturbation of the correct kind for the given interface type (i.e. if the
interface is of type slipweak, then newpert must have type swparam).

Parameters newpert (pert (more precisely, one of
the derived classes of friction parameter
perturbations)) – New perturbation to be added. Must have
a type that matches the interface(s) in question.

Returns None

delete_load(index=-1)
Deletes load at position index from the list of loads

Method deletes the load from the list of loads at position index. Default is most
recently added load if an index is not provided. index must be a valid index into the
list of loads.

Parameters index (int) – Position within load list to remove (optional,
default is -1)

Returns None

delete_loadfile()
Deletes the loadfile for the interface.

Returns None

delete_paramfile()
Deletes friction parameter file for the interface

Removes the friction parameter file for the interface. The interface must be a frictional
interface that can accept parameter files.

Returns None

delete_pert(index=-1)
Deletes frictional parameter perturbation from interface

index is an integer that indicates the position within the list of perturbations. Default
is most recently added (-1).

Parameters index (int) – Index within perturbation list of the given inter-
face to remove. Default is last item (-1, or most recently added)

Returns None

get_bm()
Returns block on negative side

Returns tuple of block indices on negative size

Returns Block indices on negative side (tuple of integers)

3.2. Input Using the Python Module 155

fdfault Documentation, Release 1.0

Return type tuple

get_bp()
Returns block on positive side

Returns tuple of block indices on positive size

Returns Block indices on positive side (tuple of integers)

Return type tuple

get_direction()
Returns interface orientation

Returns orientation (string indicating normal direction in computational space).

Returns Interface orientation in computational space (‘x’, ‘y’, or ‘z’)

Return type str

get_index()
Returns index

Returns the numerical index corresponding to the interface in question. Note that this
is just for bookkeeping purposes, the interfaces may be arranged in any order as long as
no index is repeated. The code will automatically handle the indices, so this is typically
not modified in any way.

Returns Interface index

Return type int

get_load(index=None)
Returns load at position index

Returns a load from the list of load perturbations at position index. If no index is
provided (or None is given), the method returns entire list. index must be a valid list
index given the number of loads.

Parameters index (int or None) – Index within load list (optional, de-
fault is None to return full list)

Returns load or list

get_loadfile()
Returns loadfile for interface

Loadfile sets any surface tractions set for the interface. Note that these tractions are
added to any any set by the constant initial stress tensor, initial heterogeneous stress, or
interface traction perturbations

Returns Current loadfile for the interface (if the interface does not have a
loadfile, returns None)

Return type loadfile or None

156 Chapter 3. Specifying Simulation Parameters

fdfault Documentation, Release 1.0

get_nloads()
Returns number of load perturbations on the interface

Method returns the number of load perturbations presently in the list of loads.

Returns Number of load perturbations

Return type int

get_nperts()
Returns number of friction parameter perturbations on interface

Method returns the number of parameter perturbations for the list

Returns Number of parameter perturbations

Return type int

get_paramfile()
Returns paramfile (holds arrays of heterogeneous friction parameters) for interface.
Can return a subtype of paramfile corresponding to any of the specific friction law
types.

Returns paramfile

get_pert(index=None)
Returns perturbation at position index

Method returns a perturbation from the interface. index is the index into the pertur-
bation list for the particular index. If index is not provided or is None, the method
returns the entire list.

Parameters index (int or None) – Index into the perturbation list for
the index in question (optional, if not provided or None, then returns
entire list)

Returns pert or list

get_type()
Returns string of interface type

Returns the type of the given interface (“locked”, “frictionless”, “slipweak”, or “stz”)

Returns Interface type

Return type str

set_index(index)
Sets interface index

Changes value of interface index. New index must be a nonnegative integer

Parameters index (int) – New value of index (nonnegative integer)

Returns None

3.2. Input Using the Python Module 157

fdfault Documentation, Release 1.0

set_loadfile(newloadfile)
Sets loadfile for interface

newloadfile is the new loadfile (must have type loadfile). If the index is bad
or the loadfile type is not correct, the code will raise an error. Errors can also result if
the shape of the loadfile does not match with the interface.

Parameters newloadfile (loadfile) – New loadfile to be used for the
given interface

Returns None

set_paramfile(newparamfile)
Sets paramfile for the interface

Method sets the file holding frictional parameters for the interface.

newparamfilemust be a parameter perturbation file of the correct type for the given
interface type (i.e. if the interface is of type slipweak, then newpert must have
type swparamfile). Errors can also result if the shape of the paramfile does not
match with the interface.

Parameters newparamfile (paramfile (actual type must
be the appropriate subclass for the friction law
of the particular interface and have the right
shape)) – New frictional parameter file (type depends on interface in
question)

Returns None

write_input(f, probname, directory, endian=’=’)
Writes interface details to input file

This routine is called for every interface when writing problem data to file. It writes
the appropriate section for the interface in the input file. It also writes any necessary
binary files holding interface loads, parameters, or state variables.

Parameters

• f (file) – File handle for input file

• probname (str) – problem name (used for naming binary files)

• directory (str) – Directory for output

• endian (str) – Byte ordering for binary files ('<' little endian, '>'
big endian, '=' native, default is native)

Returns None

158 Chapter 3. Specifying Simulation Parameters

CHAPTER

FOUR

INCLUDED EXAMPLE PROBLEMS

2D problems:

4.1 Example Problem in 2D

To illustrate how to parameters in a text file, here is an example problem test2d.in (included
in the problems directory). This example illustrates a simple 2D rupture problem based on the
SCEC Rupture Code Verification Group TPV3 (this is a horizontal slice of the 3D simulation at
hypocentral depth). The initial stress and friction parameters are homogeneous, with the excep-
tion of a nucleation patch at the center of the fault and strong frictional barriers at the external
boundaries of the fault. The simulation saves several fields, both on-fault and off-fault.

[fdfault.problem]
test2d
data/
1000
0
0
0.3
50
4

[fdfault.domain]
2
2
801 802 1
1 2 1
801
401 401
1
1
slipweak
4

159

fdfault Documentation, Release 1.0

elastic

[fdfault.fields]
0. 0. 0. 0. 0. 0.
none
none

[fdfault.block000]
2.67 32.04 32.04
0. 0.
40. 20.
absorbing
absorbing
absorbing
none
none
none
none
none

[fdfault.block010]
2.67 32.04 32.04
0. 20.
40. 20.
absorbing
absorbing
none
absorbing
none
none
none
none

[fdfault.operator]
0.

