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Abstract

Deformation and Localization in Earthquake Ruptures
and Stick-Slip Instabilities

by

Eric G. Daub

The dynamic earthquake problem spans a broad range of length scales, from
microscopic grain contacts through faults that are hundreds of kilometers long.
A major goal of dynamic earthquake modeling is to develop friction laws that
capture the small scale physics and that can also be used to model fault scale
rupture. However, friction laws used in studying earthquake rupture are often
simply fits to data, and give little physical insight into the rupture process. The
goal of this work is to develop a model for the deformation of amorphous materials
such as granular fault gouge, and to investigate the dynamics of instabilities at
larger scales. The model is based on Shear Transformation Zone (STZ) Theory, a
microscopic physical model for plastic deformation in dense amorphous materials
such as fault gouge, granular materials, glasses, foams, and colloids. STZ Theory
captures fracture and deformation features that are observed in numerical simu-
lations, and remains tractable for modeling friction at larger scales. STZ Theory
ties fault weakening to the evolution of an effective temperature, which quantifies
the configurational disorder in the gouge and serves as the dynamic state variable
in STZ Theory.

STZ Theory predicts logarithmic rate dependence and that the length scale
for frictional evolution increases with increasing average strain rate, which are
observed in laboratory experiments. Additionally, STZ Theory captures the spon-
taneous formation and growth of narrow shear bands in the fault gouge. Shear
bands within a layer of gouge are observed in many studies of faulting, which
indicates that resolving the dynamics of shear banding is important for capturing
the small scale physics during earthquake slip.

At the scale of frictional interfaces, we investigate the role of strain localization
for stick-slip instabilities in an elastic block slider system. We perform a linear
stability analysis to predict the critical value of the spring stiffness when steady
sliding becomes unstable, and verify our results through numerical integration.
We find that when a shear band forms, steady sliding becomes unstable at a
larger spring stiffness.

v



We also investigate the implications of STZ Theory and strain localization
in dynamic earthquake simulations. We compare STZ Theory without strain
localization, Dieterich-Ruina (DR) friction, and linear slip-weakening (SW). The
dynamic rupture governed by STZ Theory accelerates more rapidly to the limiting
wave speed, exhibits a decreased peak slip rate, and transitions to supershear
rupture at a lower initial shear stress than equivalent ruptures with DR or SW
friction.

For dynamic ruptures where a shear band does form, strain localization alters
fault behavior because localization is a mechanism for dynamic weakening. The
dynamic weakening of strain localization increases the slip rate during rupture,
and also increases the stress drop. We also show that strain localization occurs
below seismogenic depths where constitutive properties are rate strengthening due
to slip propagating down dip from the seismogenic zone. Our results indicate that
the small scale physics occurring within the gouge can have a large scale impact
on the dynamics of friction and the propagation of slip on earthquake faults.
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Chapter 1

Introduction

Scientists do not have a complete understanding of the physics governing earth-
quake rupture. Earthquakes occur deep in the earth’s crust and cannot be ob-
served directly, and seismologists can only study the seismic waves that reach the
surface. Additionally, earthquakes occur at extreme physical conditions, includ-
ing high pressures and temperatures, with high pore fluid pressures, and large
amounts of slip and high slip rates. The physical conditions occurring at the
earthquake source are therefore difficult to replicate in the laboratory. All current
experimental data for earthquake slip compromises on at least one of aspect of
the physics of the source.

However, even if all of the physics of the earthquake problem were completely
understood, scientists still face the problem that earthquake faults are extrememly
complex, and involve a huge range of length and time scales. This ranges from
microscopic contacts between grains up to networks of faults that are hundreds of
kilometers long. The challenge in modeling earthquake rupture is to determine the
essential physics at a given scale, and devise a method to efficiently propagate the
information to larger scales. Time scales in the earthquake problem range from
long periods of slow loading on faults during the many years of the interseismic
period to rapid slip occurring over seconds during an earthquake. Earthquake
source models must account for processes occurring over many different time scales
during the seismic cycle.

Because there is uncertainty regarding the physics at each scale, it is difficult to
determine the expected ground motion and hazard in future earthquakes. Physics-
based models of the earthquake source are important because hazard estimates
are based on limited historical data, which do not represent the full range of
possible earthquakes. Models that are based on small-scale physics can bound
uncertainties at the largest scales, and improve our estimates of hazard.
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CHAPTER 1. INTRODUCTION

In this dissertation, we tackle the multi-scale earthquake problem by incor-
porating small scale physics into fault scale rupture models. Our goal is to use
contraints on the small scale physics to address the range of behavior at the fault
scale. This is a challenging problem that draws upon many scientific disciplines,
including physics, geology, materials science, and engineering. We combine tech-
niques and observations from these disciplines to create a dynamic rupture model
that resolves the physics at the grain scale yet is tractable for investigating earth-
quake slip at the fault scale.

1.1 Multi-Scale Nature of the Earthquake

Problem

Earthquakes occur due to an instability in the deformation of rocks in the
earth’s crust. A basic illustration of an earthquake fault is shown in Figure 1.1.
The two sides of the fault are driven in opposite directions, resulting in a strike-
slip fault. Rocks deep in the earth, shown in blue in the illustration, deform like a
highly viscous fluid due to large temperatures and pressures. The flow of the rocks
deep in the earth cause the motion of tectonic plates in the earth’s crust. The
frictional properties of rocks are different at shallower depths (0-15 km), which
is colored red in Figure 1.1. The rocks at these depths, also referred to as the
seismogenic zone, resist plate motion, and remain locked as the fault creeps at
depth at rates on the order of centimeters/year. Eventually, the force on the
rocks in the seismogenic zone becomes large enough that the material fails, and
the fault slips rapidly on the order of meters/second in an earthquake.

However, faults are more complex than simply a planar surface where rocks
slide past each other. The fault interface is filled with microscopic crushed pieces
of rock called fault gouge, and the basic contact interactions between the particles
dictate how the gouge deforms in response to large tectonic stresses. The defor-
mation of the gouge determines the frictional properties of the interface, which
controls rupture propagation along the fault that is many kilometers long. Finally,
this fault is part of a network of faults that interact with each other and determine
the global seismicity on earth. These scales are illustrated in Figure 1.2(a). At
each progressively larger length scale, the time scales also get larger, and so both
length and time can be collapsed onto a single axis that illustrates the range of
scales in the problem.

Even at a given scale, seismologists do not completely understand the underly-
ing physics because seismic slip occurs deep in the seismogenic zone. This means
that the multi-scale earthquake problem has both “horizontal” and “vertical”

2



CHAPTER 1. INTRODUCTION

slow creep at depth 
driven by plate motion 
loads seismogenic 
zone

seismogenic zone: 
locked, and slips 
suddenly during 
earthquakes

rock

fault ~15 km

rock

Figure 1.1: A basic illustration of an earthquake fault. At depth, high tempera-
tures and pressures result in steady creep of fault rocks, while in the seismogenic
zone above 15 km depth the rocks resist plate motion. Slip in the seismogenic
zone occurs in periodic earthquakes.

challenges, illustrated in Figure 1.2(b). The “horizontal” challenge refers to the
fact that seismologists do not completely understand what physical mechanisms
are important at a given scale. The “vertical” challenge indicates that scientists
need to develop robust connections between scales to determine how the physics
at the small scales controls large scale behavior.

In this dissertation, we develop a multi-scale model for earthquake rupture
that spans from grains up through faults. Our work is the first example of an
earthquake model where each scale incorporates physical mechanisms, and we seek
to understand the implications at the faults scale. Because the small scale physics
in earthquakes is poorly constrained, we utilize a model for material deformation
that is applicable to a wide range of systems and captures features from both
experiments and numerical studies. We implement this grain-scale model into
fault scale numerical simulations of dynamic earthquake rupture to place physical
constraints on fault scale slip and ground motion.

3



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: Multi-scale nature of the earthquake problem. (a) Length and time
scales range from contacts up through fault networks. The important time scales
also get progressively larger as the length scale increases, so these two scales can
be collapsed onto a single axis. (b) The multi-scale earthquake problem is both a
“horizontal” and “vertical” challenge. The “horizontal” challenge indicates that
each individual scale is a complex problem that is poorly constrained, and the
“vertical” challenge refers to the fact that models need to make robust connections
between scales.

1.2 Constitutive Laws

Modeling dynamic earthquake rupture at multiple scales requires combining
many ingredients representing the physics at each scale. At the fault scale, this
includes the elastic response of the rock and the varying elastic properties in the
velocity structure. Other effects such as plastic yielding and off-fault damage are
often included such models.

The challenge is to account for small scale physical processes, while maintain-
ing resolution at the fault scale. Traditionally, this is accomplished using a friction
law. These relations, also known as constitutive laws, determine the shear stress
on the fault, usually dependent on quantities such as the slip, slip rate, or other
dynamic variables quantifying the internal state of the fault. Here, we discuss
several different examples of friction laws traditionally used to study earthquakes.

1.2.1 Static/Dynamic Friction

The simplest example of a friction law is the static/dynamic friction law from
introductory physics. The shear stress is always proportional to the normal stress,
and the proportionality constant µ (i.e. the coefficient of friction) takes on two

4



CHAPTER 1. INTRODUCTION
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Figure 1.3: Friction laws for earthquake faults. (a) Shear stress as a function of slip
for static/dynamic friction. The fault is locked until the shear stress reaches τp,
after which the fault slips and the stress is τd. The stress changes instantaneously
from the peak value to the sliding value, which is unphysical. (b) Prescribed
shear stress evolution for the linear SW law. Slip initiates when the shear stress
reaches the peak strength τp. Over a slip distance dc, stress weakens linearly to
a constant dynamic sliding friction τd. Because the sliding friction τd is constant,
no dynamic recovery of strength occurs for the SW law. (c) Shear stress evolution
as a function of slip for the Dieterich-Ruina friction law. The evolution of shear
stress during a velocity step experiment is shown. As the sliding velocity increases
from V1 to V2 > V1, the shear stress evolves. There is an initial transient increase
in the stress, quantified by the parameter a, and an evolution over the length scale
L to the new value, quantified by the relative values of a and b.

different values. While the two sides of the fault are in stationary contact, the
coefficient of friction is the static coefficient of friction µ = µs, and once the
surfaces begin to slip the friction drops to the dynamic coefficient of friction µ =
µd. This behavior is illustrated in Figure 1.2.1(a), as the shear stress is τp = σµs
prior to slip, and τd = σµd once the fault begins to slip, where σ is the normal
stress. However, static/dynamic friction is unphysical due to the shear stress
changing discontinuously. Seismologists have proposed many modifications to
static/dynamic friction to fix this problem.

5



CHAPTER 1. INTRODUCTION

1.2.2 Slip-Weakening Friction

Linear slip-weakening [1, 2, 3] has been used extensively to study dynamic
rupture [2, 3, 4, 5, 6]. Shear stress τ is a linearly decreasing function of slip u up
to some slip-weakening distance dc, beyond which a constant stress is prescribed:

τ =

{
τp − (τp − τd) u

dc
, (u ≤ dc);

τd, (u > dc).
(1.1)

The fault is initially locked. Shear stress increases to the peak stress τp before
initiating slip, and then weakens as the fault slips (Fig. 1.2.1(b)). Stress is a fixed
function of slip, which sets the amount of energy lost to fracture and frictional
dissipation (the area under the curve plotting shear stress as a function of slip).
Because the stress τd is constant, the fault cannot regain strength once it ruptures.
The SW law is intentionally simple, and serves as a first approximation for how
stress weakens with slip.

Other variations of purely slip-dependent laws exist, including those in work
by Ohnaka [7]. Another variant of slip-weakening is what is referred to as a
cohesive zone model [8]. In a cohesive zone model, the shear stress weakens to the
dynamic friction coefficient over a specified length scale along the spatial extent
of the fault. All of these simple models provide a fix to the transition between the
constant values of static and dynamic friction. They do not incorporate healing,
as once the shear stress reaches the value specified by the dynamic coefficient of
friction, the fault cannot heal or restrengthen. The constitutive laws are simple
and depend only on a few parameters, but they do not provide much physical
insight into the small scale physics that they approximate.

1.2.3 Velocity-Dependent Friction

A common practice in engineering applications is to measure the slip rate
dependence of friction. These measurements lead to a friction law that is depen-
dent only on the slip rate, called the Stribeck curve [9]. Like slip weakening, this
friction law is simple due to its dependence on a single quantity, but does not
explain this dependence based on small scale physics. Purely velocity-dependent
friction is problematic for a number of reasons. First, dynamic earthquake rup-
tures governed by it are numerically ill-posed. This is because for an earthquake
to propagate, it must release stored elastic energy by relieving stress on the fault –
that is, the shear stress before the earthquake must be larger than the shear stress
after the earthquake. Since the fault is at rest before and after the earthquake,
this means that the shear stress changed, but the slip velocity did not. This is

6



CHAPTER 1. INTRODUCTION

not consistent with the friction law, which states that the shear stress is only a
function of slip rate. Velocity-dependent friction also has the problem that in a
spring slider model, the frictional interface never slides with a steady coefficient of
friction if the friction decreases with increasing velocity. Rather, the block moves
with successive “stick” and “slip” cycles only. Both stick-slip and steady slid-
ing are observed in laboratory experiments for velocity weakening friction, which
a velocity-dependent friction law cannot explain. To work around these prob-
lems, yet maintain the observed slip rate dependence of friction, seismologists
have constructed more complicated friction laws that depend on other quantities
in addition to the slip rate.

1.2.4 Dieterich-Ruina Friction

The Dieterich-Ruina (DR) law is a phenomenological friction law, introduced
to capture experimental observations of both steady state and transient friction
[10, 11]. The DR law assumes dependence on a single dynamic state variable in
addition to the slip rate. This state variable captures the entire history dependence
of friction through its evolution. The addition of the state variable removes the
problems with velocity dependent friction discussed above. Shear stress τ is a
function of the slip velocity V and the state variable θ. The dependence on both
rate and state is logarithmic in the DR law:

τ = σ

[
f0 + a log

(
V

V0

)
+ b log

(
θV0

L

)]
. (1.2)

Other parameters in the law are normal stress σ, constants a and b determining
the rate and state dependence, length scale L, and reference friction coefficient
and slip velocity, f0 and V0, respectively.

A dynamic equation for the state variable θ is needed to determine how the
state variable evolves. A common form for the evolution for for state evolution is
the ageing evolution equation [12],

dθ

dt
= 1− θV

L
. (1.3)

The state variable θ has dimensions of time and is often interpreted as the lifetime
of surface asperity contacts, which is consistent with experiments by Dieterich and
Kilgore [13] that imaged the dynamic evolution of contact area between sliding
surfaces at various slip rates.

The dynamic equation for the state variable is known as the ageing law, due to
the state variable evolving in time even when the surfaces are at rest. Alternative

7



CHAPTER 1. INTRODUCTION

forms for the dynamic state evolution equation have been proposed based on other
laboratory data. The most common alternative evolution equation is known as
the slip law [12], and it has the following form:

dθ

dt
= −θV

L
log

(
θV

L

)
. (1.4)

For this version of the DR law, the state variable evolves only if the surfaces are
sliding. The ageing law fits data better for rock healing, while the slip law fits
data better for the frictional response of a velocity step. A composite law was
proposed by Kato and Tullis [14] to combine the advantages of the ageing law for
healing and the slip law for rapid changes in sliding. The composite law takes the
form

dθ

dt
= exp (−V/Vc)−

θV

L
log

(
θV

L

)
. (1.5)

The composite law introduces a crossover velocity Vc. For V = 0, the composite
law becomes dθ/dt = 1, which matches the ageing law, while if V >> Vc, the
exponential term is negligible and the evolution equation matches the slip law.

The meaning of the frictional rate parameters are best understood through
a velocity step experiment, illustrated in Figure 1.2.1(c). A frictional interface
is sheared at a constant slip rate V1, and reaches steady state. The slip rate
is then suddenly increased to V2 > V1, and the friction evolves to a new value
as the interface is sheared. Figure 1.2.1(c) illustrates the evolution of the shear
stress with slip. There is a transient increase in the friction coefficient, with a
magnitude of a. The change in the steady state friction is (a − b). This shows
that a determines the transient response to a change in slip rate, and the relative
values of a and b determine how the steady-state value changes with slip rate.
The length scale over which the friction evolves is determined by L.

The relative values of a and b determine the rate dependence of friction in
the DR law. If a > b, then the coefficient of friction increases as the slip rate
increases. This type of material is known as rate strengthening – as the driving
rate increases, so does the shear stress. If a < b, then the coefficient of friction
decreases as the slip rate decreases. This type of material is known as rate weak-
ening. The rate dependence of friction is an important quantity when studying
dynamic earthquake rupture, as unstable earthquake rupture only occurs with
rate weakening parameters.

Laboratory studies examined the effect of temperature on the rate dependence
of friction [15, 16, 17]. Data from one such study is shown in Figure 1.2.4. The
friction is rate strengthening at low temperatures, then transitions to rate weak-
ening, and at high temperatures above 300◦C friction is rate strengthening again.

8



CHAPTER 1. INTRODUCTION

Figure 1.4: Data illustrating the effect of temperature on the frictional rate depen-
dence. At low temperatures, friction is rate strengthening, but at temperatures
corresponding to seismogenic depths, friction is rate weakening. At high temper-
atures, friction returns to rate strengthening, indicating that faults simply creep
below the seismogenic zone. Figure taken from Scholz [18] (Reprinted with per-
mission. Copyright 1998 by Macmillan Publishers Ltd.).

The range of temperatures that produce rate weakening correspond to about 2
km to 15 km depth on a vertical strike-slip fault. Earthquake hypocenters occur
mostly between those depths, which confirms that rate weakening friction is a
crucial quantity for determining if earthquakes can occur on a fault.

The logarithmic rate dependence of the DR law is problematic at V = 0. To
fix this problem, several regularizations have been proposed for using the DR laws
in earthquake models. These include adding a small cutoff velocity to the slip rate
[19] and changing the logarithm to an inverse hyperbolic sine [20]. The need to
regularize the DR laws underscores the fact that like other friction laws discussed
above, the law is simply a fit to data and does not have a physical basis.

Another problem with the DR law is that the experiments it is based on differ
greatly from the conditions in the earth’s crust. Seismic slip rates are on the
order of meters/second, while the experiments that led to the development of the
DR law range from microns/second to millimeters/second [10]. Recent laboratory
experiments at high slip rates show that friction at seismic slip rates is much lower
than the values predicted by extrapolation of the logarithmic weakening in DR
friction [21, 22]. Low friction at seismic slip rates significantly alters earthquake
slip in dynamic rupture models [23]. It is therefore important to develop physical
models of fault slip that account for this change in behavior at seismic slip rates.

Note that in the DR law, the state variable is governed by an ordinary dif-

9



CHAPTER 1. INTRODUCTION

ferential equation. This means that the entire history dependence of friction can
be summarized by one quantity in DR friction. However, fault zones are highly
complex structures, and it is likely that more degrees of freedom beyond a sin-
gle dynamic quantity are necessary for determining the frictional properties of an
earthquake fault. These additional degrees of freedom are needed to account for
physical processes and provide an efficient way to capture the frictional properties
of the fault.

1.3 Plastic Deformation in Amorphous

Materials

Rock mechanics experiments and the phenomenological friction laws that are
based on their observations are widely used in seismology. However, friction laws
that are simply fits to data provide limited physical insight, and may fail when
extrapolated to the extreme conditions in the earth’s crust. Therefore, a better
approach is to develop a friction law that is based on microscopic physics and uti-
lizes additional degrees of freedom to incorporate observations of how amorphous
materials such as fault gouge deform and fail.

Physicists, engineers, and materials scientists are interested in understanding
the dynamics of amorphous materials such as granular materials, glasses, colloids,
foams, emulsions, and thin films. All these materials are composed of particles
(grains, atoms, bubbles, molecules) that are arranged so that their centers of mass
are disordered. What is interesting about these materials is that they exhibit both
solid-like and fluid-like dynamics. Under certain conditions, amorphous materials
behave like solids – deformations are elastic (shear stress is proportional to the
shear strain), the material exhibits a yield stress, and the material is “jammed.”
Other conditions produce dynamics that are more like a fluid – the shear stress
depends on the strain rate instead of the strain, and the material flows like a fluid.
An example of this is sand at the beach. Sand supports the static load of a person
standing on the beach, but sand also flows through the fingers of a person that
scoops up a handful.

When a collection of particles is deformed, the resulting particle displacements
can be approximated by two components – affine displacements, where the indi-
vidual particle displacements are uniform (elastic), and non-affine displacements,
where the individual particle motions are heterogeneous (plastic). The uniform
displacements produce material behavior that is like an elastic solid, and this
component of the motion is well-described by linear elasticity. The non-affine de-
formation is more complicated, and requires new models to describe the material
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properties.
Molecular dynamics or discrete element simulations are frequently used to

study the dynamics of amorphous materials [24, 25, 26, 27, 28]. An example of
a simulation of a glass is shown in Figure 1.5 [26]. The material is under tensile
strain, but the deformation in the material results in shear deformation (indicated
by the arrows). The dark regions show where non-affine deformation occurs in
the material. The plastic deformation is localized to a narrow shear band, which
is a common mechanism of failure in amorphous materials.

While these simulations do provide insight into how these materials deform,
they are not efficient for studying larger scale behavior, as keeping track of the
position and momentum of a large number of particles requires extensive compu-
tational resources. Instead, physicists would like to develop a continuum model to
describe the deformation of amorphous materials, much like continuum mechanics
models describe solids and Navier-Stokes equations describe fluids. Engineers gen-
erally base models for amorphous materials on empirical laws that fit laboratory
data (such as velocity dependent friction), and these laws do not provide much
physical insight into the deformation processes.

Molecular Dynamics simulations show that non-affine, or plastic, deforma-
tion in amorphous materials occurs when localized regions rearrange from one
metastable configuration to another [24, 25]. A picture of one of these regions
undergoing rearrangement between the two orientations is shown in Figure 1.6.
These zones are known as Shear Transformation Zones (STZs), and STZ theory
captures many features of experiments such as a yield stress and fracture. As the
particles are sheared, the ellipse drawn through the center of the particles changes
its orientation, and plastic deformation occurs (indicated by the dark regions in
the image on the right). STZs are created and annihilated as energy is dissipated
in the system, which allows the material to accumulate plastic strain. Therefore,
instead of simulating every single particle in the system, we can capture the de-
formation by tracking the number of STZs and how frequently they flip. This
approach results in a friction law that is tractable for modeling earthquake slip
at the fault scale. However, we still need to determine the number of STZs. This
requires finding a quantity that characterizes the internal degrees of freedom in
an amorphous material.

Amorphous materials are poorly understood partially because they are sys-
tems far from equilibrium. Statistical mechanics provides a good description of
equilibrium systems, but when systems of a large number of particles are actively
provided with energy, the tools of equilibrium statistical mechanics are not use-
ful. New techniques that describe the dynamics of systems that are driven away
from equilibrium must be developed in order to understand amorphous materials.
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Figure 1.5: Image from a simulation of a glass under tensile strain. The result-
ing deformation shears the material, indicated by the arrows. The dark regions
indicate where non-affine, or plastic, deformation occurs. The deformation local-
izes to a narrow shear band, which is common in the deformation of amorphous
materials. Figure taken from Falk and Shi [26].
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Figure 1.6: Plastic strain in a glass is accommodated in local regions called
Shear Transformation Zones that rearrange between two metastable orienta-
tions. Initially, the particles are configured so that an ellipse drawn through
their centers is oriented in one direction (left). As the material deforms plas-
tically, the ellipse changes its orientation (right), and the dark regions indicate
that plastic deformation has occurred. Figure taken from Falk and Langer [24]
(Reprinted with permission. Copyright 1998 by the American Physical Society.
http://link.aps.org/abstract/PRE/v57/p7192).

Sheared amorphous materials are constantly provided with energy, which is dissi-
pated as the material flows. These materials frequently are stuck in a metastable
disordered state instead of the lowest energy crystalline state. The thermal tem-
perature does not describe the internal state of the system, and in the case of
granular materials and other athermal systems, the thermal temperature can be
completely irrelevant. Therefore, the challenge is to develop one or more macro-
scopic state variables (such as the state variable in DR friction) that quantifies
the statistical properties of the internal degrees of freedom of the material.

One idea for such a state variable for amorphous materials is what is known
as effective temperature [29]. In thermodynamics, temperature T is defined based
on the partial derivative of the entropy S with respect to the internal energy E:

1

T
=
∂S

∂E
. (1.6)

The energy in this case is the internal energy of the individual constituents of the
system. The effective temperature χ is defined by the partial derivative of the
entropy S with respect to the potential energy U of the packing:

1

χ
=
∂S

∂U
. (1.7)
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The idea is that there is far more disorder in the packing of the system than
there is in the kinetic degrees of freedom, and that the effective temperature
better describes the internal state of an amorphous material than the thermal
temperature.

Our approach in this thesis is to model deformation in amorphous materials
using STZ Theory and effective temperature [29]. STZs are regions that are
susceptible to plastic deformation because they are more disordered. An elevated
effective temperature means that there are more STZs, and we can determine the
number of STZs based on the value of the effective temperature. In addition to
providing a physical basis for deformation in materials, the additional degrees of
freedom captured by the effective temperature models strain localization, which
is an important aspect of the deformation of amorphous materials.

