
Data Analysis in Geophysics (CERI 7104/8104)
Homework 2 – Due 10/26/18

This assignment gives you practice programming in MATLAB. The first problem
focuses on how to “vectorize” your code by solving a problem using array operations.
The second problem uses seismic backprojection to locate sources of seismic waves.

1. One-way wave equation in 1D. Consider the one-way wave equation:

∂u

∂t
= −∂u

∂x
. (1)

Solutions to this equation are waves traveling from left to right. To solve this
equation, we need to specify initial conditions u(x, t = 0) and the boundary
conditions at the left side of the domain (say at x = 0) u(0, t). We will find a
solution over the spatial domain x = [0, 1].

We can construct a finite difference approximation for this equation. We will
discretize the spatial domain using a grid spacing of ∆x and a time step of ∆t,
and refer to the solution at spatial point m and time point n as un

m. A finite
difference approximation for the wave equation is:

un+1
m − un

m

∆t
= −

un
m − un

m−1

∆x
. (2)

Using this equation, if we have a solution over the spatial domain at time step
n (i.e. we know un

m for all values of m), we can advance the solution in time by
solving the above for un+1

m :

un+1
m = un

m − ∆t

∆x

(
un
m − un

m−1

)
. (3)

The boundary condition at x = 0 is imposed by setting un+1
1 = u(0, (n+ 1)∆t).

(a) Use MATLAB to solve the one-way wave equation in 1D over the spa-
tial domain [0,1] given the initial conditions u(x, t = 0) = exp(−(x −
0.25)2/0.005) and boundary condition u(0, t) = 0. Do not worry about
the fact that these two conditions are slightly different for u(0, 0), as the
difference is small relative to the errors in approximating the derivatives –
you can pick either one for setting u(0, 0). Use a grid spacing of ∆x = 0.01
and a time step of ∆t = 0.005. Have your code take 100 time steps. Do
this using two nested for loops, one over the spatial grid and one over
the time steps. Time the execution of your program using tic and toc as
discussed in lab. Plot u(x).

How did the signal propagate? At what speed did the wave propagate
(recall that the total time is the number of time steps multiplied by ∆t)?
What happens to the amplitude of the signal as it propagates? (This is an
artifact of the numerical method, not a property of the solution.)

1



(b) We will find two ways that we can vectorize this procedure, and we will
compare the results of both of them. First, vectorize by doing array math;
you will need to use a vector that has had its indices shifted by one in
order to accomplish this. There are two ways to do this: the fastest is
to evaluate a matrix with another matrix, or you can use the circshift

function, which in my experience is slower. Either way, you can eliminate
the for loop over the spatial index. You will still have a loop over the
time steps. Run this version of the code, and verify that it gives you the
same answer as the loop version. Time this version using tic and toc, and
compare with the loop version. Do you notice a substantial difference?

(c) Another way to vectorize is to recognize that you can write Eq. 3 as a
matrix multiplication operation (remember that a matrix times a vector
gives you back another vector). Figure out what matrix will advance the
solution by one time step. You will find some of the techniques for vec-
torizing definitions of arrays useful for this (the diagonal matrix function
diag will be useful).

If we want to advance our solution by more than one time step, we can do
this by repeatedly multiplying by the above matrix. Since MATLAB can
easily take the power of a matrix, we can eliminate the second for loop
and solve this problem in a single line. Use MATLAB to solve the wave
equation in this way, and verify that you get the same solution as before.
Time your code, and compare with the other versions.

What version is the slowest? What version is the fastest? Explain in a
few sentences why you think the different versions execute in the amount
of time that you observe. Hint: are the different versions doing the same
number of calculations? Does it matter for the execution time? (The exact
answer depends somewhat on the details of your implementation, so you
should not worry if the execution time does not change significantly).

2. Seismic Backprojection Write a MATLAB script to locate the source of a
seismic signal using backprojection, as described below. You will apply your
code to the included data. “hw2.mat” contains two matrices: the matrix
receivers contains the (x, y) coordinates (in kilometers) of a set of seismic
stations recording signals (the receivers matrix is 20 × 2), and the matrix
data contains the data recorded at each station (the data matrix is 20× 5000).
Each station has recorded 250 seconds of data at 20 Hz. You will need to write
code that takes the recorded signals, applies an appropriate time shift to each
signal for a candidate source location, and then adds up the shifted signals and
calculates the sum of the squares. Source locations that are more likely will have
a larger summed signal (if done correctly, you should identify three sources in
the included problem).

You should conduct this analysis using several functions, for which I have pro-

2



vided template files that you need to fill in. Doing it in this way will ensure
that your code can integrate with the other pieces of code that you are writing
in the other homework assignments. Additionally, it is important that you not
assume any specific input sizes for the number of source points, receiver points,
or data samples, as this will ensure that your code works correctly for other
problem sizes.