[fdfault.interface0]
y
0 0 0
0 1 0

[fdfault.friction]
2
constant 0. 0. 0. 0. 0. -120. 70. 0.
boxcar 0. 20. 1.5 0. 0. 0. 11.6 0.
none

160 Chapter 4. Included Example Problems

fdfault Documentation, Release 1.0

[fdfault.slipweak]
3
constant 0. 0. 0. 0. 0. 0.4 0.677 0.525 0. 0. 0.
boxcar 0. 2.5 2.5 0. 0. 0. 0. 0. 0. 0. 0.
boxcar 0. 37.5 2.5 0. 0. 0. 0. 0. 0. 0. 0.
none

[fdfault.outputlist]
V
V
0 1000 100
0 800 1
401 401 1
0 0 1
S
S
0 1000 100
0 800 1
401 401 1
0 0 1
U
U
0 1000 100
0 800 1
401 401 1
0 0 1

[fdfault.frontlist]
0

This model is fairly simple, so use of a text input file rather than a python script is a reasonable
choice. The following highlights

4.2 Example 2D Problem in Python

import fdfault
import numpy as np

create problem

p = fdfault.problem('testprob')

set rk and fd order

4.2. Example 2D Problem in Python 161

fdfault Documentation, Release 1.0

p.set_rkorder(4)
p.set_sbporder(4)

set time step info

p.set_nt(1601)
p.set_cfl(0.3)
p.set_ninfo(50)

set number of blocks and coordinate information

p.set_nblocks((2,1,1))
p.set_nx_block(([601, 601], [1601], [1]))

set block dimensions

p.set_block_lx((0,0,0),(12.,32.))
p.set_block_lx((1,0,0),(12.,32.))

set block boundary conditions

p.set_bounds((0,0,0),['absorbing', 'none', 'absorbing', 'absorbing'])
p.set_bounds((1,0,0),['none', 'absorbing', 'absorbing', 'absorbing'])

set block surface

y = np.linspace(0., 32., 1601)
x = 12.*np.ones(1601)+0.5*np.sin(np.pi*y/32.)

surf = fdfault.curve(1601, 'x', x, y)

p.set_block_surf((0,0,0), 1, surf)
p.set_block_surf((1,0,0), 0, surf)

set initial fields

p.set_stress((-120., 70., 0., -100., 0., 0.))

set interface type

p.set_iftype(0,'slipweak')

set slip weakening parameters

p.add_pert(fdfault.swparam('constant', dc = 0.4, mus = 0.676, mud = 0.
→˓525),0)

162 Chapter 4. Included Example Problems

fdfault Documentation, Release 1.0

p.add_pert(fdfault.swparam('boxcar', x0 = 2., dx = 2., mus = 10000.),0)
p.add_pert(fdfault.swparam('boxcar', x0 = 30., dx = 2., mus = 10000.),

→˓0)

add load perturbations

p.add_load(fdfault.load('boxcar',0., 16., 1.5, 0., 0., 0., 11.6, 0.))

add output unit

p.add_output(fdfault.output('vxbody','vx',0, 1600, 50, 0, 1200, 2, 0,
→˓1600, 2, 0, 0, 1))

p.add_output(fdfault.output('vybody','vy',0, 1600, 50, 0, 1200, 2, 0,
→˓1600, 2, 0, 0, 1))

p.add_output(fdfault.output('vfault','V',0, 1600, 10, 601, 601, 1, 0,
→˓1600, 2, 0, 0, 1))

p.write_input()

3D Problems:

4.3 The Problem, Version 4

[fdfault.problem]
tpv4
data/
701
0.0
0.0
0.3
100
4

[fdfault.domain]
3
2
201 202 101
1 2 1
201
101 101
101
1
slipweak
4
elastic

4.3. The Problem, Version 4 163

fdfault Documentation, Release 1.0

[fdfault.fields]
0.0 0.0 0.0 0.0 0.0 0.0
none

[fdfault.block000]
2.67 32.04 32.04
0.0 0.0 0.0
40.0 20.0 20.0
absorbing
absorbing
absorbing
none
absorbing
free
none
none
none
none
none
none

[fdfault.block010]
2.67 32.04 32.04
0.0 20.0 0.0
40.0 20.0 20.0
absorbing
absorbing
none
absorbing
absorbing
free
none
none
none
none
none
none

[fdfault.interface0]
y
0 0 0
0 1 0

[fdfault.friction]
2
constant 0.0 0.0 0.0 0.0 0.0 -120.0 70.0 0.0

164 Chapter 4. Included Example Problems

fdfault Documentation, Release 1.0

boxcar 0.0 20.0 1.5 12.5 1.5 0.0 11.6 0.0
none

[fdfault.slipweak]
4
constant 0.0 0.0 0.0 0.0 0.0 0.4 0.677 0.525 0.0 0.0 0.0
boxcar 0.0 20.0 20.0 2.5 2.5 0.0 10000.0 0.0 0.0 0.0 0.0
boxcar 0.0 2.5 2.5 12.5 7.5 0.0 10000.0 0.0 0.0 0.0 0.0
boxcar 0.0 37.5 2.5 12.5 7.5 0.0 10000.0 0.0 0.0 0.0 0.0
none

[fdfault.outputlist]
vf
V
0 700 10
0 200 1
101 101 1
0 100 1

[fdfault.frontlist]
1
V
0.001

4.4 The Problem, Version 5

import fdfault
import numpy as np

create problem

p = fdfault.problem('tpv5')

set rk and fd order

p.set_rkorder(4)
p.set_sbporder(4)

set time step info

refine = 1
nt = 700*refine

4.4. The Problem, Version 5 165

fdfault Documentation, Release 1.0

p.set_nt(nt)
p.set_cfl(0.3)
p.set_ninfo(50*refine)

p.set_ndim(3)

set number of blocks and coordinate information

nx = 200*refine+1
ny = 100*refine+1
nz = 100*refine+1

p.set_nblocks((1,2,1))
p.set_nx_block(([nx], [ny, ny], [nz]))

set block dimensions

p.set_block_lx((0,0,0),(40.,20., 20.))
p.set_block_lx((0,1,0),(40.,20., 20.))

p.set_domain_xm((-20., -20., -20.))

set block boundary conditions

p.set_bounds((0,0,0),['absorbing', 'absorbing', 'absorbing', 'none',
→˓'absorbing', 'free'])

p.set_bounds((0,1,0),['absorbing', 'absorbing', 'none', 'absorbing',
→˓'absorbing', 'free'])

turn on artificial dissipation

#p.set_cdiss(0.1)

set material

cs = 3.464
cp = 6.
rho = 2.67

p.set_material(fdfault.material('elastic', rho, rho*(cp**2-2.*cs**2),
→˓rho*cs**2))

set interface type

p.set_iftype(0,'slipweak')

166 Chapter 4. Included Example Problems

fdfault Documentation, Release 1.0

set slip weakening parameters

p.add_pert(fdfault.swparam('constant',0., 0., 0., 0., 0., 0.4, 0.677,
→˓0.525))

p.add_pert(fdfault.swparam('boxcar',0., 0., 20., -17.55, 2.5, 0.,
→˓10000., 0., 10.))

p.add_pert(fdfault.swparam('boxcar',0., -17.55, 2.5, -7.5, 7.5, 0.,
→˓10000., 0., 10.))