1.4 Strain Localization

One aspect of the grain-scale physics that is of particular interest in this thesis
is strain localization. Strain localization is the tendency of deformation in an
amorphous material such as fault gouge to occur in a narrow band rather than
throughout the material. This phenomena is illustrated in Figure 1.7, which
plots the flow profile (top) and the strain rate profile (bottom) for homogeneous
and localized deformation in simple shear. Figure 1.7(a) shows the profiles for
homogeneous deformation. In this case, the strain occurs uniformly throughout
the entire layer. This is the expected flow profile for a Newtonian Fluid. Strain
localization occurs in Figure 1.7(b). In this situation, flow is confined to a narrow
region, and the portions of the material above and below move intact with the
boundaries. There is a peak in the strain rate profile when localized strain occurs.
Strain localization tends to occur in many different amorphous solids, including
fault gouge [30] and bulk metallic glasses [31, 26].

Localized strain within a layer of fault gouge is observed in a wide range of
studies of faulting. One example is numerical simulations of a layer of fault gouge
[30]. In these numerical studies, a collection of gouge particles with a distribution
of particle diameters is sheared. The simulations produce results similar to the
glassy material shown in Figure 1.5 [26]. Deformation localizes to a region narrow
relative to the entire thickness of the material.

Localization is also observed in rock friction laboratory experiments [32, 33,
34, 35]. In these experiments, a layer of fault gouge is sheared between two larger
blocks, and the frictional strength is measured. After the experiment is complete,
the microstructures that develop in the gouge are examined, and localized strain
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Figure 1.7: Illustration of homogeneous and localized deformation in amorphous
materials. The upper picture for each type of deformation shows the flow profile
in the material, and the lower picture shows the strain rate as a function of
position. (a) Homogeneous deformation occurs throughout the material. The flow
transitions from the top boundary to the bottom boundary in a smooth manner,
and the strain rate is uniform throughout the layer. (b) Localized deformation
results in a sharp transition from flow in one direction to flow in the other. The
upper half of the material moves in unison, as does the lower half of the material,
with deformation occurring in a narrow region in the middle. There is a peak in
the strain rate for localized deformation.
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Figure 1.8: Field observations from an exhumed earthquake fault. The fault was
formerly at seismogenic depths, where it experienced many earthquake cycles prior
to uplift bringing it to the surface. The fault contains a layer of a finely crushed
fault gouge (dark material), and the slip in the gouge is localized in a narrow shear
band (yellow arrows). Figure adapted from Chester and Chester [37] (Reprinted
with permission. Copyright 1998 by Elsevier.).

is observed.
Shear bands in fault gouge are also seen in field observations of exhumed

faults [36, 37, 38]. An exhumed fault was formerly at seismogenic depths, where
it experienced many earthquake cycles, and through uplift and erosion is now at
the surface. Observations of exhumed faults indicate that most of the deformation
is localized to a narrow shear band, also known as a prominent fracture surface,
within the fault zone. Figure 1.8 illustrates the observed features of the fault core
of the Punchbowl Fault in Southern California [37]. Similar observations were
made on the Median Tectonic Line in Japan [38].

Strain localization is also observed in rocks that are deformed in a ductile
manner below the seismogenic zone [39], illustrated in Figure 1.9. At the high
temperatures and pressures deep in the earth’s crust, rock friction is rate strength-
ening [15, 16, 17]. This means that as the material is driven at a larger strain
rate, the frictional resistance increases. Earthquakes cannot nucleate in regions
with rate strengthening frictional properties, and instead the fault creeps slowly.
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Figure 1.9: Rocks deformed below the seismogenic zone. At the large temperatures
and pressures deep in the earth, the rock deforms in a ductile manner. (a) The
fabric in the rocks is due to a combination of broad, ductile shear, and localized
strain from earthquakes that originate in the seismogenic zone and propagate to
depth. The broad shear is indicated by the diagonal lines, and the localized coseis-
mic slip produces the horizontal lines. (b) Field observations of this deformation.
The blue lines indicate the ductile shear, and the red lines show the location of
localized shear. Figure adapted from Simpson [39].

This results in a broad shear fabric forming in the rocks, shown as the diagonal
lines in Figure 1.9(a) and the blue lines in Figure 1.9(b). The localized strain in
these rocks occurs instead when earthquakes nucleate in the seismogenic zone and
propagate down to the creeping region – the horizontal lines in Figure 1.9(a) and
the red lines in Figure 1.9(b). The combination of slow, broad shear during the
interseismic period and localized coseismic strain produces a distinct fabric in the
rocks.

Localization does not occur in all fault zones, as demonstrated by observations
from the San Andreas Fault Observatory at Depth (SAFOD) project [40]. The
SAFOD observations involve drilling through the actively creeping portion of the
San Andreas Fault near Parkfield, CA. Samples of the fault zone show no fracture
surface or other localized deformation within the fault gouge in the San Andreas
[41]. Instead, the core samples show that deformation occurs throughout two
gouge layers that are each a couple of meters thick.

The variety of observations of localization, both in the field and in other stud-
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ies, highlights the need to develop models that explain localization on a physical
basis. One of the problems of simple friction laws such as slip weakening or
Dieterich-Ruina is that the laws do not explicitly account for localization. Fric-
tion experiments exhibit localization, which means that constitutive parameters
extracted from these experiments reproduce the frictional strength of localized
shear. However, it is preferable that the friction model explicitly captures the
strain profile in the fault zone, and dynamically chooses if strain is broad or local-
ized. This allows us to explore how the dynamics of strain localization influence
larger scale frictional behavior and the propagation of earthquake ruptures.

1.5 Dynamic Earthquake Rupture

At the fault scale, dynamic ruptures propagate in space and time due to in-
stabilities in the nonlinear friction law governing rupture. Ruptures are modeled
by solving for the elastodynamic response of two large blocks of rock governed by
a friction law at their interface. The fault is loaded with an initial shear stress,
and rupture is initiated by increasing the stress on a small patch. The model then
solves for the spontaneous propagation of slip along the fault, and the resulting
ground motion at the earth’s surface.

A simple example of rupture propagation in a dynamic earthquake simulation
is shown in Figure 1.10. The simulation shows the evolution of slip rate as a func-
tion of space and time. The rupture nucleates at the center and it spontaneously
propagates out to the edges of the fault. The rupture front approaches a limiting
speed (slightly less than the shear wave speed), and the largest slip rate occurs
right behind the rupture front because strain energy is being released rapidly from
the elastic bulk.

An important area of research in seismology is to determine the range of ex-
pected ground motions in earthquakes. Dynamic rupture modeling has revealed
several aspects of rupture that affect fault scale ground motion. Here, we discuss
these source properties and how the friction law governing rupture propagation
plays a central role in determining the effect on ground motion.

1.5.1 Heterogeneities

Heterogeneities in the shear stress and frictional properties contribute to ground
motion in a variety of ways. An example of a rupture with heterogeneous initial
conditions in the shear stress and frictional properties is shown in Figure 1.11.
This type of heterogeneity affects rupture over all of the fault, and consequently
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Figure 1.10: Dynamic rupture propagation in space and time on a simple earth-
quake fault. The plot shows the slip velocity as a function of space and time.
Rupture nucleates at the center of the fault, and the rupture spontaneously grows
until it encounters the edge of the fault. Slip accelerates quickly up to the lim-
iting wave speed, which is slightly less than the shear wave speed in the rock.
The largest slip rates occur right behind the rupture front, as that is where strain
energy is being released from the elastic bulk.
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Figure 1.11: Slip rate and shear stress as a function of position for a dynamic
rupture with heterogeneous initial stress and friction parameters at several times.
The plot shows the slip rate and shear stress at 7.5 km depth. The heterogeneity of
the initial stress result in a slip rate that is heterogeneous as a function of position,
and the rupture velocity is only 80% of the shear wave speed. Additionally,
because the rupture encounters the edge of the fault on the left of the plot, rupture
to the left arrests and rupture propagates to the right in a pulse-like manner.

it also impacts the ground motion in the earthquake. Heterogeneities that only
affect a small area of the fault are also important for determining the ground
motion in an earthquake. These smaller heterogeneities include asperities, which
are heterogeneities in the shear stress, and barriers, which are heterogeneities in
the frictional properties.

An asperity is a fault region with an elevated pre-stress. A rupture that
encounters an asperity ruptures at a larger rupture velocity (either by accelerating
to the limiting wave speed, or by nucleating supershear rupture) and radiates
additional seismic energy. This is because the increased pre-stress means that
there is more elastic strain energy released during fault slip, which is radiated
away from the fault. The effect of a small asperity with an elevated prestress on
a dynamic rupture is shown at the left in Figure 1.12 [42].

Barriers are strong regions on the fault, with an elevated strength (larger peak
shear stress in a slip-weakening model, or larger direct effect a in the DR law).
Ruptures that encounter a barrier slow and can arrest, but the rupture can break
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Figure 1.12: Dynamic rupture simulations with a small asperity or barrier on the
fault. The left plots show rupture propagation with an asperity with an elevated
initial shear stress. The asperity causes the rupture to reach supershear rupture
speeds, and there is a pulse in the ground motion away from the fault. The right
plots show the rupture dynamics from a strong frictional barrier, which slows the
rupture and produces a delayed pulse in the ground motion away from the fault.
Figure taken from Page et al. [42].
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through the barrier by slipping in areas adjacent to the barrier and focusing its
energy in the barrier. If the rupture manages to break the barrier, the ground
motion at the surface is changed. This is because the resistance of the barrier
stores up elastic strain energy, which is released quickly once the barrier breaks.
Because the rupture slows upon encountering the barrier, and then accelerates
upon breaking the barrier, the barrier changes the ground motion away from the
fault. Rupture propagation and ground motion for a rupture that encounters a
barrier is shown at the right in Figure 1.12 [42].

Numerous other studies have investigated the role of heterogeneities in dy-
namic rupture models [4, 5, 43, 44]. These models show that realistic stress
heterogeneities produce dynamic ruptures that take a complex path across the
fault [45]. This indicates that heterogeneity is an essential aspect of reproducing
the ground motions in real earthquakes. However, an underlying aspect of the
friction law may still play an important role in earthquake rupture. Therefore,
seismologists still employ simple rupture models to isolate the effect of constitu-
tive laws and gain insight into the effects of friction. In this thesis, we focus on
simple ruptures to ensure that our simulations examine the fault scale impact of
small scale physics. Friction laws impact other aspects of dynamic rupture even
on simple faults. These include the rupture speed and the type of rupture, and
we discuss the effect of these aspects on ground motion in the following sections.

1.5.2 Rupture Speed

The speed at which the rupture front propagates along the fault plays a sig-
nificant role in determining the ground motion in an earthquake. The frictional
properties of the fault dictate the rupture speed, as an earthquake can rupture
through a frictionally weak fault with a large rupture velocity, but a rupture that
encounters strong barriers to rupture cannot reach as large a rupture velocity.
The friction law also plays a key role in nucleating supershear ruptures that travel
faster than the shear wave speed [46].

Rupture speed is important due to the effects of directivity [47]. Directivity
is the increase in frequency of ground shaking due to the Doppler effect. Ground
motion in the rupture direction has a larger high frequency content. The faster
the source is moving along the fault, the larger the Doppler shift, and so fast
moving ruptures alter the expected ground motion.

A fault with many frictional barriers leads to lower rupture speeds, as the
rupture dissipates additional energy to break through the strong patches on a fault.
Lower values of the initial stress also slows down ruptures, as less strain energy
is released from the elastic bulk. Less released strain energy also decreases the
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energy that can be radiated as seismic waves, decreasing the intensity of ground
shaking. Heterogeneous distributions of friction parameters and the initial stress
also influence ground motion. If the strong patches (high frictional resistance
or low initial stress) are small and evenly distributed throughout the fault, the
earthquake must break through them in order to rupture the entire fault, and a
lower rupture velocity occurs. An example of this is shown in Figure 1.11, which
includes plots of slip velocity and shear stress as a function of position for several
times during a dynamic rupture. The shear stress plots show that the initial stress
is extremely heterogeneous, and this leads to a rupture velocity that is only about
80% of the shear wave speed. Less heterogeneous ruptures can reach speeds of
94% of the shear wave speed, or even exceed the shear wave speed in the case of
supershear rupture. If the strong patches are grouped together, then the rupture
can reach faster rupture speeds by following the large weak patches across the
fault [48].

Rupture speed can also impact ground motion by the rupture exceeding the
shear wave speed [49]. In these supershear ruptures, the rupture front propagates
faster than the shear wave speed. An example of supershear rupture propagation is
shown in Figure 1.13(a), which plots slip velocity as a function of position along the
fault. A supershear rupture typically starts out as a rupture propagating slower
than the shear wave speed, and then supershear rupture nucleates out ahead of the
subshear rupture and propagates faster than the shear wave speed. This is shown
in Figure 1.13(a), as the largest peak in the slip rate is the rupture traveling at
subshear speeds, and the smaller peak closer to the ends of the fault are traveling
faster than the shear wave speed. Supershear ruptures only occur for in-plane
slip, where the rupture propagation direction and the sense of slip on the fault are
identical. In this geometry, ruptures can propagate at speeds below the Rayleigh
wave speed (slightly less than the shear wave speed), and above the shear wave
speed, but not between the Rayleigh and shear wave speeds. Ruptures cannot
propagate at speeds in this “forbidden” region because energy is not dissipated at
the crack tip in these solutions, which is unphysical [49]. Supershear earthquakes
are important for determining ground motion because supershear rupture speeds
produce shear waves that do not attenuate with distance from the fault [49]. This
results in large ground motions significantly further from the fault than for sub-
Rayleigh ruptures. Transient increases in rupture velocity to supershear speeds,
as opposed to sustained supershear rupture, can also occur due to barriers that
require rupture fronts to focus their energy on breaking the strong patch [50].

The initial shear stress on the fault and the frictional length scale (dc in a
slip-weakening law, or L in a DR law) both determine if a rupture can reach
supershear speeds [46]. A high shear stress and a small frictional length scale
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Figure 1.13: Illustration of different ways that earthquakes can rupture a fault.
The plots show slip velocity as a function of position along the fault. (a) Supers-
hear rupture occurs at high stresses and small frictional length scales. The rupture
begins at a subshear rupture speed (larger inner peaks on the slip rate curve), but
rupture that exceeds the shear wave speed nucleates shortly thereafter (smaller
outer peaks on the slip rate curve). (b) Crack-like rupture propagation occurs at
intermediate values of the shear stress. In a crack-like rupture, the center of the
fault continues to slip for the duration of the earthquake. (c) Pulse-like rupture
propagation, where a point on the fault slips and then heals shortly thereafter.
Pulse-like rupture can occur due to rupture in one direction arresting, or in a
self-healing manner. Self-healing pulses occur for low values of the initial shear
stress, and only occur for friction laws that exhibit time-dependent healing.
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favor supershear rupture propagation. Any heterogeneity in the shear stress or
friction law also plays a role, as large patches of high initial stress or small frictional
length scale tend to result in supershear rupture [51].

1.5.3 Rupture Types

Slip can propagate in space and time on a fault a fault in different ways.
Many dynamic rupture simulations produce crack-like rupture [52, 2, 3, 5], which
is shown in Figure 1.13(b). In an expanding crack rupture, the earthquake initiates
at the hypocenter and propagates bi-laterally until it reaches the fault boundaries
or strong patches that it is unable to break. The rupture then arrests, which means
that the hypocenter slips for the entire duration of the earthquake. Ruptures with
slip-weakening friction usually produce crack-like slip profiles due to the lack of
healing in the constitutive model.

Alternatively, the rupture can propagate as a self-healing pulse. Figure 1.13(c)
shows the slip rate as a function of position for a self-healing pulse. In the case of
a self-healing pulse, a point on the fault slips and then heals shortly afterwards.
Every point on the fault slips for much less than the duration of the earthquake,
which produces a slip profile that differs from an expanding crack. A pulse-like
rupture starts out in a crack-like manner, but soon afterwards the center of the
fault heals, and the earthquake remains pulse-like for its duration. Pulse-like
rupture requires a time-dependent healing mechanism to arrest slip. Zheng and
Rice [19] found that pulse-like rupture also requires low initial shear stress and
friction that weakens strongly with slip velocity. These ruptures tend to have
larger slip rates than crack-like slip, but a shorter slip duration. The ground
motion in earthquakes is sensitive to the slip duration (rise time), which indicates
that pulse-like rupture produces ground motion different from a crack-like rupture.
Earthquake observations indicate that rupture often occurs in a pulse-like manner
[53]

Pulse-like rupture can occur in slip-weakening friction laws when a bi-lateral
rupture encounters a barrier to rupture (low shear stress or strong frictional prop-
erties) in one direction [54]. These pulse-like ruptures are different from self-
healing pulses in that the fault heterogeneity, and not the friction law, are respon-
sible for the arrest of slip. An example of a pulse-like rupture that occurs due to
a strong barrier in one direction is shown in Figure 1.11. Heterogeneities can also
produce pulse-like rupture [43, 55].
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1.6 Dissertation Outline

Our goal in this work is to explore the implications of microscopic plastic
deformation and strain localization across scales in friction and earthquake rupture
problems. This is a “vertical” approach to the multi-scale earthquake problem,
and we investigate the larger scale impact of strain localization in earthquake
rupture. In general, the dissertation is organized by scale, and we move from
smaller to larger scales. The earlier chapters outline how STZ Theory captures
grain scale physics and interface scale friction dynamics, and the later chapters
focus on fault scale dynamic ruptures. The one exception is in Chapter 6, where
we look at both laboratory scale deformation and fault scale rupture with rate
strengthening materials.

First, we start at the grain scale and discuss our constitutive model for amor-
phous materials. We develop the general STZ constitutive equations, as well as
some simplifying assumptions and limiting cases. In general, the effective tem-
perature in the STZ model is governed by a partial differential equation, which
has many more degrees of freedom than a single state variable governed by an
ordinary differential equation (i.e. DR friction). However, if the strain rate is
uniform across the width of the material (homogeneous strain in Figure 1.7), then
the governing equation for the effective temperature reduces to an ordinary dif-
ferential equation. This version of the STZ model is known as the Free Volume
law.

We show that the STZ equations match the logarithmic rate dependence ob-
served in laboratory experiments. The important differences between the STZ and
DR laws relate to the frictional length scale, and the formation of shear bands.
The STZ law predicts that the frictional length scale should increase with in-
creasing slip rate, which matches observations from laboratory experiments. The
formation of a shear band also has important implications for friction, as a shear
band reduces the frictional length scale, and decreases the dynamic sliding friction.
Our research explores the large scale implications of these important differences
in friction dynamics.

At the interface scale, we explore how strain localization impacts the dynam-
ics of friction. In particular, we examine the effect of shear bands on stick-slip
instabilities in sheared amorphous materials. We find that localization has a mea-
surable effect on the parameter ranges that produce stick-slip motion, and we
perform a linear stability analysis to predict when motion transitions from steady
sliding to stick-slip. Our predictions are confirmed through numerical integration,
and we also explore the role of strain localization in irregular stick-slip events.

We explore the impact of STZ theory with and without localization at the
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fault scale. We study rupture propagation on simple 2D faults with uniform
stress and frictional properties to focus on the effects of constitutive laws. For
the FV law, we make careful comparisons between friction laws to assess the fault
scale consequences of a frictional length scale that increases with increasing slip
rate. We examine the slip rate on the fault, the manner in which shear stress
weakens with slip, and when supershear rupture nucleates on the fault. We also
explore how the difference in the frictional length scale effects rupture governed by
friction laws with rapid velocity weakening at seismic slip rates. We compare the
FV and DR laws to determine when ruptures with rapid weakening transition to
supershear, and when rupture propagates as a self-healing pulse. Our results show
that changing the microscopic physics has fault scale consequences for dynamic
rupture.

In a similar manner, we look at the role of strain localization in fault scale
dynamic rupture. We compare FV law ruptures, where the strain rate does not
vary across the width of the fault zone, and STZ ruptures where the effective
temperature dynamics dictates the strain rate profile in the fault zone. We look
at the dynamics of localization during an earthquake rupture, and compare the
evolution of shear stress as a function of slip. We also determine when rupture
propagates as an expanding crack, supershear crack, and expanding pulse as a
function of the shear band width. This demonstrates that the dynamic weakening
of strain localization can affect fault scale aspects of dynamic rupture propagation.

The results discussed above explore implications of localization in rate weak-
ening materials. Rate strengthening materials are also extremely important, and
include rocks at high temperatures and pressures below the seismogenic zone, and
metallic glasses. Chapter 6 discusses the effect of localization in these systems,
which exhibit a variety of types of deformation. We briefly look at localization in
glassy materials, and discuss the implications of strain localization for deformation
in rocks below the seismogenic zone.

Finally, we discuss the importance of these results in Chapter 7, and examine
other avenues for further research.
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Chapter 2

STZ Friction Law

We begin our study of the multi-scale earthquake problem at the smallest scale
of grains. We outline the physical basis for the Shear Transformation Zone (STZ)
model, which captures the physics occurring at the grain and gouge scale of the
earthquake problem. The STZ model is used to incorporate the small scale physics
in all of the larger scale studies throughout this dissertation. This ranges from
the interface scale in laboratory experiments to the fault scale in earthquakes.

The introduction presents the basic ideas for STZ Theory, and this chapter
builds upon these basic assumptions and develops the mathematical equations
of the theory. Because all of the larger scale studies rely on the STZ model,
the discussion is drawn from several papers. This includes work that discusses
the Free Volume version of STZ Theory by Daub and Carlson that is published
in the Journal of Geophysical Research [56], as well as research that uses the
effective temperature version by Daub, Manning, and Carlson that is published
in Geophysical Research Letters [57].

2.1 Basic Assumptions

As discussed in the introduction, we model friction with STZ Theory, a con-
tinuum approximation for plastic deformation in dense amorphous solids. STZ
Theory has been applied to a wide variety of systems, including fracture of glassy
materials [24, 25], boundary lubrication [58], and granular flow [27]. Because the
physics at the smallest scales is poorly constrained in the earthquake problem, we
use STZ Theory in our simulations because is captures the observed microscopic
deformation in many different materials.

The deformation of an amorphous solid can be approximated by two com-
ponents – affine displacements, where the individual particle displacements are
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uniform (elastic), and non-affine displacements, where the individual particle mo-
tions are heterogeneous (plastic). Simulations of sheared amorphous materials
indicate that the non-affine displacements tend to occur in small, localized re-
gions, called Shear Transformation Zones (STZs) [24, 25] The simulations find
that these STZs constitute a small collection of particles switching between two
metastable orientations under applied shear stress.

STZs switch between two metastable orientations, denoted “positive” and
“negative.” When a “positive” orientation changes to a “negative” orientation,
the plastic strain increases by a fixed increment, and when a “negative” orienta-
tion switches to a “positive” orientation, the plastic strain decreases by a fixed
increment. An STZ undergoing a switch from “positive” to “negative” is shown in
Figure 1.6. Once an STZ has switched to the “negative” orientation, the material
cannot shear further at that location. Therefore, to accumulate shear the material
is constantly creating and destroying STZs as energy is dissipated in the system.

The STZ friction model incorporates the microscopic observations of non-affine
particle displacements by assuming that all plastic deformation occurs through
STZ rearrangements. Each reversal from one orientation to the other accumu-
lates a certain amount of plastic strain, and a threshold shear stress must be
applied for the reversal to occur. STZ Theory treats the populations of the two
STZ orientations as dynamic state variables. STZs can flip from one orientation
to the other, and are created and destroyed as the system is sheared. Creation
and annihilation drive the number density of STZs towards a Boltzmann distri-
bution, with an effective temperature χ. The effective temperature describes the
configurational disorder in the material. Regions that have a higher effective tem-
perature are more disordered, have a higher density of STZs, and accommodate
more plastic strain.

Quantitatively, STZ theory determines the plastic strain rate γ̇ in the material
based on two factors: the effective temperature, which determines the number of
STZs, and the shear stress τ , which determines how frequently the STZs switch
orientation. We summarize these two contributions as follows:

γ̇ = f (τ) exp (−1/χ) . (2.1)

The function f(τ) describes how the STZ reversals depend on the shear stress,
and the effective temperature term exp(−1/χ) determines the total number of
STZs. This approach is far more efficient than simulating every single particle
in the fault – instead, we simply determine the number of STZs by tracking
the evolution of the effective temperature, and the shear stress determines how
frequently the STZs change orientation.
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In the following sections, we derive Equation 2.1 and the evolution equation for
the effective temperature. We also discuss the Free Volume Law, a simplification
to the STZ model that assumes that shear strain is homogeneous throughout the
material [59]. Finally, we examine the dynamics of friction in the STZ model and
show that the small scale physics can affect the larger scale dynamics of earthquake
rupture and material deformation.

2.2 STZ Equations

STZ Theory calculates the plastic strain rate γ̇ based on four quantities: the
shear stress τ , the number of STZs in each of the two possible orientations n+ and
n−, and the effective temperature χ [29]. The number of STZs in each orientation
and the effective temperature quantify the internal state of the material. In this
dissertation we incorporate a typical approximation which assumes the number of
STZs in each orientation is equal to its steady state value. This approximation is
valid when the STZ time scale is much faster than other dynamical processes in
the problem. Here, we present the details of the derivation of the STZ equations
and the simplifying assumptions necessary for setting the STZ populations to
steady state.

