
CERI 7104/8104 Homework 4 Solutions

Here are my solutions to HW 4. I have included the shell script to produce the
plot “hw4.csh” as well as my AWK script for reformatting the fault trace data
“kml2txt.awk.” Please see those files for details.

1. Here is my map of the Parkfield section of the San Andreas Fault. I use the
same global 30s dataset that we looked at in lab, though its resolution is a bit
coarse when viewed at this scale. There are higher resolution datasets available
through the USGS web site that I would download and use if this map were
to go in a publication, but for the purposes of this homework assignment, this
map is fine. Many of you showed a much larger area than this, which made it
hard to read the GPS vectors, but since I did not specify a region there were
no points lost as long as you displayed everything correctly.

GPS Velocities at Parkfield

−121˚00'

−121˚00'

−120˚45'

−120˚45'

−120˚30'

−120˚30'

−120˚15'

−120˚15'

−120˚00'

−120˚00'

35˚30' 35˚30'

35˚45' 35˚45'

36˚00' 36˚00'

36˚15' 36˚15'

P538

CANP

CARH

CRBT

HOGS
HUNT

LAND

LOWS MASW

MIDA

MNMC

POMM
RNCH

TBLP

PYRA

33JD

ALMO

BENC

BONNBREK

BUCK

CARX

CBAR

CHEC

CTWD

GILL

GO42

HOPP
HTR1

JD84

JOAQ KNGR

LIMELOST

MASO

MDDF

MIDE

MITH

MNMT
MONT

OQUI

PIGG

PK59

RH32

RANC

SHR2

TBPF

WATH

WD42

10 mm/yr

Here is how I parsed the file to make the plot in the solutions. I used two regular
expressions to accomplish this – one to idenfity coordinates, and one to identify
the beginning of line segments to determine where to insert the > characters.
The regular expressions are quite long, so while I attempt to explain them in
the comments in the file, I explain them here as well:

1



• /<LineString.*-?[0-9]{1,3}\.[0-9]*,-?[0-9]{1,2}\.[0-9]*/ Is used
to identify the beginning of each segment. The KML tag for the start of
a line segment begins with “<LineString” so I am looking for lines con-
taining this set of characters. Following the tag for a LineString, I include
.*, which represents an arbitrary number of arbitrary characters that may
exist between the LineString tag and the actual coordinates. Then I have
a series of characters that are meant to match a general set of geographic
coordinates: first is an optional minus sign, then 1-3 numeric characters,
a decimal point, then an arbitrary number of numeric characters, all of
which represents the longitude coordinate. Then comes a comma, and a
similar set of characters to represent the latitude coordinate. Once I find
these lines, I print out > on its own line, then the longitude and latitude.
I need to use the substr function to do this, since the field separator does
not find the start of the longitude coordinate. I use the coordinate part of
the regular expression as the match condition to find the position of the
coordinate within the string.

• /^-?[0-9]{1,3}\.[0-9]*,-?[0-9]{1,2}\.[0-9]*/ is similar to the reg-
ular expression above, except the geographic coordinates must come at the
beginning of a line. This is for all other coordinates, so we just simply need
to print out the latitude and longitude for this case.

All of you were able to do a reasonable job of parsing the KML file, though
most of you could have documented your script a little bit more. Note in my
comments I explicitly mention in detail what my expressions are and why I
need them. Many of you achieved your results with simpler expressions (which
is okay) but did not say anything about why you could use them.

Feel free to use my AWK script in the future if you need to parse a KML file
for GMT. You can run it from the command line using (for example)

$ ./kml2txt.awk Historic.kml > historic.txt

Alternatively, you can just pipe the result directly into psxy, which is what
I did in my shell script solution. Otherwise, this problem was much like the
shaded topography and GPS velocity vector examples that we did in class.

2. Your backprojection results were good. All of you wrote your script to accept
the appropriate inputs, so you should have no trouble reusing your script on
your final. Some of you used AWK to find the map limits from the input text
file, which is an alternative to giving the map limits as inputs to the script. I
accepted either version. I did not specify whether the map should be rectangular
or have lines of constant latitude/longitude as the map borders, so either was
acceptable.

2


