Data Analysis in Geophysics (CERI 7104/8104)
Homework 1 Solutions

My code for the catalog problem, plus the code that I used to test your programs, can
be found on the course web page or in my public folder. Each problem was graded
based on 8 points for good coding style, and 7 possible points for passing my various
tests. The tests were designed to catch most instances of incorrect code, though in
a few cases I noticed some incorrect code that the tests did not catch and took off
points for that. More details on the tests are given below, and you can look at the
test functions for more details as well. If you have any questions on my grading, your
code, or my solutions, feel free to come talk to me.

One other thing — no one used a docstring correctly in the code that they sub-
mitted. While I did not take off any points if you included the correct information
as comments at the beginning of the appropriate function, I will expect you to use
them correctly when you resubmit this code for the final project. My solution for the
catalog problem illustrates how to write a docstring. You are also welcome to speak
to me if you do not understand what a good docstring entails.

1. For the catalog problem, I ran seven tests. The first six should lead to expected
execution of the code, including correctly handling a catalog that is not sorted,
and ensuring that you allowed for negative magnitudes (which are allowed!)
while I tested your codes to see if they raised an error if the number of bins was
negative.

One test case looked to see if your code still worked if the minimum magnitude
was above the largest magnitude in the catalog. I did not tell you how to
explicitly handle this case, so I accepted several possibilities — most of you raised
an assertion error (which is an acceptable strategy, in which case I accepted the
code not returning a result), while my code allows for this and just returns all
zeros. Either would have been fine.

All of you had working implementations, though not all of you did it in the
most efficient way possible. In particular, many of you first calculated the list
of bin times, and then looped over every event to check every bin to see which
one it is in. Once you found it, you kept track of this, either by incrementing
the count for that bin or remembering which bin you found so that you could
sum up the results later. This works, but note that you explicitly checked every
bin for every earthquake. If the number of earthquakes and bins is very large,
this might take a long time as you have to do a large number of unnecessary
checks.

There is a more efficient way that takes advantage of the fact that we know
that all the bins are the same size. If all the bins are the same size, then if
we know the start time ¢, the end time ¢., and the event time ¢, then we can
calculate T" = (t — t4)/(t. — ts). Since t is between the start and end times,



0 < T < 1, and it describes the timing of this event relative to all the others
in a normalized fashion. Thus, if we multiply 7" by the number of bins and
round down, we will get the bin number to which this event belongs. This way,
if we calculate int(Ny;,sT) we can eliminate the loop over all of the bins and
just proceed directly to the correct bin. Note this only works if all the bins are
the same length, so we can only use it here because of how the problem was
specified.

. For the travel times, I tested both your calc_distance function and calc_travel times
for 15 tests in total (12 tests of calc_distance and three tests of calc_travel times).
The first two tests of calc_distance were worth one point each, and the remain-

ing 10 were worth collectively two points. The final 10 tests of calc_distance
verified that you used assertions correctly to determine if the input was poorly
formatted and if the latitude and longitude numbers were in the appropriate
range. My additional tests of calc_travel times verified that you correctly
handled multiple pairs of sources and receivers, and were worth one point each.

You have a chance to correct these errors and any other coding style errors
when you resubmit your final project. However, I will not provide solutions for

any of the project code.

I suggest you correct your code right away — you are likely to forget what you
did the longer you wait, and when you do your final project you will have to
correct 4 pieces of code plus write several new things to tie everything together.
Thus, I highly recommend working on this right away. If you lost points on
coding style, I am happy to take a look at your code before the end of the term
if you want feedback on your revisions. Additionally, you are each allowed to
run my test function on your code one time at your request before resubmitting
your code at the end of the term. I will let you know how many tests you
passed, but I will not provide you with the test code.