Quantitiatively, the basic premise of STZ Theory can be written as follows:

γ̇ =
2ε

n∞t0
[R (+τ)n+ −R (−τ)n−] . (2.2)

The plastic strain rate γ̇ is the net sum of all the STZ reversals in the material.
The function R(τ) describes the rate at which STZ reversals take place in response
to the applied shear stress. The other parameters are the strain increment per STZ
reversal ε, a reference STZ population n∞, and the time scale for STZ reversals
t0.

Equation (2.2) can be rewritten with the following change of variables:

Λ =
n+ + n−
n∞

, m =
n− − n+

n+ + n−
. (2.3)

The variable Λ is proportional to the total number of STZs, and m quantifies the
bias. With these variables, the constitutive law becomes

γ̇ =
2ε

t0
C (τ) Λ [T (τ)−m] . (2.4)
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The rate switching function is rewritten in the combinations C(τ) = (R(τ) +
R(−τ))/2 and T (τ) = (R(τ) − R(−τ))/(R(τ) + R(−τ)) in this version of the
constitutive law.

In this dissertation, we assume an exponential form for the rate switching
function [60]:

R (τ) = exp (−f0 + τ/σd) . (2.5)

The rate switching function depends on an activation stress σd, and an activa-
tion energy scaled by the thermal energy. The activation stress is known as the
direct effect stress in rock mechanics experiments – its magnitude is typically
much less than the shear stress (τ/σd >> 1). This form for R(τ) reproduces
the logarithmic rate dependence seen in rock mechanics experiments [56]. Other
forms for R(τ) have been proposed, including functions with a power law de-
pendence on the stress [61]. The rate switching function combinations are then
C(τ) = exp(−f0) cosh(τ/σd) and T (τ) = tanh(τ/σd). Under the approximation
that τ/σd >> 1, we set T (τ) ≈ 1.

The STZ populations dynamically evolve as the material is sheared. The STZs
can switch between the two orientations, and STZs are created and destroyed.
Therefore, the evolution equation for the STZ populations are

dn±
dt

=
1

t0
[R (∓τ)n∓ −R (±τ)n±] +

γ̇τ

ε (n+ + n−) τy

[n∞
2

exp (−1/χ)− n±
]
.

(2.6)
The first term accounts for STZs switching from “positive” to “negative” and vice
versa, and the second term incorporates STZ creation and annihilation. The over-
all creation/annihilation rate is proportional to the rate at which work is done on
the material. The creation term includes effective temperature dependence, as we
assume that energy dissipation in the material drives the STZ population towards
a Boltzmann distribution. The stress τy determines the fraction of dissipated en-
ergy that creates STZs, and it also turns out to be the threshold stress that must
be applied to switch an STZ.

In the Λ and m variables, the evolution equations become

dΛ

dt
=

γ̇τ

n∞Λτy
[exp (−1/χ)− Λ] ; (2.7)

dm

dt
=

γ̇

εn∞Λ

{
1− τm

τy
[1 + exp (−1/χ)− Λ]

}
. (2.8)

We note that the dynamic equations for Λ and m both have a factor of 1/(n∞Λ) =
1/(n+ + n−). For the equations of STZ Theory to be valid, STZs must be rare,
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otherwise the assumption that plastic strain occurs in local, isolated regions is
no longer valid. Therefore, the total number of STZs is small, and the STZ
populations evolve quickly relative to the stress and effective temperature. With
this in mind, we simplify the STZ equations and assume the total number of
STZs is always at its steady state value Λ = exp(−1/χ), which is set by the local
effective temperature.

If we set the total number of STZs to steady state, then the STZ bias is
m = τy/τ . However, the STZ bias cannot be larger than m = 1, which corresponds
to all the STZs in the “negative” orientation. When this occurs, the material
cannot be sheared further because there are no regions susceptible to deformation.
This means that if τ < τy, then the material is jammed and γ̇ = 0. Otherwise, the
material flows. Therefore, the steady state value for the STZ bias is dependent
on the stress as follows:

m =

{
1, τ < τy;
τy/τ, τ ≥ τy.

(2.9)

The STZ dynamics are important for determining if the material is jammed or
flowing, but otherwise the stress and effective temperature have the dominant
effect on the friction dynamics.

The friction law that we use in our simulations is therefore

γ̇ =
2ε

t0
exp (−f0) cosh [τ/σd] exp (−1/χ)

[
1− τy

τ

]
, (2.10)

unless τ < τy, in which case γ̇ = 0. This is the exact version of Equation (2.1).
The strain rate depends on the shear stress, and the internal state of the material
is described entirely by the effective temperature. We now propose a dynamic
equation for the effective temperature, which determines the dynamics of friction
in STZ Theory.

2.3 Effective Temperature Evolution

In addition to the relation between strain rate, stress, and effective temper-
ature (Equation (2.1)), the model requires a dynamic evolution equation for the
effective temperature. Effective temperature is different from the thermal tem-
perature, but it evolves in a similar manner. In this section, we propose a heat
equation that governs the evolution of the effective temperature. Unlike state vari-
ables in friction laws such as Dieterich-Ruina, which are governed by an ordinary
differential equation, effective temperature follows a partial differential equation.
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This results in a model with many more degrees of freedom that captures the
spontaneous localization of strain in amorphous materials..

In our heat equation for the effective temperature, we include terms for energy
dissipation, diffusion, and time-dependent relaxation:

∂χ

∂t
=

γ̇τ

c0τy

(
1− χ

χ̂ (γ̇)

)
+

∂

∂z

(
γ̇D

∂χ

∂z

)
+R0

(
1− χ

χ0

)
exp (−β/χ) . (2.11)

As work is done on the material, the dissipation term drives the effective tem-
perature towards some maximum effective temperature χ̂(γ̇) that depends on the
strain rate [61]. Shearing the material stirs up the particles, and the grains in the
system can find higher energy configurations. As the strain rate in the material
increases, the maximum effective temperature rises.

Our choice of χ̂(γ̇) is based on the observed rate dependence of the steady-
state effective temperature in a simulated glass [61]. Figure 2.1 plots simulation
data, along with fits. The vertical axis plots the negative logarithm of the non-
dimensional strain rate q = t0γ̇, and the horizontal axis plots the inverse effective
temperature. On these axes, larger strain rates and larger effective temperatures
are located at the lower left corner. The different colors indicate varying thermal
temperature in the simulations. There are two regimes for this curve: at low strain
rates, the effective temperature is independent of the strain rate, and at high
strain rates the effective temperature follows a linear plot on these axes. Because
earthquake rupture occurs at high strain rates, we assume that the steady-state
effective temperature for dynamic fault slip is always in the rate-dependent regime.
This indicates a maximum effective temperature of the form

χ̂ (γ̇) =
χw

log
(
q0
t0γ̇

) . (2.12)

The parameter q0 determines the dimensionless strain rate at which the effective
temperature diverges. At strain rates higher than q0/t0, the deformation is no
longer accomodated as local STZs and instead as amorphous flow. The value
of q0 = 0.08 that we use is deduced from molecular dynamics simulations [28].
Because the time scale for STZ rearrangement is very fast, our value of q0 corre-
sponds to a strain rate larger than the strain rate expected during seismic slip.
This means that the constitutive equations are valid at the strain rates in our
simulations. Low strain rates are important for the deformation of glassy mate-
rials, and so we include the part of the curve where the effective temperature is
independent of the strain rate when studying these materials in Chapter 6.
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Figure 2.1: Plot of the negative logarithm of the non-dimensional strain rate
q = t0γ̇ versus the inverse effective temperature. The different colored curves
correspond to varying thermal temperature in the simulation data. There are
two important regimes: the linear rate-dependent portion of the curve, which
occurs at high strain rates, and the glassy portion of the curve, where the effective
temperature is independent of the strain rate. Earthquake rupture occurs at high
strain rates, so we assume that χ̂ is in the linear regime during our dynamic
earthquake simulations.
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The parameter χw, which is the slope of the curve in Figure 2.1, is a very
important quantity in the STZ Law. If this quantity is greater than unity, then
the steady-state shear stress increases as the strain rate increases. Materials with
χw > 1 are rate strengthening. If the slope is instead less than unity, the steady-
state shear stress decreases as the strain rate increases. These rate weakening
materials exhibit different frictional dynamics from rate strengthening materials.
Rate weakening friction is essential for unstable earthquake rupture propagation,
and so we dedicate most of this dissertation to studying the STZ model with
rate weakening parameters. However, there are many systems that exhibit rate
strengthening behavior, and we discuss these materials in Chapter 6.

Diffusion of effective temperature is observed in simulations [62], and only
occurs if the material is being deformed. This indicates that the time scale for
diffusion is determined by the inverse strain rate. The form of the diffusion term
here assumes that the effective temperature flux in the z-direction at a given point
is γ̇D∂χ/∂z. The length scale for diffusion,

√
D, is determined by the particles in

the material. For a granular material, this length scale is related to the size of the
grains. For a glass, this length scale is determined by the interparticle potential.
The width of shear bands in amorphous materials is similar to this length scale√
D, but the actual width is set by a balance between dissipation, relaxation, and

diffusion and involves additional parameters.
The healing term allows for time-dependent restrengthening on the fault, and

relaxes the effective temperature towards the minimum value χ0. The form of this
term results in logarithmic strength recovery with time, as observed in laboratory
experiments [63]. We include this term because faults heal and restrengthen with
time, and including time-dependent healing is important for determining when
slip stops during a dynamic rupture.

2.4 The Free Volume Law

The STZ model has many more degrees of freedom than Dieterich-Ruina fric-
tion, due to the partial differential equation governing the effective temperature.
However, in cases when the diffusion length scale is comparable to the total thick-
ness of the material, the strain rate is the same throughout the material. In this
case, the effective temperature partial differential equation reduces to an ordinary
differential equation.

In this simplified version of the model, the state variable accounting for the
history of friction is the free volume instead of the effective temperature [59].
Free volume and effective temperature are related quantities [62], as a less dense
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material is usually more disordered than a more tightly packed material. Because
the quantities are closely related, we use χ to represent both effective temperature
and free volume.

The free volume is a dimensionless, intensive quantity that describes the den-
sity of the fault gouge. It is related to porosity, which is also dimensionless,
intensive, and describes the gouge density. They differ because χ = 0 corresponds
to the gouge arranged to have the smallest possible volume, also known as ran-
dom close packing [64], which still has some pore space. Free volume is related
to porosity φ by χ = φ− φ0, so that when χ = 0 the porosity is equal to φ0, the
porosity of the random close packing.

Free volume evolves dynamically as the gouge is sheared. We include terms
for compaction, which is time-dependent, and dilation, which occurs at a rate
proportional to the rate at which frictional energy is dissipated:

dχ

dt
= −Rc exp (−χc/χ) + ατV. (2.13)

Note that this equation is very similar to Equation (2.11) with the diffusion term
set to zero – the relaxation term is proportional to the same exponential factor,
and both equations have a term proportional to the energy dissipation rate. The
evolution of the free volume accounts for the history dependence of friction in the
FV law. This dynamic equation can be converted to a porosity evolution equation
(using χ = φ − φ0), and is an alternative to the porosity evolution proposed in
[65].

The free volume law also has a constitutive equation relating the shear stress,
slip rate, and free volume that is very similar to Equation (2.10):

V = V∗ exp [−f∗ − (χs + χh) /χ] (1−m0) sinh (τ/σd) . (2.14)

The FV law allows for solutions that are jammed (V = 0) and slipping (V > 0).
The two different solutions are incorporated using the variable m0. The values
that m0 takes depend on whether the stress is above or below the minimum stress
needed to flip an STZ, τ0 exp(χh/χ):

m0 =

{
1, [τ ≤ τ0 exp (χh/χ)];
τ0
τ

exp (χh/χ) , [τ > τ0 exp (χh/χ)].
(2.15)

The parameters in the FV law include the characteristic slip rate V∗, the STZ ac-
tivation energy scaled by the thermal energy f∗, the characteristic free volume for
shearing χs, the characteristic free volume for STZ creation χh, the STZ activation
stress σd, the compaction rate Rc, the characteristic free volume for compaction
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χc, the fraction of frictional dissipation that goes into dilating the fault gouge α,
and the STZ yield stress τ0. The three characteristic free volumes are distinct
quantities, as each corresponds to a different rearrangement of the fault gouge.
We also note that the STZ activation stress σd, also known as the direct effect
stress in rock mechanics experiments, determines the instantaneous stress change
due to a change in the slip rate. This stress is typically much smaller than the
normal stress or the shear stress in laboratory experiments.

Figure 2.2 shows a plot of shear stress and free volume/porosity as a function of
shear displacement for two different velocity steps. The first velocity step is from
V = 10−6 m/s to V = 10−5 m/s, and the second velocity step is from V = 10−5 m/s
to V = 10−4 m/s. When the velocity is suddenly increased, there is a transient
increase in the shear stress, followed by evolution to a new sliding stress over a
characteristic length scale. The evolution is similar to the Dieterich-Ruina friction
law described in Section 1.2.4, though the FV law relates this frictional behavior
to microscopic physics rather than simply fitting data. The stress decreases after
each velocity step, which indicates that the parameters are velocity weakening,
and because the stress change is the same for both velocity steps, the FV law
incorporates logarithmic velocity dependence.

We discuss the FV law more extensively in Chapter 4, where we make careful
comparisons between the FV law and other friction laws in dynamic earthquake
rupture simulations.

2.5 Friction Dynamics

In this section, we look at the dynamics of friction when the STZ law is applied
to a layer of fault gouge under shear. A schematic of the system is shown in
Figure 2.3. A layer of gouge of width 2w is sheared from the boundary at a
constant driving rate V0. We assume that the shear stress is constant within
the layer. This is because the time scale for stress equilibration (the width of
the gouge divided by the speed of sound) is much smaller than the time scale
for effective temperature evolution (the inverse plastic strain rate). Due to this
difference in time scales, the stress is always spatially uniform in the z-direction,
which is the static solution to the continuum momentum conservation equation
in this geometry. This means that stress in the material evolves according to

dτ

dt
=
µ

w

(
V0 −

∫ w

0

γ̇dz

)
. (2.16)

Driving the system causes the stress to increase at a rate determined by the shear
modulus µ, while plastic strain decreases the shear stress. Note that because the
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Figure 2.2: Dynamic evolution of the stress and free volume/porosity during two
simulated velocity step experiments with the FV law. The first velocity step from
V = 10−6 m/s to V = 10−5 m/s occurs at 0.5 mm, and the second velocity step
from V = 10−5 m/s to V = 10−4 m/s occurs at 1 mm. The transient changes
in stress are the same for both velocity steps, confirming the logarithmic velocity
dependence of the FV law. The change in porosity is small compared to the
total porosity, indicating that the change in the sheared layer thickness is small
compared to the overall thickness. The porosity evolution uses φ0 = 0.07 to
convert from free volume.
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Figure 2.3: Diagram illustrating a layer of fault gouge driven at its boundary
at a constant velocity V0. We resolve the effective temperature dynamics as a
function of position across the thickness of the gouge. This is illustrated by the
red curve, which shows the effective temperature as a function of position in the
gouge. Because the effective temperature evolves in space and time, the STZ
model captures the dynamic evolution of the strain rate in the material, and the
flow profile in the gouge, which is shown in black in the illustration. Stress is
assumed to evolve rapidly compared to the effective temperature, and is always
spatially homogeneous.

stress is constant across the width of the gouge, any localization of strain is due
to spatial variations in the effective temperature (i.e. the configurational disorder
in the gouge). Shear bands form because the disorder in the material becomes
heterogeneous, and not because of spatial variations in the shear stress.

The equations for stress evolution (Equation (2.16)) and effective temperature
evolution (Equation (2.11)) are integrated numerically to model the dynamics of
friction in the layer. We use V0 = 1 m/s, w = 0.1 m, µ = 32 GPa. At the
start of integration, the stress is set to τ(t = 0) = 50 MPa. We solve for the
effective temperature on a spatial grid with nz = 51 points in the z-direction,
which resolves the dynamic evolution of the plastic strain rate within the fault
gouge. We solve for the effective temperature in only half of the gouge, as the
effective temperature is symmetric about z = 0. The spatial derivatives of the
effective temperature are split into two terms and are approximated by second
order central finite differences, and time integration is performed using a linearly
implicit trapezoidal method with an adaptive time step. We use no conduction
boundary conditions for the effective temperature at the boundaries of the gouge
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Figure 2.4: Effective temperature as a function of position at several different
values of the shear displacement u for spatially uniform initial conditions. The
diffusion term is zero, and by symmetry the effective temperature remains spatially
homogeneous as the gouge is sheared.

layer.
The effective temperature dynamically evolves in the STZ model, which leads

to a dynamic evolution of the plastic strain rate in the material. We consider two
different types of initial conditions: spatially uniform in the z-direction, and the
spatially uniform initial conditions plus a small perturbation. For the spatially
uniform case, the initial effective temperature that we use is χ(t = 0) = 0.009. If
the initial effective temperature is spatially homogeneous, then by symmetry the
strain rate is uniform and the subsequent plastic deformation is spatially uniform
in the z-direction (Figure 2.4). In this case, the PDE for the effective temperature
reduces to an ODE because the diffusion term is zero. Frictional behavior for
homogeneous initial conditions is similar to that of the Dieterich-Ruina laboratory-
based friction laws that are commonly used in earthquake modeling, which is
discussed further in 4.

However, perfectly homogeneous initial conditions are not physically realis-
tic. A spatially uniform initial effective temperature is extremely unlikely, and we
approximate real initial conditions by adding a small perturbation (of the form
δχ · sech(z/δw), with δχ = 10−10 and δw = w/250). A single perturbation is suffi-
cient to approximate heterogeneous initial conditions because with rate weakening
parameters, we find that a single shear band forms at the point with the largest
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Figure 2.5: Plot of effective temperature as a function of z-position at several
different values of the shear displacement u for the same spatially uniform initial
conditions in Figure 2.4 plus a small perturbation described in the main text. As
the gouge is sheared, the perturbation amplifies and grows into a shear band. The
effective temperature grows much more rapidly with shear displacement when a
shear band forms than when deformation is spatially uniform.

initial effective temperature regardless of the choice of heterogeneous initial con-
ditions. When the initial effective temperature is perturbed, the diffusion term
is no longer zero. We use a diffusion constant D = 0.0001 m2 when numerically
integrating the STZ equations with the perturbed initial effective temperature.

Figure 2.5 shows the effective temperature dynamics with a small perturba-
tion added to the initial effective temperature. The perturbation spontaneously
grows as the gouge is sheared and a narrow shear band dynamically forms. The
unstable growth of the perturbation is due to a feedback in the effective tempera-
ture evolution law. Any spatial point with an elevated effective temperature also
has a larger strain rate. The energy dissipation term in the effective temperature
governing equation (Equation (2.11)) is proportional to the strain rate, so the ef-
fective temperature at a point with an elevated effective temperature grows more
rapidly than others. This feeds back into the dissipation term, and leads to strain
localization and the formation of a shear band.

The prediction that a perturbation to the initial effective temperature results
in localization of strain can be confirmed through a linear stability analysis. Man-
ning et al. [66] found that steady sliding was unstable if χw < 1, which is precisely
the conditions for steady-state rate weakening. This indicates that if the friction
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law weakens with strain rate, any perturbation results in localized strain. Man-
ning et al. also determined that shear bands can form even if the friction law is
rate strengthening due to transient effects. While we focus on rate weakening pa-
rameters in this study, the prediction that rate strengthening materials can form
shear bands has implications for many geophysical systems.

We show a plot of stress as a function of shear displacement for the two dif-
ferent sets of initial conditions in Figure 2.6. The curve for spatially uniform
initial conditions is labeled “homogeneous,” and the curve for perturbed initial
conditions is labeled “localized.” The curves are identical for shear displacements
less than 0.1 m, at which point the shear band forms for the perturbed initial
conditions. Once the shear band forms, the stress drops rapidly and the sliding
friction is reduced. This indicates that localization is a mechanism for dynamic
weakening. The strain rate is locally higher in the shear band, and the friction
law weakens with strain rate, so the shear stress while sliding with a shear band
is lower than for the case without a shear band.

The difference in the macroscopic stress shows that strain localization has a
significant impact on the frictional properties of fault gouge. This affects larger
scale phenomena at the interface scale such as stick-slip motion, which we examine
in Chapter 3, and fault scale dynamics, which we study in Chapter 5.
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Figure 2.6: Plots of stress as a function of shear displacement for the plots in
Figures 2.4 and 2.5. “Homogeneous” indicates that the initial effective tempera-
ture is spatially uniform, and the effective temperature for this curve is illustrated
in Figure 2.4. “Localized” indicates that a small perturbation is added to the
spatially uniform initial effective temperature; a shear band forms in this case.
The effective temperature for the “localized” curve is shown in Figure 2.5. The
formation of a shear band produces different macroscopic material behavior. The
shear stress drops more rapidly with shear displacement for “localized” shear, and
the steady sliding friction is significantly lower than the “homogeneous” case.
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Chapter 3

Stick-Slip Instabilities

STZ Theory provides a continuum description of the grain scale physics of
amorphous materials. For the remainder of the dissertation, we explore the con-
sequences of the grain scale physics in STZ theory at larger scales. Here, we use
the STZ model to study the dynamics of friction at the interface scale. Labora-
tory experiments probe the frictional properties of amorphous materials at this
scale, and find that frictional slip often occurs through repeated cycles of stick-slip
instead of steady sliding. In this chapter, we solve the STZ equations coupled to
a spring slider, and examine the impact of strain localization on stick-slip insta-
bilities.

3.1 Stick-Slip Instabilities

Dense amorphous materials include a wide range of systems, including granular
materials, glassy materials, colloids, emulsions, and possibly even biological tissue.
These materials often serve as lubricants for sheared interfaces, ranging in scale
from atomically thin films to earthquake faults. While they differ vastly in scale,
each is made up of a collection of smaller particles – the thin film contains a few
layers of molecules, while the earthquake fault is filled with crushed grains of rock.
Both the interfacial material and the large scale system as a whole can exhibit rich
and complex dynamics. Most studies of these systems focus on the small scale
physics in the material or the large scale dynamics of friction. In this dissertation,
we bridge the two approaches using a constitutive law derived from small scale
physics to investigate instabilities in both the deformation in the interfacial layer
and the macroscopic friction.

Laboratory experiments show that granular materials [67], fault rocks [68, 69,
70], and thin films [71, 72, 73, 74] exhibit similar frictional dynamics, including
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a yield stress, hysteresis, rate dependent frictional resistance, and stick-slip. In
this study, we focus on stick-slip instabilities, which are responsible for earthquake
slip on seismic faults, noise from automobile brakes and tires, music from a violin,
and excessive wear on frictional interfaces in machinery. Modeling the dynamics
of friction in these materials is a challenging problem, as models must resolve
the microscopic physics of deformation and simultaneously remain tractable for
capturing the large scale behavior.

Experimental observations of friction are sometimes directly incorporated into
phenomenological friction laws, such as the Stribeck curve [9] and the Dieterich-
Ruina rate and state depenendent friction laws [10, 11]. These fits to data capture
many important features of experiments, but to date have not been derived from
microscopic physics and do not resolve internal dynamic instabilities within the
interfacial layer. Molecular dynamics simulations have provided extensive infor-
mation about microscopic deformation and flow, but only for limited numbers of
particles and a narrow range of time scales. Stick-slip motion has been explored
in the context of constitutive models [75, 76, 77, 58] and molecular dynamics
simulations [78, 79].

In this dissertation, we use a physics-based constitutive model that combines
insights from atomistic simulations with the tractability of a constitutive law to
connect macroscopic friction dynamics to the small scale physics of deformation.
Our friction model is based on the theory of Shear Transformation Zones (STZs)
[24, 25]. This continuum approach incorporates features from molecular dynamics
simulations and fundamental constraints from nonequilibrium statistical physics
and has been applied to a wide variety of materials [58, 61, 56]. The STZ consti-
tutive model provides physical insight into plastic deformation, but is tractable
for studying larger scale sheared interfaces. Additionally, STZ Theory has suffi-
cient resolution of the microscopic scale to capture shear band instabilities and
the spontaneous localization of strain [80, 57, 66]. When a shear band forms,
deformation localizes to a region that is much narrower than the thickness of the
material. Localization plays an important role in the frictional properties of bulk
metallic glasses [31], granular materials [81], and bubble rafts [82].

In this study, we determine the effect of the microscopic physics of strain
localization on the dynamics of stick-slip. We perform a linear stability analysis
with the STZ equations to quantitatively determine how small-scale localization
impacts the large scale frictional behavior. We compare localized strain, where
a shear band dynamically forms, to homogeneous deformation, where no shear
band forms and the strain rate is spatially uniform across the interfacial layer.
We find that localization alters the parameter range where stick-slip occurs, thus
demonstrating that the small scale physics plays an important role in the large
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scale dynamics of friction.
We begin with a discussion of the physics behind the STZ model and the block

slider equations in Section 3.2. In Section 3.3, we present the results of our stability
analysis and our numerical studies with the STZ model. Section 3.4 concludes
with a discussion of the implications of our work for friction and deformation in
amorphous materials.