p.add_pert(fdfault.swparam('boxcar',0., 17.55, 2.5, -7.5, 7.5, 0.,
→˓10000., 0., 10.))

add load perturbations

p.add_load(fdfault.load('constant',0., 0., 0., 0., 0., -120., 70., 0.))
p.add_load(fdfault.load('boxcar',0., 0., 1.5, -7.5, 1.5, 0., 11.6, 0.))
p.add_load(fdfault.load('boxcar',0., -7.5, 1.5, -7.5, 1.5, 0., 8., 0.))
p.add_load(fdfault.load('boxcar',0., 7.5, 1.5, -7.5, 1.5, 0., -8., 0.))

add output unit

#p.add_output(fdfault.output('vf','V',0, nt, 5*refine, 0, nx-1, refine,
→˓ ny, ny, 1, 0, nz-1, refine))

on fault stations

onfault = [('-120', '000'), ('-075', '000'), ('-045', '000'), ('000',
→˓'000'), ('045', '000'), ('075', '000'), ('120', '000'),

('000', '030'), ('-120', '075'), ('-075', '075'), ('-045',
→˓'075'), ('000', '075'), ('045', '075'), ('075', '075'), ('120', '075
→˓'),

('000', '120')]
fields = ['h-slip', 'h-slip-rate', 'h-shear-stress', 'v-slip', 'v-slip-

→˓rate', 'v-shear-stress']
fname = ['Ux', 'Vx', 'Sx', 'Uz', 'Vz', 'Sz']
for station in onfault:

xcoord = float(station[0])/10.
zcoord = -float(station[1])/10.
xpt, ypt, zpt = p.find_nearest_point((xcoord, 0., zcoord), known='y

→˓', knownloc=ny)
for fld, fn in zip(fields, fname):

p.add_output(fdfault.output('faultst'+station[0]+'dp
→˓'+station[1]+'-'+fld, fn, 0, nt, 1, xpt, xpt, 1,

ypt, ypt, 1, zpt, zpt, 1))

off fault stations

4.4. The Problem, Version 5 167

fdfault Documentation, Release 1.0

offfault = [('-120', '030', '000'), ('120', '030', '000'), ('-120',
→˓'030', '075'), ('120', '030', '075')]

fields = ['h-vel', 'v-vel', 'n-vel']
fname = ['vx', 'vz', 'vy']

for station in offfault:
xcoord = float(station[0])/10.
ycoord = float(station[1])/10.
zcoord = -float(station[2])/10.
xpt, ypt, zpt = p.find_nearest_point((xcoord, ycoord, zcoord))
for fld, fn in zip(fields, fname):

p.add_output(fdfault.output('body'+station[1]+'st'+station[0]+
→˓'dp'+station[2]+'-'+fld, fn, 0, nt, 1, xpt, xpt, 1,

ypt, ypt, 1, zpt, zpt, 1))

p.set_front_output(True)

p.write_input()

168 Chapter 4. Included Example Problems

CHAPTER

FIVE

ANALYZING SIMULATION RESULTS

5.1 Analysis With Python

fdfault.analysis is a python module for analyzing dynamic rupture problems for use with
the C++ code.

It contains classes corresponding to the two types of outputs from the code

The module contains the following classes:

• fdfault.analysis.output – output unit for grid or fault data

• fdfault.analysis.front – rupture front output for fault surfaces

The output units can hold a variety of different fields. See the documentation for the output units
for more details.

The rupture front holds rupture time values for all points on the fault. This can be used to examine
rupture speeds and determine the areas of the fault that slip.

Details on the data structures in each class can be found in the documentation.

The module also contains several functions for converting binary output files to text files for the
SCEC Rupture Code Verification Group. It contains functions for on- and off-fault stations, and
2D and 3D problems, as well as rupture front times. See the details of each individual function.
These are not imported by default when loading the analysis submodule

class fdfault.analysis.output(problem, name, datadir=None)
Class representing an output object

Output objects contain the following attributes:

Variables

• problem – Name of problem

• name – Name of output unit

• datadir – Directory where simulation data is held, if None (default)
this is the current directory

169

fdfault Documentation, Release 1.0

• field – Field that was saved to file

• nt – Number of time steps

• nx – Number of x grid points

• ny – Number of y grid points

• nz – Number of z grid points

• endian – Byte-ordering of simulation data ('=' for native, '>' for
big endian, '<' for little endian)

• fielddata – Numpy array holding simulation data (also aliased using
the field name itself)

load()
Load data from data file for output item

Method loads the data from file into the fielddata attribute, a Numpy array, and
also creates an alias with the field attribute itself. If you have an existing instance of
an output class whose simulation data has changed, load can be run more than once
and will refresh the contents of the simulation output.

Method takes no inputs and has no outputs. Class is modified by running this method
as the simulation data will be reloaded from file if it already exists.

Returns None

class fdfault.analysis.front(problem, iface, datadir=None)
Class for rupture front objects

Object describing a rupture front, with the following attributes:

Variables

• problem – Name of problem

• iface – Interface that was output

• datadir – Directory where simulation data is held, if None (default)
this is the current directory

• nx – Number of x grid points (or number of y grid points if the target
interface has an x normal)

• ny – Number of y grid points (or number of z grid points if the target
interface has an x or y normal)

• endian – Byte-ordering of simulation data ('=' for native, '>' for
big endian, '<' for little endian)

• t – Numpy array holding rupture time data

170 Chapter 5. Analyzing Simulation Results

fdfault Documentation, Release 1.0

load()
Load data from data file for rupture front

Method loads the data from file into the t attribute. If you have an existing instance
of an front class whose simulation data has changed, load can be run more than once
and will refresh the contents of the simulation output.

Method takes no inputs and has no outputs. Class is modified by running this method
as the simulation data will be reloaded from file if it already exists.

Returns None

5.1.1 The write_scec submodule

The write_scec module contains several functions useful for converting binary output from a
simulation to the text file format used by the SCEC Rupture Code Verification group. Functions
are written for on fault, off fault, and front data types, and there are versions for both 2D and 3D
problems. The functions take several common optional arguments, including depthsign (indi-
cates whether depth is positive or negative), author (the person who is submitting the results),
version (the code version used to run the simulation), and grid_spacing (the resolution of
the simulation, in the event you are submitting data for multiple grid spacings).

Each function writes a text file in the current directory following the file naming convention used
by the server for the Code Verification group. More information on the file outputs are given in the
documentation for each function.

fdfault.analysis.write_scec.write_off_fault(problem, station,
depthsign=1.0, au-
thor=’‘, version=’‘,
grid_spacing=’‘)

Converts code output units for off-fault station from a 3D simulation into a formatted text
file for SCEC website

This function converts off fault data from binary (written by the C++ code) to ASCII text for
a 3D benchmark simulation. Required inputs are the problem name (string) and station (tuple
of strings in the format (strike,across,depth)). Optional inputs include depthsign
(1. by default, changes sign on depth coordinate if -1.), and author, verision, and grid spacing
strings which will be inserted into the header of the output file.