• The function travel time takes a source point and a matrix of receiver
points and calculates the travel time between all possible pairs of them.
The source point is a vector of length 2 holding the (x, y) coordinates of
the source point in km, and the receiver points are contained in a matrix
with dimensions m × 2, where m is the number of receivers, holding the
(x, y) coordinates in km. You should assume that the source is at a depth
of 30 km, the receivers are at the surface, and the p-wave travels at 6 km/s.
The function should return the travel time (in seconds) between the source
and all receiver points. (This should sound familiar to you; your Python
code will be used to determine these travel times for your final project.)

• The function time shift takes a vector of travel times (in seconds) of
length m and a sampling frequency (in Hertz) and calculates how many
samples each travel time corresponds to, returning a vector holding the
shift numbers (note that each shift must be an integer). This information
will be used to determine how to shift each signal when you perform the
backprojection.

• The function compute amplitude takes a matrix holding a number of time
series (size is m × n, where there are m stations and each station has
recorded n samples) and a vector holding m integer offsets. This func-
tion does the actual backprojection by shifting each of the m signals by
the appropriate amount, then adding all m signals together, squaring the
summed signal, and then summing again over all n time samples. The
function should return the summed value of the shifted time series.

Hint: First create a matrix of zeros that has dimensions m × (n + max),
where max is the largest offset in the vector of offsets. Then go through
all m stations, and put the shifted signal into the correct position in the
matrix, with one signal in each row. Sum up each column, square the
array, then sum the row.

To determine how to shift each signal, you can think of the final n entries
in each row as the place where the signal would be if there was no time
shift. Each signal will then be offset backwards in time by the shift for
that particular station. Note that true “backprojection” would involve
reversing the signal in time and then shifting the reversed signal forward
in time based on the travel time to model the signals traveling to the source
location; however since we are summing up all of the time samples, it is

3



equivalent to keep the signal as forward in time and then shift the signal
backwards in time. This is illustrated below for a case where there are 4
stations and each station has 5 samples – matrix entries shaded gray are
nonzero, and the heavy vertical black line indicates the zero offset position.

0

max n

m

Offset

4

2

3

2

You will be able to do this calculation without any loops and using only
array math, though you will need to do a single loop over all m stations
first to populate the matrix holding the shifted signals.

• The function backprojection takes a matrix of source points with di-
mensions s × 2, where s is the number of source points to be considered
holding the (x, y) coordinates of all source points in kilometers, a matrix
of receiver points of dimension m× 2, where m is the number of receivers,
a data matrix holding a number of time series (size is m× n, where there
are m stations and each station has recorded n samples), and the sam-
pling frequency (a single number in Hertz). This function will then call
the necessary functions described above to compute the backprojection. It
returns a matrix with dimensions s×3 where the first two columns are the
x and y coordinates of the source point and the third column holds the
calculated backprojected amplitude for each source point.

• You should try all possible source locations on a 100 km by 100 km grid,
with a resolution of 1 km in each direction. Plot your results using pcolor

to display your summed backprojected signal (pink and hot are good col-
ormaps to use for this particular problem, though I would reverse the colors
by using colormap(flipud(pink)) to set the colormap) and scatter to
show the location of all stations. pcolor requires that your data be in a
matrix, so you will need to reshape the output of backprojection to a
100 × 100 matrix for plotting.

• You also need to write a driver script that loads the data, creates the matrix
of source points, calls the backprojection function with the appropriate
arguments, and plots the results.

4



Submission Information: Please turn in the following, either in your Public folder
or as an email attachment sent to me:

• Your code. I recommend writing functions to implement your solution for each
sub-problem, plus a driver script that calls the appropriate functions and plots
the results. Note that if you want to make your code re-usable in the future
on different problems, you should pick appropriate arguments to pass to the
functions – for example, for each wave propagation problem, you will need to
pass a vector holding initial conditions, plus the time step, spatial grid spacing,
and number of time steps. Make sure all of your functions are documented,
and your code is commented, properly indented, and readable so I understand
what you are doing. I have provided the necessary function files for the second
problem, but it is up to you to create the necessary files beyond that in order
to make your code well organized and understandable.

• Two plots, each saved as an EPS, PDF, or PNG file (you are also welcome to
save your plots as .fig files for your own use, but you should submit a version
in a standard graphics format for grading). One plot should show all of your
solutions to the wave equation at the final time step (either on the same axes,
or as three different subplots), and one plot should show your image of possible
seismic source locations as a pseudocolor plot with the seismic station locations
overlaid on the plot as described in the problem statement. Be sure that you
label all axes and use a font that is large enough to be easily legible.

• A write-up containing your answers to all questions posed for problem 1 (if there
is a question mark, you need to write a few sentences addressing that question).
Plain text files or word processor files are fine.

5