3.2 Model Equations

3.2.1 Block Slider Equations

We consider a spring slider with negligible mass (i.e. overdamped). The spring
is pulled at a constant velocity V0. The slider is illustrated on the left in Figure 3.1.
The sheared interface is filled with an amorphous material. The material has a
finite thickness of 2w in the z-direction, and is much larger and translationally
invariant in the other spatial directions, reducing the spatial dependence to z
only. We also assume that the material is symmetric about z = 0, and therefore
we only model the material for 0 ≤ z ≤ w. A close-up of the amorphous material
(center in Figure 3.1) shows that the shear strain can be heterogeneous within the
material layer.

To explore the implications of microscopic strain localization on macroscopic
friction, we couple the STZ equations (Equations (2.1) and (2.11)) to a spring
slider. A block is attached to a spring pulled at a constant rate, and the block
motion causes shear deformation in the amorphous material (left in Figure 3.1).
For simplicity we ignore inertial effects. Experimental data often exhibits stick-
slip motion in overdamped regimes [83], where the block oscillation time is much
smaller than the duration of a stick-slip event. In this regime the frictional time
scales are more important for the block dynamics than inertial effects. Because
we are in an overdamped regime, the friction force balances the spring force.
Therefore, we only require a dynamic equation for the frictional shear stress τ
in the amorphous material to complete the system of equations describing the
STZ block slider model. Here τ is taken to be constant in the z-direction. This
follows from our assumption that the stress equilibration time scale is much faster
than the time scales in the STZ friction law; the static solution to the momentum
conservation equations in this geometry is a spatially uniform shear stress.

Stress in the material evolves due to elastic and plastic deformation. The
spring of stiffness k is pulled at a constant rate V0, which increases the shear
stress by extending the spring. Meanwhile, plastic deformation occurs in the
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Figure 3.1: Illustration of the spring slider modeled with STZ Theory. (left) A
block of negligible mass is pulled by a spring of stiffness k at constant velocity
V0. An amorphous material lubricates the sheared interface. (center) A close-
up of the amorphous material indicates that we resolve the dynamic evolution of
strain inside the material. In STZ Theory, the microscopic physics is captured
through the evolution of an effective temperature, which is heterogeneous within
the material. Our model accounts for the effect of strain localization on the
motion of the block. (right) Close-up of an STZ reversal at the particle scale.
As the material is sheared, an ellipse drawn through the particles switches from
one orientation to the other. The dark particles on the right indicate where
plastic deformation has occurred in the material. STZ image taken from Falk
and Langer [24] (Reprinted with permission. Copyright 1998 by the American
Physical Society. http://link.aps.org/abstract/PRE/v57/p7192).
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amorphous solid and causes the material to soften. Therefore, the shear stress τ
evolves according to

τ̇ = k

(
V0 −

∫ w

0

γ̇ dz

)
. (3.1)

Here, dots represent a time derivative. The first term on the right hand side
represents elastic loading from the spring, and the second term represents material
softening at a rate determined by the spatial integral of the plastic strain rate γ̇.
Because the system is overdamped, the spatial integral of the plastic strain rate
over the entire material width is also the velocity of the slider block. The plastic
strain rate is given by the STZ equation (Equation (2.1)), and is a function of the
stress and the effective temperature.

3.2.2 Time Scales

The block slider equation (Equation (3.1)), along with the STZ equations
(Equations (2.1) and (2.11)), involve a number of different time scales. The fastest
among these is the STZ rearrangement time t0. An estimate for t0 is a molecular
vibrational time scale for a glassy material, or a characteristic particle diameter
divided by the speed of sound in a granular material. These time scales are
much faster than all others in the problem, and rearrangements are taken to be
instantaneous in the STZ model.

The time scale for stress equilibration in the material is of the order of the
thickness of the layer divided by the speed of sound. Note that since the layer
contains many particles, this is certainly much slower than an individual STZ
rearrangement. This time scale is also taken to be instantaneous in the model,
which is implicit in Equation (3.1). For the theory to be applicable, all other
processes must be slower than stress equilibration.

The time scale for effective temperature evolution is the inverse plastic strain
rate. This describes both energy dissipation and diffusion and it must be slower
than the stress equilibration time. Large strain rates tend to occur for large
driving rates V0, and also for stick-slip motion when the spring is very compliant.
This restricts the range of driving rates as we numerically integrate the equations.

Because we assume that the slider is overdamped, we ignore the inertia of the
block. This amounts to taking the time scale for oscillations of the spring slider
to be much faster than the inverse plastic strain rate. The duration of a stick-slip
event is thus much longer than the natural oscillation period of the unencumbered
block and spring, which means that the frictional time scale dictates the dynamics
of stick-slip. Stick-slip can also occur in an underdamped regime with a larger
block mass, but we do not consider that limit in our analysis.
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Table 3.1: Dimensionless parameters for the block slider equations.

Parameter Description

ε = 10 Strain accumulated per STZ reversal
σd = 1 STZ activation stress
f0 = 11.5 STZ activation energy
c0 = 1 Effective temperature specific heat
D = 0.1 Squared effective temperature diffusion length

scale
χw = 0.8 Effective temperature activation energy
q0 = 1 Strain rate at which STZ Theory breaks down

V0 = varies Driving rate
k = varies spring constant

3.2.3 Non-Dimensional Equations

We non-dimensionalize the equations using the following parameters: scale
all times by the STZ rearrangement time t0, scale all lengths by the material
width w, and scale all stresses by the STZ yield stress τy. The parameters can
thus be redefined as follows: stress τ ′ = τ/τy, strain rate γ̇′ = t0γ̇, driving rate
V ′0 = V0t0/w, STZ activation stress σ′d = σd/τy, diffusion length scale D′ = D/w2,
and spring constant k′ = kw/τy. The non-dimensional equations are (dropping
all primes on variables)

τ̇ = k

(
V0 −

∫ 1

0

γ̇ dz

)
, (3.2)

χ̇ =
γ̇τ

c0

(
1− χ

χ̂ (γ̇)

)
+

∂

∂z

(
Dγ̇

∂χ

∂z

)
. (3.3)

where χ̂(γ̇) = χw/ log(q0/γ̇) and γ̇ = f(τ) exp(−1/χ). The stress factor is given
by f(τ) = 2ε exp(−f0) cosh(τ/σd)(1− 1/τ).

The non-dimensional parameters that we use in numerical integration of the
block slider model are given in Table 3.1. We keep all parameters constant except
the driving rate and spring stiffness, which we vary to explore the parameter
ranges that lead to stick-slip motion.
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3.2.4 Small Scale Effects on Friction in STZ Theory

In STZ Theory, the dynamics of friction is controlled by the evolution of the
effective temperature. The effective temperature is derived from the underlying
statistical physics of dense, disordered solids and STZ Theory connects macro-
scopic frictional behavior to the evolution of the effective temperature. This in-
cludes resolving the spontaneous localization of strain. Other friction laws that do
not resolve the internal dynamics of the interfacial material are a priori incapable
of resolving the dynamical shear band instability.

Manning et al. [66] showed that a key parameter that connects the microscopic
physics to the macroscopic dynamics in STZ Theory is the effective temperature
activation barrier χw. Manning et al. performed a linear stability analysis of the
STZ equations, and showed that χw determined the stability of deformation with
a spatially uniform effective temperature. If this activation barrier is less than
unity, homogeneous deformation is linearly unstable (χw < 1). This is precisely
the conditions for rate weakening friction. Rate weakening refers to the strain
rate dependence of the steady-state shear stress – as the strain rate increases, the
steady-state stress decreases. Therefore, rate weakening materials always form
shear bands given any heterogeneity in the initial effective temperature, as steady
sliding is linearly unstable. If the activation barrier is less than unity, then steady
sliding is stable. This corresponds to the parameter range for rate strengthening
friction, where the shear stress increases as the strain rate increases. However,
shear bands can still form if χw > 1 due to transient effects [80, 66].

Although shear bands form for both rate weakening and rate strengthening
materials, we focus on rate weakening materials in this study. Previous studies
with Dieterich-Ruina friction [75] and STZ Theory without strain localization [58]
showed that rate weakening is required for steady sliding to be unstable in a single
degree of freedom elastic system. When shear band formation is included, we also
find that steady sliding is unstable only if friction is rate weakening, which we
show in the next section.

3.3 Stick-Slip Dynamics

In this section, we explore the dynamics of the block slider model with STZ
Theory. We investigate the effects of shear band formation on the stability of
frictional sliding, and generate a phase diagram that distinguishes between pa-
rameters that produce stick-slip versus steady sliding with and without shear
bands. We also identify more exotic stick-slip cycles, and connect the underly-
ing microscopic physics to the observed complex dynamics. This involves both
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analytical and numerical studies with the STZ equations.
For fixed material parameters, the type of motion depends on the driving rate

(the speed at which the spring is loaded), and the stiffness of the spring. If we fix
the spring stiffness, large driving velocities result in steady sliding of the block.
The slider moves at the same velocity as the load point (the end of the spring that
is pulled at a constant velocity), and the shear stress is at its steady-state value. At
slower driving rates, the block undergoes repeated stick-slip cycles. If we instead
fix the driving velocity, stiff springs produce steady sliding and compliant springs
produce stick-slip. The spring stiffness and the driving rate are both important
for determining the slider dynamics, as observed in experiments [84].

In laboratory experiments, the transition from steady sliding to stick-slip is
usually investigated by fixing the spring stiffness and varying the driving velocity,
as it is much easier to change the driving velocity in an experiment. In STZ The-
ory, it is more straightforward to calculate the stiffness at which sliding becomes
unstable as a function of velocity, because the velocity as a function of stiffness
cannot be obtained in closed form. This is due to the nonlinear dependence of the
stress and effective temperature on the driving rate. Ultimately, both approaches
are equivalent as each determines the boundary in (V0, k) space separating stick-
slip and steady sliding. Because we solve for the stiffness as a function of velocity,
we refer to the spring stiffness where the motion transitions from stable sliding to
stick-slip as the critical stiffness kcrit(V0). Our analytical results focus on deter-
mining the critical stiffness as a function of the STZ parameters, allowing us to
connect stick-slip to the microscopic physics of deformation.

An example of stick-slip with the STZ law is illustrated in Figure 3.2, which
shows shear stress as a function of the slider velocity for one cycle of the motion.
The slider velocity is plotted on a logarithmic scale. The vertical line indicates the
velocity at which the spring is pulled V0. At the left, the velocity is much smaller
than the driving velocity V0 and the slider “sticks” (i.e. creeps at a small velocity).
As the spring is loaded, the shear stress increases until the spring overcomes the
frictional resistance. The block begins to slip much more rapidly than the rate at
which the spring is pulled. The shear stress drops, and the block overshoots the
load point, which causes it to “stick” again, and the cycle repeats.

Stick-slip motion occurs when steady frictional sliding is unstable, as shown
in Figure 3.3. The plot shows the frictional stress as a function of the load point
displacement. The slider begins sliding steadily, but the block motion transitions
to repeated stick-slip cycles. The inset in Figure 3.3(b) shows that stick-slip
motion involves elastic loading by the spring over a large load point displacement
during the “stick” phase. The stress drops very rapidly during the “slip” phase,
indicating a large slider velocity.
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Figure 3.2: Stress and slider velocity evolution during periodic stick-slip motion
with the STZ law. Instead of sliding steadily, which would be a single point on
this diagram, the block cycles through successive “stick” and “slip” cycles. The
“x” on the diagram indicates the steady sliding solution. At the far left, the block
is moving much slower than the rate at which the spring is pulled (the vertical
line), and the shear stress increases as the spring is extended. At the top, the
spring force is large enough to initiate slip and the block slips rapidly relative to
V0 until the spring. The cycle repeats as the stress build up again during the stick
phase. Note that the slider velocity is not zero during a “stick” cycle – the block
creeps much slower than the rate at which the spring is pulled, but never truly
stops.
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Figure 3.3: Shear stress as a function of load point displacement for stick-slip
motion. The load point displacement refers to the displacement of the end of the
spring that is pulled at a constant rate. (a) The block starts out sliding steadily,
but steady sliding is unstable and the motion evolves into stick-slip cycles. (b)
The inset shows a close up of stable, periodic stick-slip cycle, shown in Figure 3.2,
contained in the gray box of the main Figure. The stress increases during the
“stick” phase due to the elastic loading of the spring, while the rapid slip of the
block suddenly drops the stress during the “slip” phase.
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3.3.1 Analytical Results

Stick-slip instabilities occur when the steady sliding solution to the block slider
equations becomes unstable to perturbations. The system of equations describing
the block motion is

τ̇ = k

(
V0 − f (τ)

∫ 1

0

exp (−1/χ) dz

)
; (3.4)

χ̇ =
f (τ) exp (−1/χ) τ

c0

[
1− χ

χ̂ (γ̇)

]
+Df (τ)

∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
. (3.5)

These are the same equations as Equations (3.2)-(3.3), with the strain rate written
out explicitly in terms of the stress and effective temperature. We analytically de-
termine the critical stiffness using a linear stability analysis of the STZ equations.
In Section 3.3.2, we confirm the results by numerically integrating the block slider
model.

Linear stability analysis determines if perturbations to the stress and effective
temperature grow or decay in time. Mathematically, this involves finding the real
part of the eigenvalues of the Jacobian. Negative real parts imply perturbations to
the stress and effective temperature decay exponentially in time, and steady sliding
is stable. Positive real parts imply steady sliding is unstable, and perturbations
to the stress and effective temperature grow exponentially in time.

The analysis is straightforward, though the intermediate expressions in the
calculation are fairly complicated. We calculate stability criteria for homogeneous
deformation, where the strain rate is uniform throughout the material, and for
localized deformation, where the strain rate is determined by the dynamic evolu-
tion of the effective temperature. The details of the stability analysis is presented
in the two following sections.

Homogeneous Deformation

First, we perform the stability analysis with the assumption that the effective
temperature is spatially homogeneous. In this case, the diffusion term in the ef-
fective temperature equation is zero, and the spatial integral in Equation (3.4) is∫

exp(−1/χ)dz = exp(−1/χ). The dynamical system for homogeneous deforma-
tion is

τ̇ = k (V0 − f (τ) exp (−1/χ)) ; (3.6)

χ̇ =
f (τ) exp (−1/χ) τ

c0

[
1− χ

χ̂ (γ̇)

]
. (3.7)
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The Jacobian of the STZ equations for homogeneous deformation is

J11 =
∂τ̇

∂τ
= −kf ′ (τ) exp (−1/χ) ; (3.8)

J12 =
∂τ̇

∂χ
= −kf (τ) exp (−1/χ)

χ2
; (3.9)

J21 =
∂χ̇

∂τ
=

[f ′ (τ) τ + f (τ)] exp (−1/χ)

c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

χ

χ̂2

∂χ̂

∂τ
; (3.10)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ

c0χ2

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

(
χ

χ̂2

∂χ̂

∂χ
− 1

χ̂

)
. (3.11)

The maximum effective temperature is a function of the strain rate, which means
that χ̂ depends on both the stress and the effective temperature. When evaluated
at steady state (V0 = f(τ) exp(−1/χ) and χ = χ̂), this becomes

J11 =
∂τ̇

∂τ
= −kf

′ (τ)V0

f (τ)
; (3.12)

J12 =
∂τ̇

∂χ
= −kV0

χ2
; (3.13)

J21 =
∂χ̇

∂τ
=

V0τ χ̂

c0χw

f ′ (τ)

f (τ)
; (3.14)

J22 =
∂χ̇

∂χ
=

V0τ

c0χ̂

(
1

χw
− 1

)
; (3.15)

since the derivatives of χ̂ with respect to stress and effective temperature are

∂χ̂

∂τ
=

χ̂2

χw

f ′ (τ)

f (τ)
; (3.16)

∂χ̂

∂χ
=

χ̂2

χ2

1

χw
. (3.17)

The real part of the eigenvalues is the trace of the Jacobian, as near the transition
from stable sliding to unstable sliding, the eigenvalues are complex. Steady sliding
is unstable if the trace of the Jacobian is greater than zero:

Tr (J) =
∂τ̇

∂τ
+
∂χ̇

∂χ
= −kV0f

′ (τ)

f (τ)
+
V0τ

c0χ̂

(
1

χw
− 1

)
> 0. (3.18)
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Equation (3.18) reveals that stability is determined by two competing effects. The
first term in Equation (3.18) comes from the spring force. This term is always
negative, as the spring force is always a restoring force that pushes the block
towards equilibrium. The second term in Equation (3.18) comes from the energy
dissipation term in the effective temperature evolution equation. This term is
destabilizing only if χw < 1 (i.e. for rate weakening parameters).

Localized Deformation

We now determine the role of localization by performing a linear stability
analysis on the full STZ equations (Equations (3.4)-(3.5)). This involves the same
steps as the homogeneous case, but with the inclusion of the diffusion term in
Equation (3.5) and the spatial integral in Equation (3.4). We study how pertur-
bations to a steady shear band solution to the effective temperature equations
grow in time. To simplify the analysis, we assume that the perturbations to the
effective temperature are not a function of z. Spatially varying perturbations can
be considered through an analysis of normal modes. However, it turns out that
the zero wavenumber mode is the least stable (the diffusion term in Equation (3.5)
results in the higher wavenumber modes being more stable), so nothing extra is
gained with a perturbation that varies with z.

For localized deformation, the Jacobian of the system is:

J11 =
∂τ̇

∂τ
= −kf ′ (τ)

∫ 1

0

exp (−1/χ) dz; (3.19)

J12 =
∂τ̇

∂χ
= −kf (τ)

∫ 1

0

exp (−1/χ)

χ2
dz; (3.20)

J21 =
∂χ̇

∂τ
=

[f ′ (τ) τ + f (τ)] exp (−1/χ)

c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

χ

χ̂2

∂χ̂

∂τ

+Df ′ (τ)
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
; (3.21)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ

c0χ2

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ

c0

(
χ

χ̂2

∂χ̂

∂χ
− 1

χ̂

)
+Df (τ)

∂

∂χ

{
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]}
. (3.22)
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Perturbations to the effective temperature are independent of z, so the χ derivative
in the diffusion term in J22 only acts on the exp(−1/χ) factor:

∂

∂χ

{
∂

∂z

[
exp (−1/χ)

∂χ

∂z

]}
=

∂

∂z

[
exp (−1/χ)

χ2

∂χ

∂z

]
=

1

χ2

∂

∂z

[
exp (−1/χ)

∂χ

∂z

]
−2 exp (−1/χ)

χ3

(
∂χ

∂z

)2

. (3.23)

When evaluated at steady-state, where V0 = f(τ)
∫

exp(−1/χ) dz and the diffu-
sion and energy dissipation terms balance, the Jacobian becomes:

J11 =
∂τ̇

∂τ
= −kf

′ (τ)V0

f (τ)
; (3.24)

J12 =
∂τ̇

∂χ
= −kf (τ)

∫ 1

0

exp (−1/χ)

χ2
dz; (3.25)

J21 =
∂χ̇

∂τ
=

f (τ) exp (−1/χ)

c0

(
1− χ

χ̂

)
+
f (τ) exp (−1/χ) τ χ̂

c0χw

f ′ (τ)

f (τ)
; (3.26)

J22 =
∂χ̇

∂χ
=

f (τ) exp (−1/χ) τ

c0χ̂

(
1

χw
− 1

)
−2Df (τ) exp (−1/χ)

χ3

(
∂χ

∂z

)2

. (3.27)

As with homogeneous deformation, the eigenvalues turn out to be complex at
steady state. The real part of the eigenvalues is the trace of the Jacobian. There-
fore, if the trace of the Jacobian is greater than zero, steady sliding is unstable:

Tr (J) =
∂τ̇

∂τ
+
∂χ̇

∂χ
= −kV0f

′ (τ)

f (τ)
+
γ̇τ

c0χ̂

(
1

χw
− 1

)
− 2D

γ̇

χ3

(
∂χ

∂z

)2

> 0. (3.28)

There are two important differences between this expression and the equivalent
expression for homogeneous deformation (Equation (3.18)). First is the presence
of the diffusion term, which is negative and therefore stabilizes the growth of
perturbations. The other important difference is that the energy dissipation term
(the second term in Equation (3.28)) depends on the strain rate rather than the
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average strain rate. This term is much larger when a shear band forms due to
the elevated strain rate in the shear band. Ultimately this implies that stick-slip
motion occurs for a larger spring stiffnesses when a shear bands forms.

Stability Analysis Results

For both homogeneous and localized deformation, the stability criteria (Equa-
tions (3.18) and (3.28)) depend on several different terms. In both expressions,
the first term comes from the spring force, which is always less than zero and is
therefore always stabilizing. This term is identical for the two cases. The second
term in both expressions results from energy dissipation in the amorphous ma-
terial. This term can be greater than zero, and thus can be destabilizing. Note
that for homogeneous deformation, the dissipation term is proportional to the
driving rate V0, while for localized deformation, it is proportional to the plastic
strain rate γ̇. The strain rate in a shear band is larger than the overall driving
rate, so localization makes energy dissipation more destabilizing. For localized
deformation, the third term comes from diffusion. This term is always negative,
and is thus stabilizes steady sliding. The increase in the energy dissipation term
is the larger effect, implying that localization results in stick-slip motion over a
larger range of parameters. The stability criteria connects the microscopic physics
of the effective temperature (the energy dissipation and diffusion terms) to the
macroscopic frictional behavior (the stress term).

The critical stiffness is the stiffness at which the terms exactly cancel. For the
homogeneous case this is simply

kcrit,h (V0) =
f (τ) τ (V0)

f ′ (τ) c0χ̂ (V0)

(
1

χw
− 1

)
. (3.29)

To determine the critical stiffness for localized deformation, we must quantita-
tively determine the effect of localization (i.e. determine the strain rate and ef-
fective temperature in the shear band). We cannot do this analytically, as the
effective temperature governing equation is highly nonlinear. We instead estimate
it by assuming that to a first approximation, the strain rate is constant inside a
shear band of thickness a, and negligible outside the shear band. This means that
the strain rate in the shear band is V0/a, and the effective temperature inside the
shear band is χ̂(V0/a). We also must estimate ∂χ/∂z to quantify the effect of
diffusion. Because the strain rate is negligible outside the shear band, χ̂ is not
defined, so we instead use the value of the effective temperature with driving rate
V0, χ̂(V0). Therefore, if we have an estimate of the shear band thickness a, we can

58



CHAPTER 3. STICK-SLIP INSTABILITIES

easily calculate γ̇ = V0/a, χ̂(V0/a), and ∂χ/∂z = (χ̂(V0/a) − χ̂(V0))/a, and use
these values to estimate the critical stiffness.

We estimate the shear band thickness a by assuming that dissipation and
diffusion roughly balance in the shear band. Equating these terms gives:

γ̇τ

c0
∼ Dγ̇

χ

a2
. (3.30)

The strain rate divides out, and solving for a yields

a ∼
√
Dc0χ

τ
. (3.31)

This expression shows that a scales with the diffusion length
√
D, but also depends

on the stress, the effective temperature, and the effective temperature specific
heat. Therefore, given the driving rate, we determine the steady state shear
stress and effective temperature, and use these values to predict a.

Tests of Equation (3.31) through numerical integration show that the scaling
for each of the parameters is correct. However, direct use of Equation (3.31)
underestimates a. This is because the energy dissipation term is smaller than
the estimate of γ̇τ/c0, as χ is not completely negligible compared to χ̂. A better
estimate can be obtained by numerically integrating the STZ equations once to
determine a constant of proportionality. We use the half width of the shear band
at half the maximum strain rate as our estimate of a. This criteria predicts that
the shear band thickness is about 3.7 times larger than in Equation (3.31) for the
parameters in Table 3.1. The value of the critical stiffness is not very sensitive
to this proportionality factor. If the factor is changed to 3 or 4.5, the critical
stiffness decreases by about 10% in both cases. Both cases result in a decreased
critical stiffness because there are two competing localization effects, dissipation
and diffusion. Increasing the proportionality factor changes the dissipation effect
more than the diffusion effect, and decreasing the proportionality factor changes
the diffusion effect more than the dissipation effect.

Therefore, the shear band thickness for the parameters in our simulations is

a = 3.7

√
Dc0χ̂(V0)

τ
, (3.32)

and the critical stiffness for localized deformation is

kcrit,l (V0) =
f (τ) τ (V0)

af ′ (τ) c0χ̂ (V0/a)

(
1

χw
− 1

)
− 2Df (τ) (χ̂ (V0/a)− χ̂ (V0))

2

(aχ̂ (V0/a))3 f ′ (τ)
. (3.33)
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Equations (3.29) and (3.33) determine the boundaries for homogeneous and lo-
calized deformation in (k, V0) space separating stick-slip and steady sliding. Above
kcrit, steady sliding is stable, and below kcrit, stick-slip occurs. The expression for
localized deformation differs from the homogeneous expression due to the diffu-
sion term and the larger dissipation term. These changes have competing effects
– diffusion stabilizes steady sliding, while dissipation promotes unstable sliding.
The increase in the energy dissipation term has a larger effect, and the critical
stiffness is larger for localized shear than for homogeneous deformation. In both
cases, rate weakening is required for steady sliding to be unstable (if χw > 1, then
the critical stiffness would have to be negative, which is unphysical). The function
f(τ) is determined by the stress dependence of the rate switching factor. In the
case of exponential stress dependence, f(τ)/f ′(τ) ≈ σd, and the critical stiffness is
proportional to the steady sliding stress and inversely proportional to the effective
temperature. Note that the stress and effective temperature are both functions
of the driving velocity V0, which means that the critical stiffness depends on V0

for both types of deformation. The stress decreases with increasing driving rate
(since friction is rate weakening), and the effective temperature increases with the
driving rate. This means that as the driving rate increases, the critical stiffness
decreases, which is consistent with experiments [84]. This rate dependence is not
captured by Dieterich-Ruina friction, which predicts that the critical stiffness is
independent of the driving rate.