The text file is written to {problem}_body{across}st{strike}dp{depth}.txt
in the current directory.

Parameters

• problem (str) – Problem name to write to file

• station (tuple) – Coordinates in 3D of output station (tuple of 3
strings)

5.1. Analysis With Python 171

fdfault Documentation, Release 1.0

• depthsign (float) – Sign of depth output, must be 1. or -1. (op-
tional, default is 1.)

• author (str) – Person who ran the simulation (optional, default is "")

• version (str) – Code version used in simulation (optional, default is
"")

• grid_spacing (str) – Grid spacing used in simulation (optional,
default is "")

Returns None

fdfault.analysis.write_scec.write_off_fault_2d(problem, station,
depthsign=1.0, au-
thor=’‘, version=’‘,
grid_spacing=’‘)

Converts code output units for off-fault station into a formatted text file for SCEC website

This function converts off fault data from binary (written by the C++ code) to ASCII text for
a 3D benchmark simulation. Required inputs are the problem name (string) and station (tuple
of strings in the format (strike,across,depth)). Optional inputs include depthsign
(1. by default, changes sign on depth coordinate if -1.), and author, verision, and grid spacing
strings which will be inserted into the header of the output file.

The text file is written to {problem}_body{across}st{strike}dp{depth}.txt
in the current directory.

Parameters

• problem (str) – Problem name to write to file

• station (tuple) – Coordinates in 2D of output station (tuple of 3
strings, but strike should be '0')

• depthsign (float) – Sign of depth output, must be 1. or -1. (op-
tional, default is 1.)

• author (str) – Person who ran the simulation (optional, default is "")

• version (str) – Code version used in simulation (optional, default is
"")

• grid_spacing (str) – Grid spacing used in simulation (optional,
default is "")

Returns None

fdfault.analysis.write_scec.write_on_fault(problem, station, depth-
sign=1.0, normal=True,
author=’‘, version=’‘,
grid_spacing=’‘)

Converts code output units for on-fault station into a formatted text file for SCEC website

172 Chapter 5. Analyzing Simulation Results

fdfault Documentation, Release 1.0

This function converts on fault data from binary (written by the C++ code) to ASCII text
for a 3D benchmark simulation. Required inputs are the problem name (string) and station
(tuple of strings in the format (strike,depth)). Optional inputs include depthsign (1.
by default, changes sign on depth coordinate if -1.), and author, verision, and grid spacing
strings which will be inserted into the header of the output file.

The text file is written to {problem}_faultst{strike}dp{depth}.txt in the cur-
rent directory.

Parameters

• problem (str) – Problem name to write to file

• station (tuple) – Coordinates of output station (tuple of 2 strings
for strike and depth coordinates)

• depthsign (float) – Sign of depth output, must be 1. or -1. (op-
tional, default is 1.)

• author (str) – Person who ran the simulation (optional, default is "")

• version (str) – Code version used in simulation (optional, default is
"")

• grid_spacing (str) – Grid spacing used in simulation (optional,
default is "")

Returns None

fdfault.analysis.write_scec.write_on_fault_2d(problem, station,
depthsign=1.0,
normal=True, au-
thor=’‘, version=’‘,
grid_spacing=’‘)

Converts code output units for on-fault station into a formatted text file for SCEC website

This function converts on fault data from binary (written by the C++ code) to ASCII text
for a 2D benchmark simulation. Required inputs are the problem name (string) and station
(tuple of strings in the format (strike,depth), with values chosen appropriately for a
2D simulation). Optional inputs include depthsign (1. by default, changes sign on depth
coordinate if -1.), and author, verision, and grid spacing strings which will be inserted into
the header of the output file.

The text file is written to {problem}_faultst{strike}dp{depth}.txt in the cur-
rent directory.

Parameters

• problem (str) – Problem name to write to file

• station (tuple) – Coordinates of output station (tuple of 2 strings
for strike and depth coordinates)

5.1. Analysis With Python 173

fdfault Documentation, Release 1.0

• depthsign (float) – Sign of depth output, must be 1. or -1. (op-
tional, default is 1.)

• author (str) – Person who ran the simulation (optional, default is "")

• version (str) – Code version used in simulation (optional, default is
"")

• grid_spacing (str) – Grid spacing used in simulation (optional,
default is "")

Returns None

fdfault.analysis.write_scec.write_front(problem, iface=0, depth-
sign=1.0, author=’‘, ver-
sion=’‘, grid_spacing=’‘)

Converts code output units for rupture front times into a formatted text file for SCEC website

This function converts rupture time data from binary (written by the C++ code) to ASCII text
for a 3D benchmark simulation. Required inputs are the problem name (string). Optional
inputs include the interface to write to file (default is 0), depthsign (1. by default, changes
sign on depth coordinate if -1.), and author, verision, and grid spacing strings which will be
inserted into the header of the output file.

The text file is written to {problem}_cplot.txt in the current directory.

Parameters

• problem (str) – Problem name to write to file

• iface – Interface to be written to file (default is 0)

• depthsign (float) – Sign of depth output, must be 1. or -1. (op-
tional, default is 1.)

• author (str) – Person who ran the simulation (optional, default is "")

• version (str) – Code version used in simulation (optional, default is
"")

• grid_spacing (str) – Grid spacing used in simulation (optional,
default is "")

Returns None

5.1.2 Example

An example of how to use the included classes for analysis is included in the file
python_example.py, included in the python directory.

174 Chapter 5. Analyzing Simulation Results

fdfault Documentation, Release 1.0

example using output class in python

required arguments are problem name and output unit name
data directory is optional, if no argument provided assumes it is

→˓the current working directory

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from fdfault.analysis import output

vybody = output('testprob', 'vybody')

load data structure containing information

vybody.load()

field arrays are indexed by (t,x,y,z), with any singleton dimensions
→˓removed

print statement prints basic information

print(vybody)

can also access fields directly

print(vybody.vy)

plot velocity

plt.figure()
plt.pcolor(vybody.x, vybody.y, vybody.vy[0,:,:])
plt.colorbar()
plt.show()

5.2 Analysis With MATLAB

The code contains two MATLAB functions for reading in simulation data, which are roughly
equivalent to the Python classes.

5.2.1 load_output function

function output = load_output(probname,name,datadir)

5.2. Analysis With MATLAB 175

fdfault Documentation, Release 1.0

Inputs: probname (string), problem name name (string), output unit name datadir (string,
optional) location of data directory (default is current directory)

Returns: output, data structure holding the following simulation data: field (string),
type of field that is saved endian (string), endianness of binary data nt (integer), number
of time steps nx (integer), number of x grid points ny (integer), number of y grid points nz
(integer), number of z grid points x (float array), x grid values y (float array), y grid values
z (float array), z grid values actual field data (identifier is the string contained in field)
(float array), possible values are:

vx, x-component of particle velocity vy, y-component of particle velocity vz,
z-component of particle velocity sxx, xx component of stress tensor sxy, xy
component of stress tensor sxz, xz component of stress tensor syy, yy compo-
nent of stress tensor syz, yz component of stress tensor szz, zz component of
stress tensor lambda, scalar plastic strain rate gammap, scalar plastic strain V,
slip velocity magnitude Vx, x component of slip velocity Vy, y component of slip
velocity Vz, z component of slip velocity U, slip (calculated as line integral) Ux, x
component of slip Uy, y component of slip Uz, z component of slip Sn, interface
normal stress S, interface shear traction magnitude Sx, x-component of interface
shear traction Sy, y-component of interface shear traction Sz, z-component of
interface shear traction state, value of state variable

Because the data is written in row major order in the C++ code, but MATLAB stores data in column
major order, index order is (z, y, x, t).

5.2.2 load_front function

function front = load_front(probname,iface,datadir)

Inputs: probname (string), problem name iface (integer), interface number datadir
(string, optional) location of data directory (default is current directory)

Returns: front, data structure holding the following simulation data: endian (string), en-
dianness of binary data nx (integer), number of x grid points ny (integer), number of y grid
points x (float array), x grid values y (float array), y grid values z (float array), z grid values
t (float array), rupture time values

Because the data is written in row major order in the C++ code, but MATLAB stores data in
column major order, index order is (y, x). Note also that because the interface is a 2D slice, nx and
ny are used generically to describe the number of grid points on the interface no matter what the
orientation of the interface is. Thus, if the array has an approximate normal in the x direction, nx
is the number of grid points in the y direction and ny is the number of grid points in the z direction.

176 Chapter 5. Analyzing Simulation Results

fdfault Documentation, Release 1.0

5.2.3 Example

An example of how to use the MATLAB functions is provided in the file matlab_example.m,
located in the matlab directory. The file is reproduced here.

% example using load_output function in MATLAB

% required arguments are problem name and output unit name
% data directory is optional, if no argument provided assumes it is

→˓the current working directory

vybody = load_output('hpctest','vybody');

% loads data structure containing information

vybody

% because of differences in how MATLAB and C++ order arrays, field
→˓arrays are indexed by (z,y,x,t)

% any singleton dimensions are removed

% plot velocity

pcolor(vybody.x, vybody.y, vybody.vy(:,:,4));
shading flat;
axis image;
colorbar;

5.2. Analysis With MATLAB 177

fdfault Documentation, Release 1.0

178 Chapter 5. Analyzing Simulation Results

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

179

fdfault Documentation, Release 1.0

180 Chapter 6. Indices and tables

PYTHON MODULE INDEX

f
fdfault, 26
fdfault.analysis, 169
fdfault.analysis.write_scec, 171

181

fdfault Documentation, Release 1.0

182 Python Module Index

INDEX

Symbols
__init__() (fdfault.block.block method), 121
__init__() (fdfault.curve method), 59
__init__() (fdfault.domain.domain method), 129
__init__() (fdfault.fields.fields method), 148
__init__() (fdfault.friction method), 62
__init__() (fdfault.front.front method), 151
__init__() (fdfault.interface method), 154
__init__() (fdfault.interface.slipweak method),

77
__init__() (fdfault.interface.stz method), 92
__init__() (fdfault.load method), 69
__init__() (fdfault.loadfile method), 74
__init__() (fdfault.material.material method),

53
__init__() (fdfault.output.output method), 113
__init__() (fdfault.problem.problem method),

28
__init__() (fdfault.statefile method), 109
__init__() (fdfault.stzparam method), 98
__init__() (fdfault.stzparamfile method), 105
__init__() (fdfault.surface method), 56
__init__() (fdfault.swparam method), 83
__init__() (fdfault.swparamfile method), 88

A
add_load() (fdfault.domain method), 129
add_load() (fdfault.friction method), 63
add_load() (fdfault.interface method), 154
add_load() (fdfault.problem method), 29
add_load() (fdfault.slipweak method), 77
add_load() (fdfault.stz method), 92
add_output() (fdfault.problem method), 29
add_pert() (fdfault.domain method), 129
add_pert() (fdfault.friction method), 63

add_pert() (fdfault.interface method), 154
add_pert() (fdfault.problem method), 30
add_pert() (fdfault.slipweak method), 77
add_pert() (fdfault.stz method), 92

B
block (class in fdfault), 120

C
check() (fdfault.block method), 121
check() (fdfault.domain method), 130
check() (fdfault.problem method), 30
checksurfs() (fdfault.block method), 121
curve (class in fdfault), 59

D
delete_block_surf() (fdfault.domain method),

130
delete_block_surf() (fdfault.problem method),

30
delete_load() (fdfault.domain method), 130
delete_load() (fdfault.friction method), 63
delete_load() (fdfault.interface method), 155
delete_load() (fdfault.problem method), 31
delete_load() (fdfault.slipweak method), 77
delete_load() (fdfault.stz method), 92
delete_loadfile() (fdfault.domain method), 131
delete_loadfile() (fdfault.friction method), 63
delete_loadfile() (fdfault.interface method), 155
delete_loadfile() (fdfault.problem method), 31
delete_loadfile() (fdfault.slipweak method), 78
delete_loadfile() (fdfault.stz method), 93
delete_output() (fdfault.problem method), 31
delete_paramfile() (fdfault.domain method),

131

183

fdfault Documentation, Release 1.0

delete_paramfile() (fdfault.friction method), 64
delete_paramfile() (fdfault.interface method),

155
delete_paramfile() (fdfault.problem method), 32
delete_paramfile() (fdfault.slipweak method),

78
delete_paramfile() (fdfault.stz method), 93
delete_pert() (fdfault.domain method), 131
delete_pert() (fdfault.friction method), 64
delete_pert() (fdfault.interface method), 155
delete_pert() (fdfault.problem method), 32
delete_pert() (fdfault.slipweak method), 78
delete_pert() (fdfault.stz method), 93
delete_statefile() (fdfault.domain method), 132
delete_statefile() (fdfault.problem method), 32
delete_statefile() (fdfault.stz method), 93
delete_surf() (fdfault.block method), 122
domain (class in fdfault), 128

F
fdfault (module), 26
fdfault.analysis (module), 169
fdfault.analysis.write_scec (module), 171
fields (class in fdfault), 147
find_nearest_point() (fdfault.domain method),

132
find_nearest_point() (fdfault.problem method),

32
friction (class in fdfault), 62
front (class in fdfault), 151
front (class in fdfault.analysis), 170