An important implication of our analysis is that localized deformation cannot
be approximated by homogeneous deformation with a reduced material thickness.
This is because the diffusion term in Equation (3.33) reduces the critical stiffness,
an effect that the homogeneous model cannot incorporate. It is necessary to re-
solve the internal material instabilities in order to produce the correct macroscopic
behavior.

3.3.2 Numerical Results

We confirm our analytic predictions for the dependence of the critical stiffness
on the driving rate through numerical integration of the STZ equations. We
perform numerical simulations to ensure that our estimate for the shear band
thickness is accurate, and to explore the connection between the internal disorder
characterized by the effective temperature and irregular stick-slip dynamics.

We integrate Equations (3.4)-(3.5) along with the constitutive law (Equa-
tion (2.1)). We first turn the partial differential equation into a system of ordinary
differential equations. We approximate the spatial derivatives using central sec-
ond order finite differences, with the diffusion term is split into two separate terms
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using the product rule. We write the spatial integral in Equation (3.4) as a numer-
ical integral using the trapezoidal method. Once the STZ equations are written as
a system of ordinary differential equations, we use a second order linearly implicit
trapezoidal method to advance the system in time. Because stick-slip events in-
volve longer periods of elastic loading followed by rapid failure, we use an adaptive
time stepping method to efficiently resolve the slider motion.

We vary the scaled driving rate from V0 = 10−12 to 10−4, and vary the scaled
spring stiffness at each velocity to find where the transition from steady sliding
to stick-slip occurs. The other parameters are given in Table 3.1. For each set of
V0 and k, we start the block at steady sliding. If the stress and slider velocity do
not remain constant, then steady sliding is unstable. Figure 3.3(a) illustrates an
example of the stress evolution when steady sliding is unstable – the shear stress
begins to oscillate, and the oscillations grow into stick-slip cycles.

We compare slider motion in cases involving dynamic formation of a shear band
with deformation that is homogeneous. To obtain homogeneous deformation, we
start the system with a spatially homogeneous effective temperature. In contrast,
to form a shear band, a small perturbation of the form δχ sech(z/δz) is added
to the initial effective temperature. We find that the values of δχ and δz do not
influence the limit cycle of stick-slip motion nor the final width or amplitude of
the shear band. For simplicity, we use values of δχ = 10−4 and δz = 0.1 for all of
our localized simulations.

Figure 3.4 shows the phase diagram in (V0, k) space that results from our an-
alytical and numerical studies. As expected, the critical stiffness decreases with
the driving rate, and the critical stiffness for localized deformation is larger than
that for homogeneous shear. The analytical expression for the critical stiffness
with homogeneous shear matches extremely well with the numerical results. For
localized deformation, our analysis yields a curve that is slightly below the curve
obtained numerically. This discrepancy is due to the approximations we used to
estimate the shear band width and the magnitude of the diffusion term. Changing
the value of the correction factor in the prediction of the shear band thickness a
(Equation (3.32)) does not improve the analytical predictions. If the value of this
factor is changed from 3.7 to 3 or 4.5, the prediction of the critical stiffness de-
creases by 10% in both cases. As mentioned above, the critical stiffness decreases
as the correction factor is either increased or decreased due to the competing
effects of dissipation and diffusion.

Our numerical results also indicate that the transition from steady sliding to
stick-slip is continuous. As the stiffness is increased towards the critical stiffness,
the amplitude of stick-slip cycles approaches zero. The transition is continuous at
all velocities tested in our study.
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Figure 3.4: Comparison of analytical and numerical investigations of stick-slip.
The plot shows the critical stiffness as a function of driving rate for the ana-
lytic expressions for homogeneous deformation and localized deformation (Equa-
tions (3.29) and (3.33), respectively) and the results obtained through numerical
integration of the STZ equations. If the stiffness and driving rate are above the
curve, then steady sliding is stable. If the values of the stiffness and driving rate
are below the curve, motion occurs through stick-slip cycles. The analytical result
for homogeneous shear matches extremely well with the numerical results. The
prediction for localized deformation provides a good approximation of the shape
of the boundary between stick-slip and steady sliding. The small discrepancy is
due to the difficulty of estimating the shear band width a, as well as the fact
that the strain rate is not constant in the shear band. The gray box indicates the
region of parameter space where localized deformation produces multiple period
stick-slip. This region is examined in detail in Figure 3.5.
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We also use numerical integration to explore the dynamics of stick-slip. We
do not observe complex stick-slip cycles for the homogeneous case. We find that
localization produces irregular stick-slip cycles in certain regions of parameter
space. Simultaneous observations of irregular stick-slip and the internal effective
temperature dynamics establishes a connection between the small scale physics
and exotic macroscopic dynamics.

Multiple period stick-slip occurs for the lowest driving rates in our study,
as shown in Figure 3.5. This is a closer look at the gray box at the far left of
Figure 3.4, just below the localized transition from steady sliding to stick-slip. We
see that there are many types of motion that occur in this small part of parameter
space, including steady sliding, single period stick-slip, double period stick-slip,
many (> 2) period stick-slip, and material failure. Material failure refers to the
fact that the strain rate becomes so large that the effective temperature diverges.
Deformation in the amorphous material no longer occurs in isolated STZs at these
large strain rates, and instead the deformation is more fluid-like. In the laboratory,
stick-slip cycles are still likely to occur in this regime, but would require additional
physics not included in STZ Theory to be accurately captured theoretically.

We look at two specific examples of the irregular slider dynamics, one exam-
ple that exhibits two period stick-slip (the white square in Figure 3.5), and one
example that exhibits many irregular stick-slip cycles (the square in Figure 3.5).
Figure 3.6(a) shows shear stress as a function of load point displacement for stick-
slip cycles with a doubled period. This stick-slip motion occurs for localized
deformation with V0 = 10−10 and k = 1100. The motion consists of a pair of
alternating large and small events. The shear stress builds up to the same level
during the “stick” phase of motion in both events, but the sticking time between
slips alternates between two values. The slider slips much further during the big
event, which relaxes the spring and drops the stress to a lower level, resulting in a
longer sticking time following the large event compared to the sticking time after
the small event. Figure 3.6(b) shows the slider velocity as a function of load point
displacement. The large events result in a block velocity that is several orders
of magnitude larger than in the small event. The inset (Figure 3.6(c)) shows an
enlarged plot of the slider velocity during the “stick” phases, with labels iden-
tifying the small and large events. The slider moves slightly faster prior to the
large event. However, the slider velocity is nearly an order of magnitude below
the driving velocity during the “stick” phases prior to both events.

The slider slips more in the large event due to differences in the internal state
of the material within the shear band – the strain rate profile in the material is
different during large and small events. Both the slider velocity and the plastic
strain rate are larger during the large stick-slip events. Small differences in the

63



CHAPTER 3. STICK-SLIP INSTABILITIES

10−12 10−11 10−10 10−9500

1000

1500

2000

driving velocity

sp
rin

g 
st

iff
ne

ss

steady sliding
single period
stick-slip
double period
stick-slip
many period
stick-slip
material failure

Figure 3.5: Diagram of parameter space where multiple period stick-slip occurs.
This is a close-up of the gray box at the far left of Figure 3.4, just below the tran-
sition from steady sliding to stick-slip for localized deformation. In this smaller
region of parameter space, many types of motion occur, including steady slid-
ing, single period stick-slip, double period stick-slip, many (> 2) period stick-slip,
and material failure. All of the curves are plotted for localized deformation, as
multiple period stick-slip does not occur for homogeneous shear. Material failure
means that strain rates during the “slip” cycles are so large that STZ Theory
breaks down. A laboratory slider would likely still exhibits stick-slip motion in
this part of parameter space, but additional physics would have to be added to
STZ Theory to model the motion theoretically. The circles indicate the specific
values of k at fixed V0 where we observe a transition from one type of stick-slip
motion to another. The white square indicates the specific example of double
period stick-slip that we examine in Figures 3.6-3.7, and the “x” indicates the
specific example of many period stick-slip that we examine in Figure 3.8.
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Figure 3.6: Two period stick-slip, with V0 = 10−10 and k = 1100. This point in
the parameter space is shown by a white square in Figure 3.5. (a) Shear stress as a
function of load point displacement. Instead of a single stick-slip event, there are
two different stress drop sizes. The stress builds up to the same level to initiate
failure in both event sizes, but the recurrence time differs between the events. The
block slips more in the large event due to the microscopic effects of localization.
(b) Stress and slider velocity evolution during two period stick-slip. The slider
velocity is several orders of magnitude larger in the large stick-slip event. The
velocity evolution during the “stick” phase leading up to failure is very similar in
the large and small events. The stick-slip events have different sizes because of the
internal effective temperature profile, which we examine in detail in Figure 3.7.
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Figure 3.7: Close-up of the effective temperature shear band in large and small
stick-slip events. The far left plot shows the shear stress as a function of load point
displacement for a large and a small stick-slip event. At four different values of
the stress, shown by the dots on the two different curves, we plot the effective
temperature profile across the layer (z-direction). Because the stress is identical
for the pair of curves in each of the four plots, the only difference between the
block sliders is the effective temperature profile – the physical internal state of the
sheared material is responsible for any differences in the dynamics. (a) At the peak
stress prior to the slip event, the effective temperature profile is slightly different
– the shear band is narrower and the effective temperature is larger in the center
prior to the large event. (b) Because of feedbacks in the effective temperature
dynamics, this difference is amplified, and the elevated effective temperature in
the center point grows faster during the large event. This further increases the
effective temperature at the center as the plots in (c) and (d) illustrate. Because
the effective temperature is larger during the small event, the strain rate is larger
and the shear stress drops to a lower value due to dynamic weakening. This is
why the shear stress in the large event drops nearly twice as much as in the small
event.
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effective temperature have a large impact on the slider dynamics. Figure 3.7
(far left) shows shear stress as a function of load point displacement for a large
and small stick-slip event which alternate in a two period cycle. At a series of
four values of the shear stress, we plot the effective temperature as a function
of z position within the layer. Because the shear stress is equal, differences in
the stick-slip events must arise from differences in the internal dynamics of the
effective temperature.

Figure 3.7(a) shows the effective temperature at the stress peaks. Prior to
the large event, the effective temperature is slightly elevated at the center of the
material. Dynamic feedbacks in the effective temperature evolution during slip
amplify this difference. The slightly elevated effective temperature implies a higher
density of STZs at the center of the material. The strain rate is also larger, and
so the material dissipates more energy. Energy dissipation leads to faster growth
of the effective temperature, which produces the profiles in Figure 3.7(b). The
difference is further amplified in Figure 3.7(c), and in Figure 3.7(d) the difference
between the effective temperatures correspond to nearly a factor of 1000 increase
in the plastic strain rate. As the effective temperature grows, the stress drops more
rapidly during the large event due to dynamic weakening. Because the stress drop
is larger, the block slides farther due to the decreased frictional resistance.

This mechanism leads to further period doublings as the spring stiffness de-
creases, until the cycles are irregular. Figure 3.8(a) shows the shear stress as a
function of load point displacement for a series of irregular stick-slip events. This
block slider system is driven at V0 = 10−12 with a spring stiffness of k = 1700.
The shear stress at which the slip cycle begins is very similar for both smaller and
larger events. Figure 3.8(b) shows the evolution of stress and slider velocity dur-
ing the four stick-slip events in the gray box in Figure 3.8(a). The slider velocity
ranges over many orders of magnitude in the slip events. There is variation in the
block velocity during the “stick” phase, though it is always well below the load
point velocity V0, shown by the horizontal line. The block velocity during the
“stick” phase is largest following a small event, and smallest after a large event.
However, the slider velocity during the “stick” phase is not completely indicative
of the size of the next event, as the slider velocity during the “stick” phase takes
on a range of values prior to both large and small slip events.

Figures 3.8(a) also shows that there are groups of smaller slip events followed
by a larger slip event. The groups often have three or four stick-slip events, with
several small events followed by a large event. Consecutive larger events can also
occur, as can be seen around a load point displacement of 0.3 in Figure 3.8(a).
The consecutive large events exhibit a smaller stress drop than the large events
in the set of three or four events.
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Figure 3.8: Irregular stick-slip events due to strain localization, with V0 = 10−12

and k = 1700. This point in parameter space is shown by an “x” in Figure 3.4.
(a) Shear stress as a function of load point displacement. Stress drops of many
sizes occur, with irregular recurrence times. The peak stress is similar for all
events, though there are some small variations. Events usually occur in groups of
two or three, with one or two smaller events preceding a large event, but there
can also be several consecutive larger sized events. (b) Stress and slider velocity
evolution during complex stick-slip cycles. The plot shows the four stick-slip cycles
in the gray box in (a). The innermost loop is the first small stick-slip, and the
subsequent events are progressively larger. The vertical green line indicates the
load point velocity V0. The block velocity during sliding varies over many orders
of magnitude. During the “stick” phase, there is variation in the velocity of the
block. Small events are followed by increased block velocity during the “stick”
phase, while the slider velocity is lower after large events. However, the slider
velocity prior to a slip event does not determine its size.

68



CHAPTER 3. STICK-SLIP INSTABILITIES

The small scale physics of strain localization leads to the various sizes of slip
events due to the same mechanism described above for the double period stick-slip
cycles. The effective temperature is largest in the center of the material prior to
the largest events, and then dynamic feedbacks cause the effective temperature to
grow more rapidly, similar to the plots in Figure 3.7. The transitions to complex,
chaotic behavior in our model arise from variations in the internal state of the
material rather than instabilities associated with three (or more) macroscopic
phenomenological degrees of freedom in a dynamic system, providing physical
insight into the mechanisms that give rise to exotic friction behavior.

3.4 Discussion

Our study shows that strain localization plays an important role in stick-slip
instabilities in amorphous materials. The critical spring stiffness is larger for local-
ized deformation than for homogeneous deformation, and our analytic expressions
for the critical stiffness are in good agreement with numerical integration. The
primary effect that increases the critical stiffness for localized strain is an increase
in the strain rate in the shear band. Diffusion also plays a role by mitigating the
increase in the critical stiffness, though the increased strain rate is the dominant
effect in determining the stability of steady sliding. Our analysis shows that the
localization effect cannot be replicated in a homogeneous model by simply reduc-
ing the thickness of the material, and that resolving the microscopic dynamics is
important for capturing the large scale friction.

Other constitutive laws such as Dieterich-Ruina also predict stick-slip motion
[75]. In the Dieterich-Ruina law, the critical stiffness is independent of the driving
rate, while in STZ Theory the stiffness decreases with increasing driving rate.
This general trend is in agreement with laboratory experiments [84], and previous
studies with STZ Theory that did not resolve the dynamic strain localization
instability [58].

We also find that localized stick-slip can occur in irregular cycles. The effective
temperature profile immediately before large and small events is slightly different,
and this change in the microscopic physical state leads to macroscopically different
friction dynamics. Phenomenological constitutive laws find that stick-slip can
occur with irregular periods, though this requires additional state variables to
provide the degrees of freedom necessary for chaotic stick-slip [76]. Our model
instead relates irregular stick-slip to the internal physics of localization.

Many experiments show irregular stick-slip [85, 74, 67]. The exotic phenom-
ena could arise from many different sources of complexity, such as additional
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time scales associated with the apparatus and/or complex molecules in the in-
terfacial layer which have their own internal dynamics or entanglements. Our
study shows that even for simple interfacial materials, the small scale physics of
strain localization can also be a source of complexity. Experiments on simpler
amorphous materials that can simultaneously examine the dynamics of strain lo-
calization (e.g. experiments that can image particle displacements) could examine
the region in parameter space where we observe irregular stick-slip to test the con-
nection STZ Theory makes between the microscopic physics and the microscopic
dynamics.

Our model assumes that the effective temperature is only a function of position
across the layer thickness. This simplifies the modeling, but experiments show that
amorphous materials are heterogeneous in other spatial directions [86]. Extending
slider models to additional dimensions may be important for fully capturing the
complex stick-slip dynamics seen in various experiments.

Molecular dynamics simulations of amorphous materials show that stick-slip
motion often occurs due to a phase transition from a solid to a fluid in the ma-
terial [78]. This behavior is also observed in experiments [71]. The STZ model
does not include the physics of this transition – melting occurs at the strain rate
where the effective temperature diverges, but STZ Theory does not include a
constitutive description of the material once it melts. At these high strain rates,
plastic deformation no longer occurs in isolated STZs, and the material instead
flows like a fluid. Future modeling efforts that incorporate this melting transi-
tion can determine its effects on stick-slip for comparison with simulations and
experiments.

Experiments could determine the thickness of shear bands during stick-slip
motion to test our quantitative predictions for the effect of localization. In thin
films, the material is often only a few molecules thick [85]. So, for these systems,
localization may not be important as the shear band thickness may be wider than
the entire material. In thicker materials such as granular materials, this effect is
more likely to be important. Daniels and Hayman [67] observed stick-slip events in
a granular material and imaged particle displacements before and after the event.
They found that slip occurred only over a few particle diameters in the layer for
some of the stick-slip events. Experiments on granular materials where grains can
be imaged, or experiments with fault gouge that examine gouge microstructures
following the experiment [70] can determine the shear band thickness. Such ex-
periments could potentially test our predictions for the effect of shear bands on
stick-slip instabilities.

Our model for stick-slip does not include inertial effects. We assume that
the frictional time scale dominates stick-slip motion, and that oscillations of the
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spring/mass system occur much faster than the inverse plastic strain rate time
scale. Inertial effects are important in some regimes [79], and can be included
in the block slider equations for numerical studies. However, these dynamical
systems involve additional variables and analytical studies are consequently much
more difficult. Stick-slip motion may require that the inverse plastic strain rate,
mass/spring oscillation time, and stress equilibration time all be similar. This re-
quires substantially more complicated modeling to resolve stress equilibration and
wave propagation through the amorphous material. Addition of a mass resulted
in chaotic motion with Dieterich-Ruina friction [87], so inertial dynamics could
produce interesting dynamic phenomena in the STZ model.

Stick-slip instabilities are an important aspect of friction that must be under-
stood to better constrain the dynamics of interfaces. Our results show that strain
localization plays an important role in the macroscopic dynamics. Increasing
the resolution of other relevant small scale phenomena in models of macroscopic
dynamics should ultimately improve our ability to predict the deformation and
failure in amorphous materials.
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Chapter 4

Comparing Friction Laws in
Dynamic Rupture

We now turn our attention to the fault scale and study dynamic earthquake
ruptures that are governed by STZ Theory. In our novel multi-scale approach to
the earthquake problem, our first research efforts assume that the shear strain
in the fault gouge is homogeneous. This work occurred first chronologically, and
therefore it utilizes the simpler Free Volume Law, which is an older STZ formu-
lation than the version based on effective temperature. Because this dissertation
is organized by scale rather than chronology, more recent work at the interface
scale that uses the effective temperature version of STZ Theory is presented in
Chapters 2 and 3. In this chapter, we make detailed comparisons between the Free
Volume law and the Dieterich-Ruina and Slip Weakening laws, and determine the
fault scale impact of the grain scale physics in a simplified version of STZ Theory.
We extend the fault scale research to include spontaneous localization of strain in
Chapter 5.

The work in this chapter is published by Daub and Carlson in the Journal of
Geophysical Research [56]. Some of the discussion of constitutive laws from this
paper appears in Chapters 1 and 2, while this chapter focuses on the results of
the dynamic earthquake rupture simulations.

4.1 Constitutive Laws in Dynamic Rupture

In simulations of dynamic earthquake rupture, friction laws link characteris-
tics of microscopic adhesion and dissipation to their implications for fault-scale
behavior. A variety of friction laws have been studied in the context of individual
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ruptures [88, 19, 89, 90, 91] and sequences of earthquakes [92, 93, 94]. Deter-
mining how friction laws arise from microscopic mechanisms and lead to complex
behavior remains a central question in earthquake source physics.

Constitutive laws governing dynamic rupture models can be divided into two
classes: (1) single variable slip-dependent or velocity-dependent laws, where shear
stress weakens according to an a priori fixed function of slip or slip velocity, and (2)
rate and state laws, which incorporate explicit rate (i.e. velocity) dependence and
one or more physically motivated thermodynamic-like state variables to capture
the history dependence of friction. In the single variable category, we consider
the linear slip-weakening (SW) law [1, 2, 3], which is the most widely studied
example in this class in the geophysical literature. Slip-weakening friction is dis-
cussed in Section 1.2.2, and purely slip velocity dependent laws are discussed in
Section 1.2.3. The rate and state laws that we study include the Dieterich-Ruina
(DR) law [10, 11], which is discussed in Section 1.2.4, and the Free Volume (FV)
law, which connects fault evolution to microscopic physical processes in a layer of
fault gouge [59] and is discussed in Chapter 2.

The linear SW law is frequently used as a simplified description of friction.
The law prescribes a specific linear relationship between slip and weakening of the
shear stress, depends on few parameters, and ignores more complicated processes
such as dynamic re-strengthening and slip rate dependence. The DR law adds ex-
perimentally observed slip rate dependence, and re-establishes frictional strength
after weakening through state variable evolution. The FV law uses Shear Trans-
formation Zone Theory [24, 25] to model the plastic deformation of granular fault
gouge, and incorporates dilation and compaction as the basis for fault weakening
and re-strengthening, respectively.

The FV law provides a good description of laboratory experiments for bound-
ary lubrication [58] and numerical simulations of dense granular flows [27]. In this
study, we extend these investigations to fault-scale behavior and compare the FV
law to the SW and DR law, contrasting their implications for dynamic rupture.
Additionally, we consider versions of the DR and FV laws modified to include
rapid velocity weakening. Because the physics of the earthquake source is poorly
constrained, examining the dynamic ruptures that arise from different friction
laws can aid seismologists in assessing the range of possible physical outcomes
occurring at the earthquake source.
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4.2 Comparing the DR and FV Models

Both the DR and FV friction laws depend on the slip rate and a single state
variable. Rate and state laws are often analyzed in the context of velocity step
experiments. In this section, we make a close comparison between these laws, and
discuss the important differences between these friction laws. We consider the DR
law with the ageing state variable evolution equation:

τ = σ

[
f0 + a log

(
V

V0

)
+ b log

(
θV0

l

)]
; (4.1)

dθ

dt
= 1− θV

l
. (4.2)

We compare the DR law with the FV law, which is given by the equations

V = V∗ exp [−f∗ − (χs + χh) /χ] (1−m0) sinh (τ/σd) ; (4.3)

dχ

dt
= −Rc exp (−χc/χ) + ατV. (4.4)

The value of m0 depends on whether the shear stress is above the yield stress:

m0 =

{
1, [τ ≤ τ0 exp (χh/χ)];
τ0
τ

exp (χh/χ) , [τ > τ0 exp (χh/χ)].
(4.5)

We compare these two constitutive laws in detail in this section.
The transient behavior of a rate and state friction law is illustrated by a velocity

step experiment. A single degree of freedom block is driven by an externally
imposed velocity. Alternatively, one can interpret the velocity step as the response
of a single degree of freedom elastic slider in the limit of an infinitely stiff spring
constant. The block initially slides at the steady-state velocity Vss with the state
variable at the corresponding steady-state value. This is followed by a sudden step
increase ∆V in the imposed sliding velocity. The dynamic response of the slider is
shown in Figure 4.1. Initially, shear stress increases (the so-called “Direct Effect”);
the magnitude of the increase is defined to be A. Over some characteristic length
scale, defined to be L, the frictional stress evolves to its new value. The difference
between the initial steady-state value of the stress and the new steady-state is
defined to be A−B (the “Evolution Effect” is quantified by B). Mathematically,
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Figure 4.1: Shear stress versus slip for a velocity step experiment. The slip velocity
is perturbed from steady sliding at Vss to Vss + ∆V , and the transient response of
the system is shown. The instantaneous increase in friction (A), the length scale
for evolution (L), and the new steady-state (A−B) are shown in the plot.

these parameters are identified by [95, 19]

A = V
∂τ

∂V

∣∣∣∣
V=Vss,θ=θss

; (4.6)

A−B = V
dτss
dV

∣∣∣∣
V=Vss

; (4.7)

L = − V
∂(dθ/dt)

∂θ

∣∣∣∣∣
V=Vss,θ=θss

. (4.8)

The quantities A and L are evaluated at the initial steady-state values of the
velocity and state variable, and A − B at the initial steady state velocity. The
quantities A, A−B, and L can be calculated for any rate and state law, and laws
with more than one state variable will have a length scale associated with each
state variable. We attach a subscript when referring to these quantities calculated
for a specific friction law to distinguish them from the general definitions.

For the DR law, applying Equations (4.6)-(4.8) to Equations (4.1) and (4.2)
results in the following:

ADR = σa; (4.9)

(A−B)DR = σ (a− b) ; (4.10)

LDR = l. (4.11)
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This demonstrates that a and b determine the velocity dependence of friction, and
that there is a fixed length scale l for transient effects.