G
get_a() (fdfault.stzparam method), 100
get_a() (fdfault.stzparamfile method), 106
get_beta() (fdfault.material method), 53
get_beta() (fdfault.stzparam method), 100
get_beta() (fdfault.stzparamfile method), 106
get_block_lx() (fdfault.domain method), 132
get_block_lx() (fdfault.problem method), 33
get_block_surf() (fdfault.domain method), 133
get_block_surf() (fdfault.problem method), 33
get_block_xm() (fdfault.domain method), 133
get_block_xm() (fdfault.problem method), 34
get_bm() (fdfault.domain method), 133

get_bm() (fdfault.friction method), 64
get_bm() (fdfault.interface method), 155
get_bm() (fdfault.problem method), 34
get_bm() (fdfault.slipweak method), 78
get_bm() (fdfault.stz method), 93
get_bounds() (fdfault.block method), 122
get_bounds() (fdfault.domain method), 134
get_bounds() (fdfault.problem method), 34
get_bp() (fdfault.domain method), 134
get_bp() (fdfault.friction method), 64
get_bp() (fdfault.interface method), 156
get_bp() (fdfault.problem method), 35
get_bp() (fdfault.slipweak method), 78
get_bp() (fdfault.stz method), 93
get_c() (fdfault.material method), 53
get_c0() (fdfault.stzparam method), 100
get_c0() (fdfault.stzparamfile method), 106
get_c0() (fdfault.swparam method), 83
get_c0() (fdfault.swparamfile method), 88
get_cdiss() (fdfault.domain method), 134
get_cdiss() (fdfault.problem method), 35
get_cfl() (fdfault.problem method), 35
get_chiw() (fdfault.stzparam method), 100
get_chiw() (fdfault.stzparamfile method), 107
get_coords() (fdfault.block method), 122
get_cp() (fdfault.material method), 53
get_cs() (fdfault.material method), 53
get_datadir() (fdfault.problem method), 35
get_dc() (fdfault.swparam method), 84
get_dc() (fdfault.swparamfile method), 89
get_direction() (fdfault.curve method), 60
get_direction() (fdfault.domain method), 134
get_direction() (fdfault.friction method), 64
get_direction() (fdfault.interface method), 156
get_direction() (fdfault.problem method), 35
get_direction() (fdfault.slipweak method), 78
get_direction() (fdfault.stz method), 94
get_direction() (fdfault.surface method), 57
get_dt() (fdfault.problem method), 35
get_dx() (fdfault.load method), 70
get_dx() (fdfault.stzparam method), 100
get_dx() (fdfault.swparam method), 84
get_dy() (fdfault.load method), 70
get_dy() (fdfault.stzparam method), 100
get_dy() (fdfault.swparam method), 84

184 Index

fdfault Documentation, Release 1.0

get_eta() (fdfault.material method), 54
get_f0() (fdfault.stzparam method), 100
get_f0() (fdfault.stzparamfile method), 107
get_field() (fdfault.front method), 152
get_field() (fdfault.output method), 114
get_front_field() (fdfault.problem method), 35
get_front_output() (fdfault.problem method), 35
get_front_value() (fdfault.problem method), 36
get_g() (fdfault.material method), 54
get_het_material() (fdfault.domain method),

134
get_het_material() (fdfault.fields method), 148
get_het_material() (fdfault.problem method), 36
get_het_stress() (fdfault.domain method), 135
get_het_stress() (fdfault.fields method), 148
get_het_stress() (fdfault.problem method), 36
get_iftype() (fdfault.domain method), 135
get_iftype() (fdfault.problem method), 36
get_index() (fdfault.friction method), 64
get_index() (fdfault.interface method), 156
get_index() (fdfault.slipweak method), 79
get_index() (fdfault.stz method), 94
get_lam() (fdfault.material method), 54
get_load() (fdfault.domain method), 135
get_load() (fdfault.friction method), 65
get_load() (fdfault.interface method), 156
get_load() (fdfault.problem method), 36
get_load() (fdfault.slipweak method), 79
get_load() (fdfault.stz method), 94
get_loadfile() (fdfault.domain method), 135
get_loadfile() (fdfault.friction method), 65
get_loadfile() (fdfault.interface method), 156
get_loadfile() (fdfault.problem method), 37
get_loadfile() (fdfault.slipweak method), 79
get_loadfile() (fdfault.stz method), 94
get_lx() (fdfault.block method), 122
get_material() (fdfault.block method), 122
get_material() (fdfault.domain method), 136
get_material() (fdfault.fields method), 149
get_material() (fdfault.problem method), 37
get_mattype() (fdfault.domain method), 136
get_mattype() (fdfault.problem method), 37
get_mode() (fdfault.block method), 123
get_mode() (fdfault.domain method), 136
get_mode() (fdfault.problem method), 37

get_mu() (fdfault.material method), 54
get_mud() (fdfault.swparam method), 84
get_mud() (fdfault.swparamfile method), 89
get_mus() (fdfault.swparam method), 84
get_mus() (fdfault.swparamfile method), 89
get_muy() (fdfault.stzparam method), 100
get_muy() (fdfault.stzparamfile method), 107
get_n1() (fdfault.curve method), 60
get_n1() (fdfault.loadfile method), 74
get_n1() (fdfault.stzparamfile method), 107
get_n1() (fdfault.surface method), 57
get_n1() (fdfault.swparamfile method), 89
get_n2() (fdfault.curve method), 60
get_n2() (fdfault.loadfile method), 74
get_n2() (fdfault.stzparamfile method), 108
get_n2() (fdfault.surface method), 57
get_n2() (fdfault.swparamfile method), 90
get_name() (fdfault.output method), 114
get_name() (fdfault.problem method), 37
get_nblocks() (fdfault.domain method), 136
get_nblocks() (fdfault.problem method), 38
get_nblocks_tot() (fdfault.domain method), 136
get_nblocks_tot() (fdfault.problem method), 38
get_ndim() (fdfault.block method), 123
get_ndim() (fdfault.domain method), 136
get_ndim() (fdfault.problem method), 38
get_nifaces() (fdfault.domain method), 136
get_nifaces() (fdfault.problem method), 38
get_ninfo() (fdfault.problem method), 38
get_nloads() (fdfault.domain method), 137
get_nloads() (fdfault.friction method), 65
get_nloads() (fdfault.interface method), 157
get_nloads() (fdfault.problem method), 38
get_nloads() (fdfault.slipweak method), 79
get_nloads() (fdfault.stz method), 94
get_nperts() (fdfault.domain method), 137
get_nperts() (fdfault.friction method), 65
get_nperts() (fdfault.interface method), 157
get_nperts() (fdfault.problem method), 38
get_nperts() (fdfault.slipweak method), 79
get_nperts() (fdfault.stz method), 95
get_nproc() (fdfault.domain method), 137
get_nproc() (fdfault.problem method), 38
get_nt() (fdfault.problem method), 39
get_nx() (fdfault.block method), 123