Calculation of quantities A, A− B, and L (Equations (4.6)-(4.8)) for the FV
law enables a direct comparison with the equivalent parameters for the DR law.
The resulting equations are rather cumbersome. Approximate expressions for
AFV, (A−B)FV, and LFV are:

AFV ≈ σd; (4.12)

(A−B)FV ≈ σd [1− (χs + χh) /χc] ; (4.13)

LFV ≈ χ2
ss

αχcτss
=

χc

ατss

[
log
(

Rc

ατssVss

)]2 . (4.14)

The steady-state value of the shear stress τss is found by simultaneously solving
Equation (4.3) (with the stress, free volume, and slip rate at steady-state) and
the steady-state expression for the free volume χss = χc/ log(Rc/(ατssVss)). Note
that τss depends on the slip rate, though it turns out that the stress does not
change as much as the free volume with varying slip rates due to the logarithmic
velocity dependence. These approximations assume that σd/τss << 1 (i.e. the
typical shear stress is much larger than the transient stress increase needed to
flip an STZ) and that the stress is not close to the yield stress. The approximate
values (Equations (4.12)-(4.14)) are within a few percent of the exact values for
the parameters we choose as long as the steady-state stress is not near the yield
stress (deviations from Equation (4.12)-(4.14) are most significant if m0 ≈ 1). The
approximation that the stress is not near the yield stress is appropriate for analysis
of velocity step experiments where the slip rate is perturbed from steady sliding
and the fault never stops sliding. However, when studying dynamic rupture, slip
often initiates on a locked fault and deviations from these expressions can be
more significant. Therefore, these expressions are useful in comparing the law to
laboratory experiments, while the exact constitutive law (Equations (4.3)-(4.4)) is
implemented into the dynamic rupture calculations. In our rupture simulations,
we always start the fault at V = 0 for simplicity, but rapid slip acceleration can
still occur if the fault begins with a slip rate much slower than seismic slip rates.

The quantities AFV and (A−B)FV are independent of slip rate, as are the cor-
responding values in the DR law ADR and (A−B)DR. This verifies that the STZ
activation stress σd is equivalent to the DR law direct effect stress aσ. Since the
direct effect in the DR law is proportional to the effective normal stress, σd should
also be proportional to the effective normal stress with a similar proportionality
constant. The steady-state velocity dependence of both laws is logarithmic. If the
reference free volumes satisfy χs + χh > χc, the free volume law is steady-state
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velocity weakening. In this manner, the FV law allows for the physical inter-
pretation that the velocity dependence of friction is based on the relative values
of these three characteristic free volumes. In the steady-state velocity weaken-
ing regime, as the slip velocity increases, the rate at which STZs flip orientation
grows faster than the rate at which the gouge compacts. Therefore, lower stress
is required to balance compaction and dilation to maintain the steady-state value
of the free volume. The FV law predicts dilatancy hardening and steady-state
velocity strengthening if χs +χh < χc. Parameters in this regime do not allow for
earthquake instabilities.

In experiments on laboratory faults, velocity weakening is usually not observed
until strain localizes to a narrow shear band. Since the FV law assumes uniform
strain througout the gouge, we focus on matching the behavior of laboratory
experiments once they reach the velocity weakening regime and a narrower active
shearing thickness is established. One way to reconcile the observed trend in the
velocity dependence of experiments with the velocity dependence of the FV law is
to note that the reference free volumes depend on the constituents of the gouge.
Since wear and comminution occur throughout the experiments, the reference free
volumes could change (for instance, creation of smaller grains could decrease χc)
to match the observed trend towards velocity weakening. These changes modify
the porosity φ without significantly changing the shearing thickness w. Since such
changes alter the free volume and the reference free volumes, this will significantly
alter the frictional properties of the gouge.

Figure 2.2 shows a plot of shear stress and free volume/porosity as a function
of shear displacement for two different velocity steps. This verifies that AFV

and (A − B)FV are independent of slip rate. The transient changes in stress
are the same regardless of the sliding velocity, which confirms the predictions of
Equations (4.12)-(4.13).

The key difference between the two friction laws involves the length scale for
state variable evolution L. The length scale in the DR law LDR is constant, while
the length scale for the FV law LFV varies with slip velocity (Equation (4.14)). In
the FV law, in order to slip steadily at a higher velocity, the material must dilate
(though the plot in Figure 2.2 shows that the changes in porosity are small com-
pared to the overall porosity, so the layer thickness does not change significantly).
Our calculation shows that LFV is proportional to the square of the steady-state
free volume and increases at higher slip rates. In the DR law, the natural length
scale is the size of asperity contacts, which is independent of the slip rate and
exhibits no velocity dependence. Seismic slip velocities range over many orders
of magnitude, from slow quasistatic loading to unstable rapid slip. The varying
length scale in the FV law has a potentially large impact.
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Figure 4.2: Experimental data for L [34] and the corresponding predictions of the
FV law. The FV law predictions are given by Equation (4.14) with the following
parameters: χs = 0.3407, σd = 0.25 MPa, χc = 0.1145, f0 = 222.3, V0 = 10−6 m/s,
Rc = 5 s−1, α = 0.3 (MPa s)−1, χh = 0.0028, and τ0 = 44.12 MPa. The DR law
predicts that L is independent of slip rate – the above plot is a horizontal line for
DR friction. The FV law follows the observed trends in laboratory faults.

Mair and Marone [34] observe systematic variations of the slip distance with
slip rate for friction evolution in experiments involving fault gouge. Figure 4.2
compares the FV law and their laboratory data. Values of LFV are calculated
from Equation (4.14). We note variations in LFV with slip velocity that exhibit
behavior very similar to laboratory faults. This suggests the FV law may capture
important behavior for gouge filled faults which is absent in the DR law.

The plots in Fig. 2.2 show that the length scale LFV depends on the slip rate.
The displacement needed for stress to weaken to its new steady value is larger in
the second velocity step (from 10−5 m/s to 10−4 m/s) than in the first velocity
step (from 10−6 m/s to 10−5 m/s). This is easiest to see in the lower plot in
Fig. 2.2, as the free volume is still evolving at the right edge of the plot while
the free volume has stabilized within the same displacement during the previous
velocity step.

In addition to the slip rate dependence of LFV, the FV law provides a means
to quantitatively bridge the difference in scales between laboratory faults and
natural faults. Because the DR law is phenomenological, it is difficult to estimate
precisely how the DR parameters a, b, and l (Equation 1.2) may or may not
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depend on the scale of the fault. The FV law based on grain-scale physics includes
a specification for how parameters depend on the scale of the fault or experiment.
The dilation coefficient α is inversely proportional to the slipping thickness w.
This is because the dilation term depends on the strain rate. The strain rate will
be larger for a thinner layer at a given slip velocity, and the scaling of α with w
reflects this. The FV Law predicts LFV ∝ w (since LFV ∝ 1/α and α ∝ 1/w),
and increasing the width of the gouge layer increases the length scale in the FV
law. This predicted scaling is consistent with the experiments of Marone and
Kilgore [96]. This suggests natural faults exhibit a length scale a few orders of
magnitude greater than laboratory values. The direct effect AFV and the steady-
state velocity dependence (A − B)FV are independent of the layer thickness w,
and remain unchanged with fault scale.

The thickness of the actively shearing layer in laboratory experiments cannot
be directly measured since strain tends to localize within the gouge during exper-
iments. Because strain localizes over many velocity steps, we assume that during
an individual velocity step the shear band thickness is uniform, and the uniform
shear assumption in the FV law is a good approximation for that single velocity
step. We can then use the FV law to estimate the shear band thickness of the
laboratory experiments. Using the same parameters as in Figure 4.2, we can cal-
culate the change in free volume due to a velocity step. The change in pore space
is due to layer dilation, so the additional porosity due to dilation is approximately
dw/w, where dw is the measured change in layer thickness. Therefore, the change
in free volume dχ (equal to the porosity change) is related to the layer thickness w
and the thickness change dw by dχ = dw/w, so given an experimental value of dw
an estimate of w can be computed. We find that with w = 0.75 mm, the FV law
follows the dilation data for experiments in the velocity weakening regime [34].
This calculated value is also within reason given the microstructural observations
in the experiments. For natural faults we estimate w = 0.45 m, a typical thickness
of the gouge layer in a study by Chester and Chester [37]. The estimates of w
for laboratory and natural faults allow us to determine the parameters for our
rupture dynamics simulations for natural faults.

4.3 Dynamic Ruptures

In this section, we compare the effects of the SW, DR, and FV laws in the
spontaneous propagation of elastodynamic ruptures. The previous section con-
siders small single degree of freedom sliders to determine A, A − B, and L for
each law. Now we numerically simulate ruptures that propagate along faults for
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which the length is typically orders of magnitude larger than laboratory samples.
Comparisons between the SW and DR laws have been made for dynamic rupture
simulations [97]. Here we extend comparisons to include the FV law.

We model the fault as the interface between two homogeneous, isotropic, linear
elastic half spaces (Figure 4.3). The fault is the xy plane, and this boundary
is governed by the chosen friction law. We consider only simple 2D in-plane
or anti-plane ruptures, and thus by symmetry all quantities on the fault plane
have no y dependence. Due to this imposed in-plane or anti-plane geometry, the
vector slip velocity reduces to a scalar V (x, t), and the stress tensor has only
one shear component τ(x, t). For in-plane ruptures, the slip velocity only has
a component in the x-direction (V (x, t) = Vx(x, t)) and the shear stress is the
xz-component (τ(x, t) = τxz(x, t)), while in anti-plane problems the slip rate has
only a y-component (V (x, t) = Vy(x, t)) and the shear stress is the yz-component
(τ(x, t) = τyz(x, t)).

The elastodynamic equation requires that on the fault plane, the shear stress
τ(x, t) and the slip velocity V (x, t) satisfy [98, 88]

τ(x, t) = τload(x) + f(x, t)− µ

2cs
V (x, t). (4.15)

The stress and slip rate also satisfy the friction law on the fault, and the two
equations are solved simultaneously. The initial loading stress τload(x) is constant
except for a small overstressed patch spanning the full depth of the fault of width
Ltrig (where the initial load is τtrigg). This patch, the medium shade of gray in
Figure 4.3, nucleates the rupture. This does not capture the slow nucleation pro-
cess that initiates real earthquakes, but this simple nucleation procedure preserves
the differences between ruptures with various friction laws. The stress transfer
functional f(x, t) tracks dynamic stress changes due to past fault slip, and the
final term explicitly extracts radiation damping [98], where cs is the shear wave
speed and µ is the shear modulus. We calculate the stress transfer functional
f(x, t) using a spectral method [88, 99], and use the displacement formulation of
this method. Note that although the radiation damping term is present in Equa-
tion (4.15), our method of computing f(x, t) accounts for the full elastodynamic
response and does not result in a quasidynamic model.

Periodic boundary conditions are imposed on the fault. To prevent replicas
of the rupture from affecting the solution, we place strong frictional barriers to
rupture at the outer edge of the fault (the darkest shade of gray in Figure 4.3). For
the SW law, this barrier is defined by a large value of the yield stress. For the DR
and FV laws, the barrier is obtained by increasing the value of A. The specifics
of the outer fault barriers do not affect the solution we calculate on the portion
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Figure 4.3: Schematic of the fault used in dynamic rupture calculations. Two
identical homogeneous, isotropic, linear elastic half spaces are loaded far from the
fault. Slip varies only in the x-direction, and boundary conditions are periodic.
The symmetry in the y-direction requires that the slip and slip rate are scalars,
either in the x-direction for in-plane loading or in the y-direction for anti-plane
loading. The initial load is uniform except for an overstressed patch (medium
shade of gray) which triggers rupture, and friction parameters are uniform ex-
cept for strong barriers (darkest shade of gray) to prevent periodic replicas from
affecting the solution.
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of the fault that can rupture. Integration in time is achieved using a second order
Runge-Kutta scheme [100].

Previously, Lapusta et al. [100] confirmed that simulations of anti-plane elas-
todynamic ruptures with the DR law are numerically stable. They identified a
critical cell size h∗ for velocity-weakening friction parameters, with

h∗ =
γµL

B − A
. (4.16)

Ruptures were numerically stable if the spatial grid spacing dl was much smaller
than h∗. The model-dependent γ is a constant of order unity, and µ is the shear
modulus. For in-plane ruptures, the same expression applies with the shear mod-
ulus µ replaced by the expression µ/(1 − ν), where ν is Poisson’s ratio [20]. For
our analysis, we can extend these results to the FV law, but because the length
scale LFV is slip rate dependent, we must replace L in Equation (4.16) with the
minimum of LFV over all slip rates to determine the critical cell size for FV law
ruptures. From Equation (4.14), we determine that the smallest value of LFV

occurs at the smallest value of the free volume. In single event rupture calcula-
tions, this is the initial value of the free volume at t = 0. We choose a spatial grid
spacing dl that satisfies h∗/dl = 40 and this choice gives well-resolved simulations.
Parameters for our simulations are given in Table 4.1 unless otherwise noted.

Shear stress in ruptures utilizing the DR and FV laws does not have explicit
dependence on slip. Instead, the slip dependence of shear stress is deduced from
dynamic rupture simulations, which was done for the DR law by Okubo [101]
and Bizzarri and Cocco [102]. In Figure 4.4 we show how stress weakens as a
function of slip for each law at a point 4 km from the hypocenter. We only plot
the portion of the curve where the stress is weakening, and for slip beyond the
range of the plot the stress is constant in the SW law and relatively constant
(increasing slightly due to dynamic re-strengthening) in the DR and FV laws.
The linear slip weakening law follows the prescribed curve, as expected. The DR
law weakens linearly with slip, and the slip required for the DR law to reach its
minimum stress is larger than LDR, as noted by Bizzarri and Cocco [102]. The
ratio between the total slip required to reach the minimum shear stress and LDR is
about 15, which corroborates the results of Cocco and Bizzarri [103] and Lapusta
and Rice [104]. The DR law matches the SW law nearly identically – this close
match is a deliberate result of our choice of the friction parameters which equates
the peak stress and the area under each curve for the first meter of slip. The cutoff
at one meter was chosen to be larger than the amount of slip needed to reach the
minimum shear stress. The area under the plot of shear stress as a function of slip
determines the energy lost to frictional dissipation per unit area (the combination
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Table 4.1: Parameters for dynamic rupture simulations. Shared model parameters
are: grid spacing dl, number of spatial grid points nx, shear modulus µ, shear
wave speed cs, Poisson’s ratio ν, Courant-Friedrichs-Lewy Ratio cfl = csdt/dl
(determines the time step dt), length of the fault permitted to rupture Lfault, size
of the triggering patch Ltrigg, initial shear load τload, and stress in the triggering
patch τtrigg. The frictional parameters are discussed with each model in the main
text.

Dynamic Rupture Simulation Parameters

Shared Parameters SW Law
dl = 0.01 km dc = 0.31 m
nx = 2048 τp = 73.85 MPa
µ = 32.03812032 GPa τd = 63.375 MPa
cs = 3.464 km/s
ν = 0.25
cfl = 0.3
Lfault = 16 km
Ltrigg = 1.3 km
τload = 68 MPa
τtrigg = 74 MPa
FV Law DR Law
χs = 0.3407 LDR = 21.5 mm
σd = 0.25 MPa a = 0.0027
χc = 0.1145 b = 0.0077
f∗ = 222.3 f0 = 0.7
V∗ = 10−6 m/s V0 = 10−6 m/s
Rc = 5 s−1 σ = 100 MPa
α = 0.0005 (MPa m)−1 V1 = 10−6 m/s
χh = 0.0028
τ0 = 44.12 MPa
χ(t = 0) = 0.0061 θ(t = 0) = 21500 s
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Figure 4.4: Plots of shear stress as a function of slip for an anti-plane rupture
at a point 4 km away from the hypocenter for the linear SW, FV and DR laws.
The SW law weakens linearly with slip by construction. The DR law also exhibits
linear weakening with slip, and its close match to the SW law is due to intentional
choice of parameters. The FV law weakens more rapidly with initial slip due to
the small value of LFV at low slip rates, while weakening is more gradual at larger
slips when the fault slips more rapidly. The FV law requires more total slip to
fully weaken to its minimum shear stress. The shear stress increases slightly for
the FV and DR laws beyond the range of the plot as the time-dependent healing
in each law results in some re-strengthening. Parameters were chosen for the laws
to have equal areas under the slip weakening curve and thus have the same energy
lost to frictional dissipation. Parameters are given in Table 4.1.

of fracture energy and shear heating). Matching the area under the stress versus
slip curve for each law is motivated by the fact that earthquake fracture energies
are the most reliable frictional quantity that can be estimated from ground motion
observations [105]. By equating this quanity for all three laws, we assume that the
partitioning of released strain energy between dissipation and seismic radiation is
the same.

The FV law exhibits weakening that differs significantly from the other laws.
During the initial phases of slip (i.e. at low slip rates), the length scale LFV is
relatively small, and consequently stress weakens rapidly with slip. The length
scale LFV increases at larger slip rates, and as a result the curve exhibits an
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increasingly gentle slope once the fault begins to slip more rapidly. Compared to
the DR and SW laws, the initial onset of weakening occurs more rapidly for the
FV law, while the total slip distance over which the fault weakens is ultimately
larger.

Both the FV and DR laws have a slip-hardening phase as slip initiates. The
duration of slip-hardening is very short, only lasting for the first few millimeters
of slip in both the FV and DR laws, and it is difficult to see in Figure 4.4. The
peak stress is reached at a slip of 1.04 mm for the FV law and 3.32 mm for the
DR law. This difference is due to the smaller length scale in the FV law at low
slip rates. However, LFV is smaller than LDR by approximately a factor of two
at small slip rates, indicating that the duration of slip hardening does not scale
linearly with the length scale in the friction law.

Time histories of the dynamics on the fault at a point 4 km from the hypocenter
are shown in Figure 4.5. With the chosen parameters each friction law supports
ruptures that are expanding cracks. Note that an expanding crack is a rupture
in which there is no healing during the expanding phase of the slip. Instead, the
rupture grows, and slip ceases only after encountering the boundary. In contrast,
a self-healing pulse corresponds to a narrow rupture where healing occurs shortly
after the arrival of the rupture front.

The slip rate plots in Figure 4.5 illustrate the crack-like nature of the earth-
quake simulation with all friction laws. The DR and SW laws are nearly identical
in the dynamic evolution of slip rate and shear stress, confirming the results of
Bizzarri et al. [97]. As in Figure 4.4, this is an intentional consequence of our
parameter choices. The DR rupture front arrives slightly earlier than that of the
SW law. Other than this difference, the SW and DR laws exhibit nearly identical
time histories for both slip rate and shear stress. The rupture front arrives earliest
in the FV law; this is due to the smaller value of LFV at nucleation slip velocities.
The FV law also exhibits lower peak slip rates. The difference in the peak slip
rate is due to the largest slip rates occurring just prior to the shear stress reaching
its minimum value. While the stress is decreasing, stored elastic energy is released
and slip accelerates. Throughout this process, the more rapidly the shear stress
weakens, the larger the slip acceleration. For the FV law, the rate that stress
weakens with slip is not uniform, which means that slip accelerates very rapidly
at first, and less rapidly as the weakening rate decreases. The weakening rate of
the FV law rupture is lower than that of the DR or SW law ruptures when the
ruptures reach their peak slip rate. Consequently, the maximum slip rate for the
FV law rupture is smaller.

State variable evolution is similar for the FV and DR laws. Arrival of the crack
tip causes a period of rapid dilation followed by more gradual compaction for the
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Figure 4.5: Fault dynamics during rupture at a point 4 km away from the hypocen-
ter for the FV (a,d,g), DR (b,e,h), and SW (c,f) laws. As a function of time, (a)-(c)
plot slip rate, (d)-(f) plot shear stress, and (g)-(h) plot the appropriate state vari-
able for the FV or DR law. The velocity plots show all laws support expanding
crack solutions. The FV law rupture arrives slightly earlier – the rupture reaches
the limiting shear wave speed more rapidly due to the smaller nucleation length
in the FV law. The peak slip velocity is also smaller for the FV law. The rup-
tures governed by the SW and DR laws have nearly identical time dependence
of slip rate and shear stress. The DR law rupture arrives slightly earlier, but
otherwise the laws produce matching ruptures. Shear stress increases at the crack
tip to induce slip, and the minimum shear stress occurs at the extreme value of
the respective state variable for the FV and DR laws. Parameters are given in
Table 4.1.
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FV law. The contact lifetime in the DR law drops very rapidly initially, and grows
slightly on the crack interior. The minimum shear stress in each law corresponds
to the maximum value of the free volume in the FV law or the minimum contact
lifetime in the DR law.

For in-plane ruptures, an important distinction between the friction laws arises
in the context of supershear ruptures. The in-plane geometry permits rupture
velocities faster than the shear wave speed, confirmed in simulations by Andrews
[1976b] and laboratory experiments by Rosakis et al. [106]. Supershear ruptures
radiate seismic waves away from the fault in a different manner than subshear
ruptures [49], and seismic records give evidence for supershear rupture velocities
in several earthquakes [107, 108, 109].

The nucleation length of the friction law influences the transition to supershear.
Sub-Rayleigh ruptures radiate shear waves ahead of the crack tip on the fault. If
the stress peak due to this shear wave is large enough, it can initiate unstable
slip that propagates faster than the shear wave speed. For matching frictional
dissipation, the FV law has a smaller nucleation length. Given identical initial
shear loads and frictional dissipation, the smaller nucleation length can allow a
supershear transition to occur for the FV law when a DR rupture remains sub-
Rayleigh. This phenomena is illustrated in Figure 4.6. These plots show the
spatio-temporal evolution of slip rate for both the FV and DR friction laws. Both
ruptures start out as expanding sub-Rayleigh cracks, and the smaller nucleation
length for the FV law enables a transition to supershear rupture. A crack-like
rupture is maintained throughout fault slip for both friction laws.

Fixing all model parameters except for the initial shear stress τload and the
length scale at nucleation slip rates (the value of LFV at the initial free volume,
or LDR), we generate a diagram which distinguishes between when the rupture
transitions to supershear versus when it remains sub-Rayleigh. The length scale in
the DR law is varied by changing l. Note that the intial value of the state variable
depends on l (θ(t = 0) = l/V1), and this is also altered by changes in l. The
length scale in the FV law is altered by changing the dilation coefficient α and the
compaction rate Rc, keeping the relative magnitude of dilation and compaction
α/Rc fixed (the steady-state friction depends on only the combination α/Rc).
All other parameters in Table 4.1 remain fixed for all simulations. The nucleation
patch is the same in every simulation. The differences in the supershear transition
between the DR and FV laws are independent of the nucleation procedure.

The resulting diagrams are shown in Figure 4.7 with the horizontal axis show-
ing either (a) the frictional energy dissipated per unit area at a point 4 km from
the hypocenter in the first meter of slip, or (b) L at nucleation slip rates. The
vertical axis is the initial shear load τload in both plots. Points on each plot are
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Figure 4.6: Snapshots of slip velocity along strike at three different times. Results
are plotted for the FV law on the left and the DR law on the right. Initial
conditions on the fault are identical, as is the amount of energy lost to frictional
dissipation. The smaller nucleation size of the FV law allows the rupture to
transition to supershear, while no supershear rupture occurs for the DR law.
Parameters are the same as in Table 4.1 except τload = 69 MPa, Rc = 5.7 s−1,
α = 0.00057 (MPa m)−1, l = 18.45 mm, and θ(t = 0) = 18450 s.
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the largest value of the (a) dissipated energy per area or (b) L at which unstable
supershear rupture was observed in our simulations. Above and to the left of
these points, the crack will propagate faster than the shear wave speed. Growth
of ruptures for conditions below and to the right are confined to sub-Rayleigh
speeds. Plot (a) confirms more systematically what was observed in Figure 4.6.
Given equal frictional energy dissipation, for a range of initial shear loads the FV
law can nucleate supershear rupture when the DR law cannot. If L at nucleation
slip rates is matched between the two laws, the reverse is true and ranges of pa-
rameters exist where the DR law permits transition to supershear which is absent
for the FV law. However, in this case the frictional energy dissipated is much
greater for the FV law because of the velocity dependence of LFV which takes its
smallest value at the onset of rupture.

4.4 Rapid Weakening

There is increasing experimental evidence that friction at rapid slip velocities
is lower than what would be predicted by extrapolating the DR law to seismic slip
velocities [110, 21, 22, 111, 112]. Many earthquake modelers adapt constitutive
laws that weaken rapidly with velocity to account for the weakening observed in
the laboratory. Neither the DR law nor the FV law considered in the previous
section incorporates weakening which is faster than logarithmic with slip rate.
Both laws must be modified to account for rapid weakening. In this section, we
develop the rapid weakening constitutive laws and implement them into dynamic
rupture simulations to assess how the slip rate dependence of LFV impacts dynamic
ruptures that weaken more rapidly than logarithmically with slip rate.

Recently, Rice [113] introduced a modification of the DR law based on flash
heating at asperity contacts. The modified DR law allows for rapid velocity weak-
ening at higher slip rates. The modification is implemented using a phenomenolog-
ical correction factor which provides a crossover from weakening logarithmically
at small slip rates to weakening as 1/V at seismic slip rates. The characteristic
slip rate VW at which this functional change in weakening occurs is estimated
based on thermodynamic calculations to be 0.1-1 m/s [113]. The discussion in
Rice [113] focused mainly on the steady-state friction at high slip rates, while the
actual friction law used in simulations [23] matches the one we present here.