Index 185

fdfault Documentation, Release 1.0

get_nx() (fdfault.domain method), 137
get_nx() (fdfault.problem method), 39
get_nx_block() (fdfault.domain method), 137
get_nx_block() (fdfault.problem method), 39
get_output() (fdfault.front method), 152
get_output() (fdfault.problem method), 39
get_paramfile() (fdfault.domain method), 137
get_paramfile() (fdfault.friction method), 65
get_paramfile() (fdfault.interface method), 157
get_paramfile() (fdfault.problem method), 39
get_paramfile() (fdfault.slipweak method), 80
get_paramfile() (fdfault.stz method), 95
get_pert() (fdfault.domain method), 137
get_pert() (fdfault.friction method), 66
get_pert() (fdfault.interface method), 157
get_pert() (fdfault.problem method), 39
get_pert() (fdfault.slipweak method), 80
get_pert() (fdfault.stz method), 95
get_R() (fdfault.stzparam method), 99
get_R() (fdfault.stzparamfile method), 106
get_rho() (fdfault.material method), 54
get_rkorder() (fdfault.problem method), 40
get_s2() (fdfault.load method), 70
get_s2() (fdfault.loadfile method), 75
get_s3() (fdfault.load method), 70
get_s3() (fdfault.loadfile method), 75
get_sbporder() (fdfault.domain method), 138
get_sbporder() (fdfault.problem method), 40
get_sn() (fdfault.load method), 70
get_sn() (fdfault.loadfile method), 75
get_state() (fdfault.domain method), 138
get_state() (fdfault.problem method), 40
get_state() (fdfault.statefile method), 109
get_state() (fdfault.stz method), 95
get_statefile() (fdfault.domain method), 138
get_statefile() (fdfault.problem method), 40
get_statefile() (fdfault.stz method), 95
get_stress() (fdfault.domain method), 138
get_stress() (fdfault.fields method), 149
get_stress() (fdfault.problem method), 40
get_surf() (fdfault.block method), 123
get_t0() (fdfault.load method), 70
get_t0() (fdfault.stzparam method), 101
get_t0() (fdfault.swparam method), 84
get_tc() (fdfault.swparam method), 84

get_tc() (fdfault.swparamfile method), 90
get_time_indices() (fdfault.output method), 114
get_tm() (fdfault.output method), 114
get_tp() (fdfault.output method), 114
get_trup() (fdfault.swparam method), 84
get_trup() (fdfault.swparamfile method), 90
get_ts() (fdfault.output method), 115
get_ttot() (fdfault.problem method), 41
get_type() (fdfault.friction method), 66
get_type() (fdfault.interface method), 157
get_type() (fdfault.load method), 70
get_type() (fdfault.material method), 54
get_type() (fdfault.slipweak method), 80
get_type() (fdfault.stz method), 95
get_type() (fdfault.stzparam method), 101
get_type() (fdfault.swparam method), 85
get_v0() (fdfault.stzparam method), 101
get_v0() (fdfault.stzparamfile method), 108
get_v1() (fdfault.stzparam method), 101
get_v1() (fdfault.stzparamfile method), 108
get_value() (fdfault.front method), 152
get_x() (fdfault.block method), 123
get_x() (fdfault.curve method), 60
get_x() (fdfault.domain method), 138
get_x() (fdfault.problem method), 41
get_x() (fdfault.surface method), 57
get_x0() (fdfault.load method), 71
get_x0() (fdfault.stzparam method), 101
get_x0() (fdfault.swparam method), 85
get_x_indices() (fdfault.output method), 115
get_xm() (fdfault.block method), 124
get_xm() (fdfault.output method), 115
get_xp() (fdfault.output method), 115
get_xs() (fdfault.output method), 115
get_y() (fdfault.curve method), 60
get_y() (fdfault.surface method), 58
get_y0() (fdfault.load method), 71
get_y0() (fdfault.stzparam method), 101
get_y0() (fdfault.swparam method), 85
get_y_indices() (fdfault.output method), 115
get_ym() (fdfault.output method), 115
get_yp() (fdfault.output method), 115
get_ys() (fdfault.output method), 116
get_z() (fdfault.curve method), 61
get_z() (fdfault.surface method), 58

186 Index

fdfault Documentation, Release 1.0

get_z_indices() (fdfault.output method), 116
get_zm() (fdfault.output method), 116
get_zp() (fdfault.material method), 54
get_zp() (fdfault.output method), 116
get_zs() (fdfault.material method), 54
get_zs() (fdfault.output method), 116

H
has_same_edge() (fdfault.curve method), 61
has_same_edge() (fdfault.surface method), 58

I
interface (class in fdfault), 153

L
load (class in fdfault), 67
load() (fdfault.analysis.front method), 170
load() (fdfault.analysis.output method), 170
loadfile (class in fdfault), 72

M
make_tempsurfs() (fdfault.block method), 124
material (class in fdfault), 52

O
output (class in fdfault), 112
output (class in fdfault.analysis), 169

P
problem (class in fdfault), 27

S
set_a() (fdfault.stzparam method), 101
set_beta() (fdfault.material method), 55
set_beta() (fdfault.stzparam method), 102
set_block_lx() (fdfault.domain method), 139
set_block_lx() (fdfault.problem method), 41
set_block_surf() (fdfault.domain method), 140
set_block_surf() (fdfault.problem method), 42
set_bounds() (fdfault.block method), 124
set_bounds() (fdfault.domain method), 140
set_bounds() (fdfault.problem method), 42
set_c() (fdfault.material method), 55
set_c0() (fdfault.stzparam method), 102
set_c0() (fdfault.swparam method), 85

set_cdiss() (fdfault.domain method), 141
set_cdiss() (fdfault.problem method), 43
set_cfl() (fdfault.problem method), 43
set_chiw() (fdfault.stzparam method), 102
set_coords() (fdfault.block method), 125
set_datadir() (fdfault.problem method), 43
set_dc() (fdfault.swparam method), 85
set_domain_xm() (fdfault.domain method), 141
set_domain_xm() (fdfault.problem method), 43
set_dt() (fdfault.problem method), 44
set_dx() (fdfault.load method), 71
set_dx() (fdfault.stzparam method), 102
set_dx() (fdfault.swparam method), 85
set_dy() (fdfault.load method), 71
set_dy() (fdfault.stzparam method), 102
set_dy() (fdfault.swparam method), 85
set_eta() (fdfault.material method), 55
set_f0() (fdfault.stzparam method), 102
set_field() (fdfault.front method), 152
set_field() (fdfault.output method), 116
set_front_field() (fdfault.problem method), 44
set_front_output() (fdfault.problem method), 44
set_front_value() (fdfault.problem method), 45
set_g() (fdfault.material method), 55
set_het_material() (fdfault.domain method),

141
set_het_material() (fdfault.fields method), 149
set_het_material() (fdfault.problem method), 45
set_het_stress() (fdfault.domain method), 142
set_het_stress() (fdfault.fields method), 149
set_het_stress() (fdfault.problem method), 45
set_iftype() (fdfault.domain method), 142
set_iftype() (fdfault.problem method), 45
set_index() (fdfault.friction method), 66
set_index() (fdfault.interface method), 157
set_index() (fdfault.slipweak method), 80
set_index() (fdfault.stz method), 96
set_lam() (fdfault.material method), 55
set_loadfile() (fdfault.domain method), 142
set_loadfile() (fdfault.friction method), 66
set_loadfile() (fdfault.interface method), 157
set_loadfile() (fdfault.problem method), 46
set_loadfile() (fdfault.slipweak method), 80
set_loadfile() (fdfault.stz method), 96
set_lx() (fdfault.block method), 125

Index 187

fdfault Documentation, Release 1.0

set_material() (fdfault.block method), 125
set_material() (fdfault.domain method), 143
set_material() (fdfault.fields method), 150
set_material() (fdfault.problem method), 46
set_mattype() (fdfault.block method), 125
set_mattype() (fdfault.domain method), 143
set_mattype() (fdfault.problem method), 46
set_mode() (fdfault.block method), 126
set_mode() (fdfault.domain method), 143
set_mode() (fdfault.problem method), 47
set_mu() (fdfault.material method), 55
set_mud() (fdfault.swparam method), 86
set_mus() (fdfault.swparam method), 86
set_muy() (fdfault.stzparam method), 103
set_name() (fdfault.output method), 116
set_name() (fdfault.problem method), 47
set_nblocks() (fdfault.domain method), 144
set_nblocks() (fdfault.problem method), 47
set_ndim() (fdfault.block method), 126
set_ndim() (fdfault.domain method), 144
set_ndim() (fdfault.problem method), 47
set_ninfo() (fdfault.problem method), 48
set_nproc() (fdfault.domain method), 144
set_nproc() (fdfault.problem method), 48
set_nt() (fdfault.problem method), 48
set_nx() (fdfault.block method), 126
set_nx_block() (fdfault.domain method), 145
set_nx_block() (fdfault.problem method), 48
set_output() (fdfault.front method), 152
set_paramfile() (fdfault.domain method), 145
set_paramfile() (fdfault.friction method), 66
set_paramfile() (fdfault.interface method), 158
set_paramfile() (fdfault.problem method), 49
set_paramfile() (fdfault.slipweak method), 81
set_paramfile() (fdfault.stz method), 96
set_R() (fdfault.stzparam method), 101
set_rho() (fdfault.material method), 55
set_rkorder() (fdfault.problem method), 49
set_s2() (fdfault.load method), 71
set_s3() (fdfault.load method), 71
set_sbporder() (fdfault.domain method), 145
set_sbporder() (fdfault.problem method), 49
set_sn() (fdfault.load method), 71
set_state() (fdfault.domain method), 146
set_state() (fdfault.problem method), 50

set_state() (fdfault.stz method), 96
set_statefile() (fdfault.domain method), 146
set_statefile() (fdfault.problem method), 50
set_statefile() (fdfault.stz method), 96
set_stress() (fdfault.domain method), 146
set_stress() (fdfault.fields method), 150
set_stress() (fdfault.problem method), 50
set_surf() (fdfault.block method), 126
set_t0() (fdfault.load method), 72
set_t0() (fdfault.stzparam method), 103
set_t0() (fdfault.swparam method), 86
set_tc() (fdfault.swparam method), 86
set_time_indices() (fdfault.output method), 116
set_tm() (fdfault.output method), 117
set_tp() (fdfault.output method), 117
set_trup() (fdfault.swparam method), 86
set_ts() (fdfault.output method), 117
set_ttot() (fdfault.problem method), 50
set_type() (fdfault.load method), 72
set_type() (fdfault.material method), 55
set_type() (fdfault.stzparam method), 103
set_type() (fdfault.swparam method), 86
set_v0() (fdfault.stzparam method), 103
set_v1() (fdfault.stzparam method), 103
set_value() (fdfault.front method), 152
set_x0() (fdfault.load method), 72
set_x0() (fdfault.stzparam method), 103
set_x0() (fdfault.swparam method), 86
set_x_indices() (fdfault.output method), 117
set_xm() (fdfault.block method), 127
set_xm() (fdfault.output method), 117
set_xp() (fdfault.output method), 117
set_xs() (fdfault.output method), 118
set_y0() (fdfault.load method), 72
set_y0() (fdfault.stzparam method), 103
set_y0() (fdfault.swparam method), 87
set_y_indices() (fdfault.output method), 118
set_ym() (fdfault.output method), 118
set_yp() (fdfault.output method), 118
set_ys() (fdfault.output method), 118
set_z_indices() (fdfault.output method), 119
set_zm() (fdfault.output method), 119
set_zp() (fdfault.output method), 119
set_zs() (fdfault.output method), 119
slipweak (class in fdfault), 76

188 Index

fdfault Documentation, Release 1.0

statefile (class in fdfault), 108
stz (class in fdfault), 91
stzparam (class in fdfault), 97
stzparamfile (class in fdfault), 104
surface (class in fdfault), 56
swparam (class in fdfault), 81
swparamfile (class in fdfault), 87

W
write() (fdfault.curve method), 61
write() (fdfault.loadfile method), 75
write() (fdfault.statefile method), 110
write() (fdfault.stzparamfile method), 108
write() (fdfault.surface method), 59
write() (fdfault.swparamfile method), 90
write_front() (in module fd-

fault.analysis.write_scec), 174
write_input() (fdfault.block method), 127
write_input() (fdfault.domain method), 147
write_input() (fdfault.fields method), 150
write_input() (fdfault.friction method), 67
write_input() (fdfault.front method), 153
write_input() (fdfault.interface method), 158
write_input() (fdfault.load method), 72
write_input() (fdfault.material method), 56
write_input() (fdfault.output method), 119
write_input() (fdfault.problem method), 51
write_input() (fdfault.slipweak method), 81
write_input() (fdfault.stz method), 97
write_input() (fdfault.stzparam method), 104
write_input() (fdfault.swparam method), 87
write_off_fault() (in module fd-

fault.analysis.write_scec), 171
write_off_fault_2d() (in module fd-

fault.analysis.write_scec), 172
write_on_fault() (in module fd-

fault.analysis.write_scec), 172
write_on_fault_2d() (in module fd-

fault.analysis.write_scec), 173

Index 189

	Introduction
	Governing Equations
	Frictional Descriptions
	Numerical Details
	References

	Installation
	Building the Main Executable
	Installing the Python Module
	Building the Documentation

	Specifying Simulation Parameters
	Text Input Files
	Input Using the Python Module

	Included Example Problems
	Example Problem in 2D
	Example 2D Problem in Python
	The Problem, Version 4
	The Problem, Version 5

	Analyzing Simulation Results
	Analysis With Python
	Analysis With MATLAB

	Indices and tables
	Python Module Index
	Index