The phenomenological correction for flash heating to the DR law results in a
modification to Equation (1.2) of the form

τ =
σ [f0 + a log (V/V0) + b log (θV0/l)]

1 + l/VW θ
. (4.17)
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Figure 4.7: Rupture type diagrams for in-plane ruptures with the FV and DR
laws as a function of the initial shear load and (a) energy per unit area dissipated
by friction during the first meter of slip at a point 4 km from the hypocenter,
(b) L at nucleation slip rates. Each individual point on the plot is the largest
energy per area or L at which unstable supershear rupture is observed to develop
on the bounded fault. Above and to the left of these points, supershear ruptures
will occur, and below and to the right crack growth is confined to sub-Rayleigh
speeds. For equal dissipated frictional energy (a), the FV law curve is further to
the right and a region exists between the curves where the FV law transitions to
supershear and the DR law does not (Figure 4.6 illustrates a specific example in
this region). In (b), the DR law curve sits to the right, and DR law can rupture
faster than the shear wave speed while the FV law does not for identical initial
shear loads.
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The law maintains the ageing evolution law for the state variable θ, Equation (1.3).
For our rapid weakening simulations with the DR law, Equation (4.17) is used as
the constitutive model for the fault. This modifies the steady-state friction so
that

τss =
σ [f0 + (a− b) log (Vss/V0)]

1 + Vss/VW
. (4.18)

The DR flash heating law at steady state (Equation (4.18)) introduces the factor
(1 + Vss/VW )−1 to the friction law, which modifies the friction at the large slip
rates when heating of asperity contacts becomes significant. This law has been
used in dynamic rupture calculations. For low loading stresses, the DR law with
flash heating tends to produce ruptures that are self-healing pulses rather than
expanding cracks [19]. It has been suggested that earthquakes propagate as self-
healing pulses [53]. In order to compare the DR and FV laws in this regime,
we alter the FV law to allow rapid weakening which can also lead to pulse-like
rupture. We modify the FV law to match the functional form of the steady-state
velocity weakening in the DR flash heating model (Equation (4.18)).

The rapid weakening friction law that we adopt for dynamic rupture simula-
tions is

V = V∗ exp [−f∗ − (χs + χh) /χ] (1−mRW ) (4.19)

× sinh

[
τ/σd +

Rc

ασdVW
exp (−χc/χ)

]
;

dχ

dt
= −Rc exp (−χc/χ) + ατV. (4.20)

These correspond to Equations (4.3)-(4.4) modified for rapid weakening. The the
additional term in the hyperbolic sine changes the slip rate dependence at high slip
rates to match the additional factor (1 + Vss/VW )−1 in the DR flash heating law
at steady-state. As in the FV law without rapid weakening, the STZs distinguish
between locked and slipping solutions to the constitutive equations. The variable
mRW is introduced to either lock the fault or set the STZ populations to their
steady-state value. For the rapid weakening FV law the variable mRW is given
by:

mRW =



1,

[τ ≤ τ0 exp (χh/χ)− Rc

αVW
exp (−χc/χ)];

τ0 exp (χh/χ) /
[
τ + Rc

αVW
exp (−χc/χ)

]
,

[τ > τ0 exp (χh/χ)− Rc

αVW
exp (−χc/χ)].

(4.21)
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The variable mRW sets the STZs to their steady-state value when the fault is
slipping, and locks the fault below the yield stress.

In addition to modifying the steady-state velocity dependence to account for
rapid weakening, the alterations to the FV law have the advantage of preventing
the free volume from diverging at high slip rates so that unlike the original FV
law, the rapid weakening version has steady-state solutions for all slip velocities.
The length scale LFV increases with slip velocity as before.

Friction parameters used in rapid weakening simulations are listed in Table 4.2.
For both laws, rapid weakening leads to a decrease in the critical cell size h∗ due
to increased B − A at high slip rates, so numerically stable simulations require a
smaller grid spacing.

Figure 4.8 shows the time histories of slip velocity, shear stress, and the appro-
priate state variable for anti-plane ruptures governed by the rapid weakening FV
and DR laws. Each quantity is measured at a point 1.5 km from the hypocenter
on a 6 km long fault. A low loading stress τload = 22 MPa promotes rupture
in the form of a self-healing slip pulse for both choices of the constitutive law.
A brief pulse of rapid slip heals and quickly recovers shear stress once the fault
locks. We note that the free volume dilates more rapidly than the FV law without
rapid weakening, and the free volume has little variation over a large range of slip
velocities.

A plot of shear stress as a function of slip for each law at a point 1.5 km from the
hypocenter is shown in Figure 4.9. As before the DR law, now with flash heating,
differs from the FV law, now with rapid weakening, in the slip rate dependence of
the length scale LFV in contrast to the constant LDR. Parameters are selected for
equal slip in ruptures with each law. When slip is fixed in this manner the DR law
dissipates more frictional energy. As with the ruptures without rapid weakening,
the FV law requires additional slip to weaken to its minimum shear stress. The
nucleation length is smaller for the FV law, so the DR flash heating law requires
an increase in the DR b parameter for both laws to permit rupture for an identical
initial shear load.

Snapshots of the slip rate as a function of position along strike for an anti-
plane rupture with the rapid weakening FV law are shown in Figure 4.10. This
illustrates how the rupture grows in both space and time. The plots indicate that
the rupture starts out as a crack-like rupture before it transitions to a self-healing
pulse-like rupture. The DR law with flash heating produces ruptures with similar
slip rates and pulse spatial widths, although the slipping front takes longer to
reach the fault boundary than in the FV law with rapid weakening.

For in-plane ruptures, the initial shear load determines whether the earthquake
ruptures as a self-healing pulse, an expanding crack limited by the Rayleigh wave
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Table 4.2: Parameters for DR and FV law dynamic ruptures with rapid weakening.
Symbols for the shared model parameters are defined in Table 4.1, except for the
characteristic rapid weakening velocity VW .

Rapid Weakening Simulation Parameters

Shared Parameters
dl = 0.004 km
nx = 2048
µ = 32.03812032 GPa
cs = 3.464 km/s
ν = 0.25
cfl = 0.3
Lfault = 6 km
Ltrigg = 1.3 km
τload = 22 MPa
τtrigg = 74 MPa
VW = 1 m/s
FV Law DR Law
χs = 0.3407 LDR = 50 mm
σd = 0.25 MPa a = 0.0027
χc = 0.1145 b = 0.017
f∗ = 222.3 f0 = 0.7
V∗ = 10−6 m/s V0 = 10−6 m/s
Rc = 5 s−1 σ = 100 MPa
α = 0.0005 (MPa m)−1 V1 = 10−6 m/s
χh = 0.0028 m
τ0 = 44.12 MPa
χ(t = 0) = 0.0061 θ(t = 0) = 50000 s
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Figure 4.8: Fault dynamics for rapid weakening friction models. (a-d) Both laws
rupture as self-healing pulses with low initial loading stresses. The slip rates
are larger than with the laws without rapid weakening. (e) Because the evolu-
tion equation for the free volume depends on the stress (Equation (4.4)), rapid
weakening alters the free volume dynamics. After a rapid period of dilation, free
volume varies little over a wide range of slip velocities before the fault heals and
compaction begins. (f) State variable evolution for the DR law with flash heating.
The contact lifetime drops rapidly with the arrival of the rupture, and increases
with time once the fault heals to regain frictional strength. Parameters for these
anti-plane simulations are given in Table 4.2.
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Figure 4.9: Shear stress as a function of slip for anti-plane dynamic ruptures with
the rapid weakening friction laws. Parameters were selected for each pulse to
yield the same net slip (the DR law dissipates more energy in frictional sliding).
As with the laws without rapid weakening, the FV law weakens more rapidly
with initial slip, and more gradually during rapid slip. Matching slip between the
laws requires a significantly larger value of LDR than in ruptures without rapid
weakening. As a consequence, the DR b parameter must be increased to give the
two laws comparable nucleation lengths. Without this change, the flash heating
model will not rupture with identical initial shear loads. Parameters for these
simulations are given in Table 4.2.
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Figure 4.10: Snapshots of slip velocity as a function of position for anti-plane
rupture with the rapid weakening FV law. The slip rate is shown at three dif-
ferent times, illustrating how the rupture evolves in both space and time. In the
top plot, slip is propagating as an expanding crack. As time progresses in the
subsequent plots, slip ceases in the center of the fault and the rupture continues
as an expanding pulse. The slip velocity evolves in a similar manner for the DR
law with flash heating, though the rupture is slower to advance out to the ends of
the fault. Parameters for this simulation is given in Table 4.2.
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speed, or a supershear crack. The diagram in Figure 4.11 shows which mode occurs
as a function of the initial shear load and frictional energy dissipation for the FV
and DR laws with rapid weakening. The frictional energy dissipated per area
in the first meter of slip at a point 1.5 km from the hypocenter is plotted on the
horizontal axis, and the initial shear load is plotted on the vertical axis. Results for
the FV (DR) law are plotted as plusses (squares) for the sub-Rayleigh/supershear
transition and circles (triangles) for the crack/pulse transition. Each point on
the plot corresponds to the smallest initial stress permitting supershear crack
propagation for the sub-Rayleigh/supershear transition, or the smallest initial
stress for which pulse-like rupture is not observed for the crack/pulse transition.

For the lowest stresses, pulse-like rupture limited by the Rayleigh wave speed
occurs. The stress at which the ruptures transition from pulses to expanding
cracks is independent of the amount of frictional dissipation within a given law.
However, the DR law requires a smaller initial shear stress to rupture as a self-
healing pulse, despite the fact that the two laws have identical velocity weakening
in steady-state. The difference arises because the DR law attains a lower dynamic
sliding stress (Figure 4.9). The dynamic friction determines the initial shear stress
at which the transition to pulse-like rupture occurs [19]. Here the steady-state
velocity weakening rate in the friction law is of primary importance, as the DR and
FV rapid weakening laws both transition to pulse-like rupture at similar stresses.
However, because the functional form of the steady-state velocity weakening is
identical in the FV and DR rapid weakening laws, the difference in the initial
stresses at which the crack/pulse transition occurs in Figure 4.11 is due to the
stress weakening differently with slip in the two friction laws.

At intermediate values of the initial load a sub-Rayleigh expanding crack so-
lution exists. At higher stresses the crack transitions to supershear rupture veloc-
ities. Both the FV and DR rapid weakening laws show that the stress at which
the transition to supershear occurs depends on the amount of frictional dissipa-
tion. Comparing the two laws, the sub-Rayleigh/supershear transition appears
nearly identical on the scale of Figure 4.11, with approximately 0.5 MPa differ-
ence between the curves (similar to the difference in the sub-Rayleigh/supershear
transition for the laws without rapid weakening, Figure 4.7, where the difference
appears more pronounced because of the expanded scale). This is partly due to
increasing the DR b parameter to decrease the nucleation length in the DR rapid
weakening law, which diminishes the nucleation length discrepancy relative to that
in the laws without rapid weakening. However, we note that for the laws without
rapid weakening, the faults are loaded within several MPa of failure. Therefore,
a difference of 0.5 MPa in the initial load is a significant fraction of the strength
excess, and the strength excess is crucial in determining if a rupture can transition

97



CHAPTER 4. COMPARING FRICTION LAWS IN DYNAMIC RUPTURE

34 36 38 40 42
25

30

35

40

45

50

Frictional Energy Dissipated/Area
(MJ/m2, in 1 m of slip)

τ lo
ad

 (M
P

a)
DR SR/SS
FV SR/SS
FV crack/pulse
DR crack/pulse

sub−Rayleigh pulse

supershear crack

sub−Rayleigh
crack

Figure 4.11: Rupture type diagram for in-plane ruptures with rapid weakening.
Points on the plot indicate the smallest initial shear stress for which supershear
rupture or sub-Rayleigh crack-like rupture is observed on the fault for a given
amount of energy dissipated to friction. Above the sub-Rayleigh/supershear
(SR/SS) transition, the rupture is a supershear crack. Below the crack/pulse
transition line, the rupture is a sub-Rayleigh pulse. Between the two lines, the
rupture is a sub-Rayleigh crack. The crack/pulse transition is independent of the
frictional energy dissipated for a given law, consistent with the anti-plane study
of Zheng and Rice [19]. However, we note that the DR law requires lower initial
loads for pulse-like rupture than the FV law despite identical steady-state velocity
weakening. The sub-Rayleigh/supershear transition depends on the specifics of
frictional dissipation, with only a slight difference between the DR and FV laws.
Parameters are the same as in Table 4.2 except for the initial loading stress τload

and the friction parameters α and Rc for the FV law or l and θ(t = 0) for the DR
law, which are varied in the simulations.
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to supershear. For the laws with rapid weakening, the fault is loaded tens of MPa
from failure, and a difference of 0.5 MPa in the initial load is less important. The
vertical scale on each of the plots reflect this difference in the strength excess be-
tween the laws with or without rapid weakening (the scale in Figure 4.7 is about
10 times smaller than the scale in Figure 4.11).

The rupture type plot indicates that when comparing the DR and FV rapid
weakening laws, the most significant difference is associated with how the shear
stress weakens with slip and not the nucleation length. The distinct forms in
which stress weakens with slip for the FV and DR laws results in an increase of
4 MPa in the stress at which the crack/pulse transition occurs for the FV law
with rapid weakening compared to the DR law with rapid weakening. The DR
law with rapid weakening has a larger nucleation length, but the difference is small
enough that the sub-Rayleigh/supershear transition occurs at roughly the same
initial stress relative to the strength excess in rapid weakening laws.

4.5 Discussion

Our comparisons between the FV law, DR law, and SW law show that the
slip rate dependence of LFV impacts many properties of dynamic ruptures. These
properties include the manner in which stress weakens with slip, the peak slip rate
attained during rupture, and the stress at which supershear rupture is nucleated.
The slip rate dependence of LFV is also important in ruptures with constitutive
laws that are modified to allow rapid weakening. The rapid weakening laws result
in dynamic ruptures that are self-healing pulses with low initial shear stress which
transition to pulse-like rupture at different initial shear stresses for the FV and
DR laws with rapid weakening.

Because friction laws have implications at all scales of earthquake rupture, we
discuss our results in the context of these various scales. At each scale of the
earthquake problem there are uncertainties and modeling challenges. A primary
objective of those working on earthquake source physics is to use mechanisms
and constraints from statistical physics, material science, and rock mechanics to
reduce the uncertainty and produce sharper bounds on the range of behavior that
might be observed. However, even under controlled laboratory conditions friction,
fracture, and deformation remain active areas of research and lack a complete
microscopic description. Our hope is that a multiscale approach that investigates
macroscopic consequences in parallel with microscopic mechanisms will provide
insights spanning a broad range of scales.

At the scale of faults, friction laws control the complexity of individual ruptures
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and the associated ground motion. Models of the earthquake source are compli-
cated by uncertainties involving the stress level on earthquake faults [114, 115],
how shear stress weakens with slip during rupture [116], and the energy balance
of faulting [117]. Additionally, while earthquake records have been inverted for
constitutive parameters [55, 118], these studies estimate slip-weakening distances
that are much larger than the total slip in smaller earthquakes (dc of order 1 m
in Figure 1.2.1(b)). This makes it difficult to estimate the correct constitutive
parameters. Comparing friction laws in the context of earthquake ruptures helps
determine what macroscopic observables, such as peak ground velocity and radi-
ated seismic energy, can be affected by these uncertainties. The FV law and the
DR law produce different peak slip rates in our calculations. This will likely affect
the peak ground velocity predicted in the vicinity of the fault for each law [119].
Additionally, our modeling indicates that the FV law and DR law transition to
supershear at different shear loads for a given frictional dissipation. Supershear
rupture velocities radiate shear waves that do not attenuate with distance from
the fault [49], and thus supershear rupture can affect the spatial extent of regions
with high ground velocities.

On a smaller scale, the aggregate behavior of gouge influences the dynamics
of friction. This scale can be studied in the laboratory and through numerical
simulations. The FV law ties weakening and re-strengthening to dilation and
compaction, and predicts a slip rate dependence of LFV that is absent in the
DR law. The FV law closely matches the slip rate dependence of L observed
by Mair and Marone [34] for sheared granular layers. For bare granite surfaces,
little variation in L is observed over slip rates ranging from 10−2 to 103.5 µm/s
by Blanpied et al. [120]. Because the rate dependence of the length scale LFV

is due to dilation, the amount of dilation of the sheared layer determines how
much variation in the length scale will occur. The Blanpeid et al. experiments
use relatively smooth granite surfaces, which dilate less than a rough surface or
a layer of gouge. The FV law would thus predict less variation in the length
scale LFV for these experiments. Dilation with increasing slip rate is observed in
rock mechanics experiments [96, 34] and boundary lubrication experiments [85].
However, the dilatancy of real faults during rapid seismic slip is unknown. Large
overburden pressures may not allow for significant dilation. Previous studies have
added observed laboratory porosity evolution to the DR framework [65, 121]. The
FV law differs from other models of dilation and compaction in that it ties velocity
weakening directly to dilation and compaction of the gouge layer. The porosity
models in the DR framework maintain a length scale that does not vary with slip
rate, which is different than the evolution predicted by the FV law. In numerical
studies, STZ theory compares favorably with molecular dynamics simulations of
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amorphous materials [24, 25] and with contact dynamics simulations of granular
materials [27].

At the smallest scales, individual grain contacts and associated wear, heating,
fracture and deformation determine the most basic interactions for fault friction.
Establishing the physical interactions that are the most important at the high
pressures and slip rates of earthquake rupture is an active area of research in
earthquake source physics. Because the physics of granular and amorphous sys-
tems are not fully understood, determining the consequences of these microscopic
interactions for earthquake rupture remains a challenge. The FV law begins with
a more microscopic picture than other constitutive laws, though many of the
possible more complicated microscopic features are still ignored. Fault zones con-
tain pore fluids, which influence fault healing [122], and can become pressurized
due to shear heating [123]. How contacts adhere, heal, and regain strength has
tremendous implications for fault re-strengthening and earthquake recurrence over
a broad range of temporal scales [63, 124, 125] – a granular description of fault
gouge where only contact forces are relevant is only the beginning of a micro-
scopic description of fault zones. We expect many of these other effects will be
important, especially on the time scale of earthquake recurrence. STZ Theory
was initially formulated in the context of amorphous solids with more compli-
cated particle interactions than those which arise for granular materials [24, 25].
Interestingly, the STZ equations which describe the other amorphous materials
are the same as those for granular materials, suggesting that there are at least
some features in this class of systems which may be universal. However, none of
these theories incorporate the full range of complex interactions which are likely
to occur in gouge. While the FV law begins to link microscopic physics to fault
scale behavior, the greater variety of grain-scale physics need to be incorporated
into future constitutive models to fully capture the complex dynamics occurring
in fault zones during the seismic cycle.
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Chapter 5

Strain Localization in Dynamic
Rupture

We continue to investigate the fault scale implications of STZ Theory in this
chapter by extending our fault scale earthquake models to resolve gouge scale
strain localization. This is a challenging multi-scale problem that quantifies the
fault scale effect of the small scale physical process of localization. In this chapter,
we make comparisons between ruptures governed by STZ Theory with homoge-
neous strain and ruptures governed by STZ Theory where strain spontaneously
localized to a narrow shear band. We also study the dynamics of localization in
the fault gouge, and examine the role that localization plays in fault scale rupture
propagation.

The research in this chapter that compares homogeneous shear with localized
shear in dynamic earthquake rupture is work that is published by Daub, Manning,
and Carlson in Geophysical Research Letters [57].

5.1 Earthquake Rupture and Strain Localization

The earthquake rupture problem spans a wide range of length and time scales,
from microscopic contacts between individual grains through complex networks
of faults. The basic interactions at the smallest scales form the basis for larger
scale behavior. Modeling earthquake rupture is therefore extremely challenging,
as models must capture the essential physics at a given scale and determine how
larger scales are affected by the smaller scale physics. Because the friction law is
usually the only ingredient in an earthquake model that accounts for small scale
physics, developing constitutive laws that efficiently incorporate physical processes
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is essential for improving our understanding of the physics of the earthquake
source.

Here, we focus on the implications of a constitutive law that accounts for the
small scale process of strain localization in the granular fault cores of earthquake
faults. In our model, a shear band that is narrow even on the scale of the fault
gouge spontaneously forms due to fault slip. Localization of strain is observed in
many studies of faulting, including numerical simulations [30], laboratory experi-
ments [33], and field observations of exhumed faults [37]. The prevalence of shear
bands in many studies indicates that localization widely affects faults.

Constitutive laws used in dynamic rupture models usually do not explicitly
account for localization. Traditionally, dynamic rupture is modeled on a planar
fault with a slip-weakening [1, 2, 3] or rate and state friction law [10, 11], where
the fault strength depends only on a single state variable. We include localization
in our modeling by resolving the dynamic evolution of the strain rate on a spatial
grid that spans the width of the fault core. In our model, the fault dynamically
selects how to distribute strain within the fault core, and can accommodate both
broad and localized shear within the slip history of a single earthquake. This
approach allows us to investigate the fault scale consequences of the dynamics of
shear localization.

5.2 Modeling Dynamic Ruptures with

Localization

Modeling dynamic rupture with strain localization is a challenging multi-scale
problem. A simplified illustration of the range of scales in the earthquake problem
is shown in Figure 5.1. The fault consists of a layer of gouge sheared between
elastic rock (left in Figure 5.1). Within the layer of fault gouge, deformation
tends to spontaneously localize into narrow shear bands, as shown in the center
picture in Figure 5.1. At the grain scale, the gouge deforms plastically when
groups of particles rearrange (right, Figure 5.1). The STZ model captures the
plastic deformation at the grain and gouge scales, and also acts as a friction law
that describes fault scale behavior in elastodynamic rupture simulations. The
STZ equations and their microscopic basis are discussed in Chapter 2.

A more detailed illustration of the fault that we model is shown in Figure 5.2.
The left picture shows a side view of the fault plane. We assume that slip does
not vary in the y-direction, and that slip occurs only in the x-direction. The right
picture shows a top view of the fault. A layer of gouge of half width w, which
is described by STZ Theory, is sheared between elastic rock. The inset shows a
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gouge (STZ Theory)

rock (elastic)z

x

(fault scale) (grain scale)(gouge scale)

shear band STZ reversal

Figure 5.1: Diagram illustrating the multi-scale nature of the earthquake rup-
ture problem. The system progressively decreases in scale from left to right.
(left) Fault scale, with a thin layer of fault gouge sheared between elastic rocks.
(center) Deformation within the fault gouge, where a shear band that is much
narrower than the gouge thickness accommodates plastic strain in the gouge.
Shear band image taken from Falk and Shi [26] and reoriented to match the
sense of shear of the fault and grains. (right) Individual rearrangements occur
at the grain scale and produce plastic strain in the fault gouge. The left grain
scale picture shows a “positive” STZ orientation, and as the grains are sheared
the gouge deforms plastically and the particles change to a “negative” orienta-
tion in the right grain picture. STZ diagram taken from Falk and Langer [24]
(Reprinted with permission. Copyright 1998 by the American Physical Society.
http://link.aps.org/abstract/PRE/v57/p7192).
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Figure 5.2: Diagram illustrating the fault in the dynamic rupture model. (left)
Side view of the fault plane. Slip is assumed to be uniform with depth. The
triggering patch (red) initiates slip, and the rupture spontaneously propagates
along strike through the light gray region before it hits the strong barriers (purple)
to stop the rupture. (right) Top view of the fault. A thin layer of fault gouge,
which is described by STZ Theory, is sheared between elastic rock. Within the
fault gouge, we resolve the dynamic evolution of the effective temperature across
its width (inset). The effective temperature evolves independently at each position
along strike, and dynamic fault slip at each point drives the process of strain
localization in the model.

close up of the fault gouge, where the spatial grid in the z-direction resolves the
dynamic evolution of the effective temperature in response to fault slip.

The elastodynamic response of the surrounding rock is modeled using a bound-
ary integral method [98, 88, 99], 1995]. In the boundary integral method, the shear
stress τ on the fault can be written

τ(x, t) = τ0(x) + φ(x, t)− µ

2cs
V (x, t). (5.1)

The total shear stress on the fault is the combination of three terms: the initial
shear stress on the fault τ0(x), the stress transfer fuctional φ(x, t), and radiation
damping. The stress transfer functional accounts for all dynamic stress changes
due to prior slip on the fault, and is calculated using FFTs. We note that although
the radiation damping term is explicitly written out in Equation (5.1), the full
dynamic response is accounted for with this method.
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Table 5.1: Parameter descriptions and their values in the STZ model.

t0 = 0.000001 s STZ rearrangement time scale
ε = 10 Strain increment for STZ rearrangement
f0 = 40 STZ activation energy scaled by thermal energy

σd = 0.5 MPa STZ activation stress (also known as the direct effect stress)
τy = 25 MPa STZ yield stress
c0 = 400 Effective temperature specific heat
χw = 0.2 Effective temperature activation barrier

q0 = 0.08
Nondimensional strain rate (γ̇t0) where STZ Theory breaks
down

R0 = 5 s−1 Inverse of STZ relaxation time scale
β = 0.1 STZ relaxation activation barrier

χ0 = 0.007
Lowest effective temperature that can be reached by
relaxation

D = varies Squared diffusion length scale

This approach resolves the localization at the gouge scale, but because the
model is a continuum approximation for the gouge deformation, it can be solved
simultaneously with the elastodynamic equation at the fault scale. The elastody-
namic equation (Equation 5.1) provides a relationship between the shear stress τ
and the slip rate V . The plastic strain rate integrated over the gouge width also
gives a relationship between the shear stress and the slip rate:

V =

∫ w

−w
γ̇dz = f (τ)

∫ w

−w
exp (−1/χ) dz. (5.2)

These two equations are solved simultaneously for the shear stress and slip rate
at every point on the fault, along with the dynamic evolution of the slip and the
effective temperature. Table 5.1 lists the parameters in the STZ friction law, and
the values that we use in our simulations.

The geometry we study allows for both supershear and sub-Rayleigh propa-
gation speeds. For simplicity, we assume that the friction parameters and initial
conditions for the effective temperature do not vary along strike (x-direction).
Additionally, the initial shear stress is uniform along strike (τ0(x) = τ0) with the
exception of a triggering patch of width Ltrig where the stress is elevated to τtrig
to nucleate rupture. Strong barriers with a large yield stress τy stop the rupture
once it reaches the edge of the fault. The effective temperature is symmetric about
z = 0, so we only solve for the effective temperature in one half of the gouge layer.

To solve the partial differential equation for the effective temperature, we
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Table 5.2: Elastodynamic parameters in rupture simulations.

µ = 32.03812032 GPa Shear modulus
cs = 3.464 km/s Shear wave speed

ν = 0.25 Poisson’s ratio
Lfault = 8 km Length of fault that can rupture
Ltrigg = 1 km Length of triggering patch

τtrigg = 67.5 MPa Triggering stress
dl = 0.005 km Grid spacing in the x-direction
nx = 2048 Number of grid points in the x-direction
cfl = 0.3 Courant-Friedrichs-Lewy Ratio cfl = csdt/dl
w = 0.1 m Half width of fault gouge layer

nz = 101
Number of z-direction grid points spanning half width
of gouge

dz = 0.001 m Grid spacing in z-direction

nsub = 10
Substeps within elastodynamic time step for effective
temperature integration

τ0 = varies Initial shear stress

approximate the spatial derivatives in the effective temperature evolution with
central, second order finite differences. Our finite difference scheme separates the
diffusion term into two terms, and the differences are computed on a spatial grid
in the z-direction spanning the half width of the gouge. The stress is assumed
to be constant across the gouge, which means that the spatial variation of the
effective temperature determines how strain localizes within the fault core.

Our time integration scheme treats the effective temperature derivatives in
the diffusion term implicitly, and treats the energy dissipation and relaxation
terms explicitly. The energy dissipation term must be treated explicitly in the
boundary integral method due to its dependence on the strain rate. The diffusion
constant, due to its dependence on the strain rate, must also be treated explicitly.
Because of this, the time steps must be small enough to resolve the evolution of
the strain rate to determine the correct diffusion time scale. Because the effective
temperature (and therefore the strain rate) evolve on a time scale faster than the
time for seismic waves to propagate along the fault, our time integration scheme
involves taking nsub substeps within an elastodynamic time step to integrate the
effective temperature stably, as done in Noda, Dunham, and Rice [126]. The
elastodynamic parameters for our simulations are listed in Table 5.2.

As with the smaller scale numerical investigation of friction dynamics, the ef-
fective temperature initial conditions determine the subsequent evolution of strain
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rate in the gouge. If the initial effective temperature is spatially uniform across the
width of the gouge (z-direction), we refer to the rupture as “homogeneous.” Ho-
mogeneous only refers to the strain rate across the width of the gouge at any one
spatial point – the effective temperature varies along strike as it evolves in response
to slip on the fault, and it is also time dependent. The spatially uniform initial
effective temperature in our simulations is identical to the initial effective temper-
ature in the investigation of friction dynamics (Section 2.5), χ(t = 0) = 0.009.

If the initial effective temperature includes a small perturbation identical to
the perturbation in the investigation of friction dynamics (Section 2.5), then we
refer to the rupture as “localized.” This means that at any given position, the
strain rate can vary across the width of the gouge due to the evolution of the
effective temperature. The strain rate profile also varies along strike, as the ef-
fective temperature evolves due to rupture propagation. At any given time, there
are both spatial points that have not ruptured that still match the initial condi-
tions, as well as points that are actively slipping, where the strain rate profile is
determined by the effective temperature evolution.

Additionally, for ”localized” ruptures, we examine a variety of different diffu-
sion constants. If the diffusion length scale (

√
D) is smaller than the half width

of the gouge w, then a shear band that is narrow on the scale of the gouge forms.
This case is referred to as a “narrow shear band.” If the diffusion length scale is
of the order of the half width of the gouge or larger, then the shear band that
forms fills the entire width of the gouge. This case is referred to as a “broad shear
band.”

5.3 Comparing Localized and Homogeneous

Ruptures

First, we examine how strain localization alters rupture propagation relative
to a homogeneous rupture. A plot comparing how stress weakens with slip for a
homogeneous rupture and a localized rupture is shown in Fig. 5.3(a). The shear
band width dynamically selected by the effective temperature is 10% of the total
gouge width 2w. During the initial stages of slip, the curves are indistinguish-
able. For the later stages of slip, shear stress weakens much more rapidly due to
the dynamic instability of localization, increasing the stress drop. Homogeneous
deformation and dynamic localization produce very different slip rates, as can be
seen in Fig. 5.3(b). The rupture front arrives earlier and has a higher peak slip
rate when strain localization occurs.

To illustrate the importance of the dynamic instability, we contrast our results
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Figure 5.3: Dynamic rupture evolution at a point 0.35 km from the hypocenter.
(a) Comparison of shear stress as a function of slip. Dynamic localization of
deformation produces dynamic weakening not observed with the rupture with
homogeneous strain. (b) Plot of slip rate as a function of time. The dynamic
strain localization rupture is compared with a host of models with homogeneous
strain. None of the values of the imposed gouge width w can match both the peak
slip rate and rupture front arrival of the rupture with localized strain. (c) Inset:
Slip rate as a function of slip for the localized and narrowest width homogeneous
rupture. The more rapid acceleration of slip in the narrowest homogeneous rupture
is distinct from the localized model.
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for localized shear with two additional homogeneous ruptures of different fixed
gouge widths w chosen to match particular aspects of the localized rupture. Slip
velocity as a function of time is plotted at a point 0.35 km from the hypocenter
for all models in Fig. 5.3(b). The properties that we compare are the peak slip
velocity and the time at which slip initiates. The rupture front in the intermediate
model (w = 0.375 m) matches the arrival time of the localized rupture, but the
peak slip rate is smaller. For the narrowest gouge thickness (w = 0.1 m), we see
peak slip rates similar to the localized rupture but earlier arrival. Figure 5.3(c)
plots the slip rate as a function of slip for the homogeneous rupture with w = 0.1 m
and the localized rupture. This clearly shows that the initial broad deformation
in the localized rupture does not simply delay the rupture, but also lessens the
slip acceleration during the earliest stages of slip.

5.4 Dynamics of Localization

Now we examine the dynamics of localization in earthquake ruptures. Dif-
ferent shear band thicknesses form for localized ruptures with varying diffusion
length scales. Shear band thicknesses ranges from broad shear bands that fill the
entire gouge layer to narrow shear bands that are much narrower than the gouge
width. The distinction between broad and narrow shear bands is important be-
cause localization is a mechanism for dynamic weakening. The narrower the shear
band, the larger the strain rate in the shear band, and the lower the shear stress.
We illustrate the effect of changing the diffusion constant in Figure 5.4. The plot
shows the shear stress as a function of slip at a point 2 km from the hypocenter
for four different values of the diffusion constant, as well as the same curve for
a homogeneous rupture. The plot confirms that narrow shear bands increase the
dynamic weakening due to localization, and decrease the sliding friction during
earthquake rupture.

A plot of shear stress as a function of slip at a point 2 km from the hypocenter
is shown in Figure 5.5. The shear stress weakens in two distinct phases. For
slip less than 0.1 m, stress weakens gradually with slip. This corresponds to
an approximately spatially uniform effective temperature, before the shear band
grows rapidly. For slip between 0.1 m and 0.3 m, the stress drops rapidly due
to the rapid growth of the shear band. Once the stress fully weakens, the stress
increases due to re-strengthening. In this case, slip stops shortly before 0.7 m,
and the fault heals.

The evolution of the effective temperature during dynamic rupture is similar
to its evolution in the simple sheared layer of gouge. Snapshots of the effective
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Figure 5.4: Plot of shear stress as a function of slip for varying diffusion constants
scaled by the half-width of the fault gouge

√
D/w at a point on the fault 2 km

from the hypocenter. In each case, the dynamically selected shear band width
in the fault gouge is proportional to the effective temperature diffusion length
scale. The uppermost curve is a “homogeneous” rupture for comparison, where
the initial effective temperature is spatially uniform and no shear band forms.
The other curves are all “localized” ruptures. The uppermost curve that includes
diffusion (

√
D/w = 1) is a “broad shear band,” as the diffusion length scale is

equal to the gouge width. The lowermost curve is a “narrow shear band” with
a diffusion length scale that is significantly smaller than the gouge half-width
(
√
D/w = 0.1). As the diffusion length scale decreases, the shear band becomes

narrower, and the stress decreases more rapidly and reaches a lower value. The
variation of stress as a function of slip with the diffusion length scale shows that
strain localization is a mechanism for dynamic weakening.
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Figure 5.5: Plot of shear stress as a function of slip at a point on the fault 2 km
from the hypocenter. The shear stress drops in two different stages. First is an
early stage where the effective temperature is uniform in the fault gouge, which
lasts for the first 0.1 m of slip. After about 0.1 m of slip, more rapid dynamic
weakening occurs, which is coincident with the shear band formation. Once the
stress decreases to its minimum value at 0.3 m of slip, the fault continues to slip
and the stress gradually rises. Slightly before 0.7 m of slip is reached, slip ceases
and the fault heals, which indicates that slip propagates as a self-healing pulse
for these conditions. The diffusion constant in this simulation is

√
D/w = 0.2236,

and the initial stress is τ0 = 47 MPa.
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Figure 5.6: Plot of effective temperature as a function of z-position within the
gouge at a point 2 km from the hypocenter at representative points shown in
the stress versus slip plot (Figure 5.5). The horizontal range in this plot shows
the entire gouge width in the simulation. The effective temperature is spatially
uniform after 0.1 m of slip, at which point the feedbacks amplify the initial per-
turbation and a shear band forms. As slip propagates, the effective temperature
increases and diffuses outwards. For slip beyond 0.3 m, the effective temperature
decreases due to the relaxation term and maintains the width in curve (5). The
diffusion constant in this simulation is

√
D/w = 0.2236, and the initial stress is

τ0 = 47 MPa.

temperature as a function of position within the gouge thickness at several points
along the stress versus slip curve are shown in Figure 5.6. The earliest effec-
tive temperature plot shows that during the initial weakening phase of the stress
versus slip curve, the gouge deforms approximately homogeneously. This is be-
cause the feedbacks in the effective temperature equation require time to amplify
heterogeneity in the initial conditions. The duration of this phase of weakening
is controlled by the magnitude of the initial perturbation to the effective tem-
perature. Larger initial perturbations require less time to dynamically grow and
shorten the amount of slip before the shear band forms.

As the effective temperature in the shear band increases, the shear stress in
the gouge drops rapidly with increasing slip. The shear stress is lower because
the strain rate is elevated in the shear band, and the STZ friction law weakens
with strain rate. Additionally, the stress drops more rapidly because the relevant
length scale for friction evolution is now the shear band width (∼

√
D) instead
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of the half gouge width w. These two factors combine to significantly reduce the
frictional dissipation on the fault during fault slip.

As the successive plots of the effective temperature show, the effective tem-
perature in the shear band grows in magnitude, and the width of the shear band
increases as the stress on the fault drops. The expanding width is due to the
diffusion of effective temperature. The shear band reaches its maximum width
when the stress reaches its minimum value, and the same shear band width is
maintained for the duration of slip.

The rapid weakening of the shear stress coincides with the largest strain rates
during rupture. Figure 5.7 shows strain rate profiles across the gouge width at
several times during the weakening phase of dynamic rupture. The largest strain
rates occur just as the shear band forms. This is because shear stress decreases
most rapidly with slip at this time, releasing the most strain energy from the bulk.
The strain rate at the center of the gouge decreases as the stress continues to drop
with further slip, and the shear band broadens due to diffusion of the effective
temperature. Because the slip rate is the strain rate integrated across the width of
the gouge, the largest slip rates also occur when the stress decreases most rapidly
with slip.

5.5 Fault Scale Rupture Propagation

At the scale of faults, ruptures can grow in space and time in a number of ways.
Slip can propagate as an expanding crack, where points on the fault continue
to slip after the rupture front arrives, or as a self-healing pulse, where at any
given point the duration of slip is much shorter than the total time the fault
is rupturing. Additionally, because we consider in-plane dynamic ruptures, the
crack-like propagation mode can occur at sub-Rayleigh speeds or at supershear
speeds. The initial stress is one factor determining the type of rupture growth –
supershear rupture tends to occur at high initial stress, sub-Rayleigh rupture at
intermediate initial stress, and pulse-like rupture at low initial stress.

The other important factor determining how slip propagates on a fault is the
friction law – how much the fault weakens when it slips, and how much energy
is dissipated on the fault. Here, we investigate the impact of strain localization
on fault-scale rupture propagation. Because our simulations show localization
decreases the frictional disspation and reduces the shear stress, the width of the
shear band in the gouge plays an important role in determining how slip prop-
agates along the fault. We vary the diffusion length scale

√
D, which controls

the degree of localization. Small values of the diffusion constant produce narrow
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Figure 5.7: Plot of plastic strain rate as a function of position within the gouge
at a point 2 km from the hypocenter at representative points shown in the stress
versus slip plot (Figure 5.5). Note that the horizontal range in this plot is smaller
than in Figure 5.6, as the strain rate is more sharply peaked than the effective
temperature. The largest strain rate occurs early in the weakening process, as this
is when the stress drops most rapidly with slip and releases elastic strain energy
from the bulk at the largest rate. The diffusion constant in this simulation is√
D/w = 0.2236, and the initial stress is τ0 = 47 MPa.
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shear bands, while larger values of the diffusion constant produce broad shear
bands. We vary the diffusion length scale

√
D over an order of magnitude, rang-

ing from shear bands that diffuse to the full width of the gouge (
√
D = w) to

much narrower shear bands (
√
D = 0.1w).

In the STZ constitutive model the fault never truly locks. The strain rate
is zero only if the shear stress decreases to below the yield stress τy. However,
because fault healing results in the shear stress increasing with time, the stress
cannot drop below the yield stress to cause fault slip to completely cease. We
therefore define a pulse-like rupture when the slip rate at the center of the fault
is three orders of magnitude smaller than the peak slip rate at the rupture front.

We illustrate the different ways that slip propagates on the fault for a value of
the diffusion constant that allows for pulse-like rupture (D = 0.0005 m2,

√
D/w =

0.2236) in Figure 5.8. Pulse-like rupture does not occur for all values of the
diffusion constant, only for smaller values that provide more dynamic weakening.
If the initial stress is τ0 = 55.5 MPa, then the rupture propagates as a supershear
crack. Slip initiates ahead of the sub-Rayleigh crack tip and grows unstably, as
the series of plots of slip rate as a function of position along strike illustrate.

If the initial stress is τ0 = 48.5 MPa, fault slip occurs as an expanding sub-
Rayleigh crack. In this series of snapshots of slip rate as a function of position,
once slip initiates at a given point, the point continues to slip until the rupture
reaches the boundary of the fault. This type of rupture occurs for intermediate
values of the shear stress.

For lower values of the shear stress, rupture propagates as an expanding, self-
healing pulse. This type of rupture is illustrated for τ0 = 47 MPa. The rupture
begins as an expanding crack as shown in the top plot of slip rate as a function
of position along strike, but then slip stops in the center of the fault and the
subsequent propagation is pulse-like. In this type of rupture, a given point slips
for less time than the duration of the entire earthquake.

If the initial stress is too low, the dynamic rupture cannot propagate over the
entire spatial extent of the fault. Arresting ruptures can be pulse-like, where the
rupture transitions to pulse-like rupture but arrests before it reaches the fault
boundary, or crack-like, where the rupture arrests while it is an expanding crack.
An example of an arresting pulse and an example of an arresting crack are shown
in Figure 5.8. While the slip rate as a function of position look similar for the
two ruptures, the arresting pulse meets our criteria for pulse-like rupture while
the arresting crack does not. The arresting pulse occurs for τ0 = 45.75 MPa, and
for even lower stresses the rupture arrests before the rupture becomes pulse-like
(τ0 = 44.5 MPa).

We determine the range of stresses that produce each different type of rupture
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Figure 5.8: Snapshots of slip rate as a function of position along strike for the
various types of rupture. The effective temperature diffusion constant in these
simulation is

√
D/w = 0.2236. At the largest stress (τ0 = 55.5 MPa), slip nucleates

ahead of the rupture rupture front and propagates faster than the shear wave
speed. Crack-like rupture traveling sub-Rayleigh speeds occurs at an intermediate
stress (τ0 = 48.5 MPa). The rupture propagates as a self-healing pulse for lower
shear stress, and can rupture the entire fault as a pulse (τ0 = 47 MPa), or slip
can arrest before the pulse reaches the edge of the fault (τ0 = 45.75 MPa). For
the lowest values of shear stress (τ0 = 44.5 MPa), slip arrests while the rupture
is still a crack. While the arresting ruptures look very similar, they are classified
differently because the arresting pulse meets our criterion for pulse-like rupture
described in the main text, while the arresting crack does not.
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for multiple values of the diffusion length scale. This produces a diagram that
indicates rupture type as a function of the diffusion length scale and the initial
stress (Figure 5.9). For each value of the initial stress and each value of the
diffusion constant, a corresponding point can be located on the plot. Points
corresponding to example plots showing the different rupture types (Figure 5.8)
are indicated on the plot as circles. For a specific choice of parameters (D and τ0),
the region where this point falls determines the type of rupture that our simulation
produces.

As expected, the additional weakening and reduced frictional dissipation for
the more localized ruptures reduces the minimum shear stress for all types of
rupture. The upper curve (orange) in Figure 5.9 is the minimum stress needed
to nucleate supershear rupture. An order of magnitude reduction in the diffusion
constant reduces the minimum stress needed to nucleate supershear rupture by
about 7 MPa. This is a significant fraction of the initial shear stress on the fault,
and shows that the reduction in frictional energy dissipation and the increase in
dynamic weakening due to localization can significantly alter how slip propagates
on the fault.

The lower curves (green, blue, and red) in Figure 5.9 indicate how localiza-
tion affects rupture propagation at lower initial shear stress. For broad shear
bands, slip can only grow in a crack-like manner, but as the diffusion constant
is decreased, pulse-like rupture can occur. This is because localization leads to
additional dynamic weakening, which was shown to be the crucial frictional char-
acteristic determining when slip propagates as a self-healing pulse by Zheng and
Rice [19]. The solid line marks the lowest stress required to propagate slip over
the entire fault. This involves crack-like rupture if

√
D > 0.5w and pulse-like

rupture if
√
D < 0.5w. The initial stress needed to fully rupture the fault (solid

black) decreases by nearly 10 MPa over the range of diffusion constants that we
simulated. This is also a significant fraction of the initial shear stress. As with
the supershear rupture transition, the small scale process of localization can alter
the manner in which slip propagates at the fault scale.

5.6 Discussion

Our simulations with the STZ friction law reveal that the dynamic weakening
provided by localization can have a significant impact on fault dynamics. In the
STZ model, shear bands spontaneously form and grow in response to dynamic fault
slip. This provides a unique description of fault friction. Rather than assuming
planar slip with a slip-weakening or Dieterich-Ruina friction law, the dynamic
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Figure 5.9: Rupture classification diagram as a function of diffusion length scale
and initial shear stress for ruptures with STZ Theory. For a given value of the ini-
tial shear stress and the diffusion length scale, the region that the point falls into
determines the type of rupture that is observed. For larger values of the diffusion
length scale (i.e. “broad shear bands”), slip can propagate as a supershear crack,
sub-Rayleigh crack, or arresting crack only. For smaller values of the diffusion
length scale (i.e. “narrow shear bands”), slip can also propagate as an expanding
or arresting pulse. The pulse-like rupture can occur for narrow shear bands be-
cause of the dynamic weakening provided by strain localization. The rupture with
the narrowest shear band that we simulated reduces the minimum stress required
for slip to propagate on the fault (blue line) relative to the broadest shear band
by 9 MPa, which is a significant fraction of the initial stress on the fault. The
circles on the diagram indicate the specific examples of ruptures that are shown
in Figure 5.8.
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evolution of the effective temperature determines the strain rate in the fault zone.
Strain localization alters the stress drop and slip rate of dynamic rupture.

The stress drop in a simulation that dynamically forms a shear band is larger
than if no shear band forms. The peak slip rate is also larger in simulations that
form shear bands because the stress weakens over a smaller slip length scale and
releases stored elastic energy more rapidly. Ground motion away from the fault
tends to be larger if the peak slip rate is increased [119], which suggests that strain
localization may impact the ground motion in real earthquakes.

Additionally, we find that localization plays an important role in determining
rupture propagation speeds. The stress which marks the transition to supershear
changes by a significant amount for the narrowest shear bands. There is evidence
of supershear rupture speeds in many earthquakes [107, 108, 127, 128], as well as
observations of supershear rupture in laboratory slip experiments [106]. Supers-
hear ruptures radiate seismic waves with a distinct attenuation pattern compared
to sub-Rayleigh ruptures [49]. Therefore, understanding the conditions which lead
to supershear rupture is important for determining seismic ground motions.

In our simulations, localization provides the dynamic weakening necessary for
pulse-like rupture. Our simulations do not produce pulse-like ruptures for homo-
geneous deformation because there is not enough frictional weakening to allow for
pulses in the absence of strain localization. Strain localization reduces the mini-
mum initial stress for the earthquake to rupture the entire fault by about 10 MPa,
a significant amount relative to the initial stress on the fault. Seismic observa-
tions suggest pulse-like rupture propagation in many earthquakes [53]. Zheng and
Rice [19] determined that pulse-like rupture tends to occur for low initial shear
stress and with friction laws that exhibit increased velocity weakening in steady
state. Our simulations are consistent with their results, as pulses occur at lower
initial shear stresses for the narrower shear bands, where there is more dynamic
weakening.

In our study, we vary the effective temperature diffusion length scale over an
order of magnitude to determine how the amount of dynamic weakening impacts
the propagation of ruptures. This parameter is selected because the diffusion
length scale is poorly constrained, and because it is difficult to predict precisely
what the shear band width will be for a given set of parameters. The final shear
band width that the material chooses is dynamically selected by a balance between
the nonlinear processes of energy dissipation, effective temperature diffusion, and
healing. The width is proportional to the diffusion length scale

√
D, but it also

depends on the stress, the effective temperature, and the effective temperature
specific heat.

We consider a range of effective temperature diffusion length scales because
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simulations, experiments, and field observations yield a wide range of shear band
thicknesses in amorphous materials. Simulations of glassy materials indicate that
shear band thicknesses tend to be approximately 10 particle diameters [24], though
for granular materials this could be very different because particles have a greater
variety of sizes. Morgan and Boettcher [30] determined that deformation in nu-
merical simulations of fault gouge tends to localize to a narrower shear band when
a particle size distribution more heavily weighted towards small particles is used.
In each of their simulations, the shear band is only a few particle diameters wide.
However, simulations do not include the full range of particle sizes that are found
in natural faults [129]. Experimental investigations of shear band thicknesses in
granular materials indicate that shear band thickness should scale with the “mean
particle diameter,” defined such that 50% of the particles by weight have larger
size [130]. Rock mechanics studies on laboratory faults with gouge observe shear
band thicknesses that depend on the grain sizes, with the shear band thicknesses
ranging from around 100 µm [32] to several millimeters [35]. The thickness of
shear bands in natural faults range from hundreds of microns to a few millimeters
[36, 37, 38].

The thicknesses of slip zones observed in exhumed faults are even narrower
than the shear bands in our simulations [36, 37, 38], indicating that the dynamic
weakening from strain localization could be even more dramatic than our results
indicate. We did not explore smaller diffusion length scales due to computational
limits – the effective temperature grid must be fine enough to resolve the shear
band, and the narrower shear bands reduce the slip scale over which the stress
weakens. This rapid stress drop requires a smaller grid spacing along strike to
produce well resolved simulations.

Laboratory experiments on simulated fault gouge indicate that strain local-
ization, dilation, and frictional rate dependence are interrelated [32, 34]. Fault
gouge tends to produce rate strengthening behavior when significant layer dila-
tion occurs for small strains, and rate weakening behavior at larger strains once
strain localizes. Effective temperature is a generalization of free volume [29], and
so we expect regions of high effective temperature to have a higher free volume
and porosity. Because of this, STZ Theory predicts that a homogeneously de-
forming layer dilates more than a layer with a localized shear band, which is what
is observed experimentally. The effective temperature for homogeneous deforma-
tion is spatially uniform, while the effective temperature for deformation with a
shear band is locally higher in the narrow shear band, and lower everywhere else.
The average effective temperature is larger for the spatially uniform effective tem-
perature, and therefore the free volume and porosity are larger, but the average
strain rate is the same due to the nonlinear relationship between effective temper-
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ature and the plastic strain rate (Equation (2.1)). The experiments also indicate a
transition from rate strengthening to rate weakening as localization occurs. In the
STZ model as presented in this study, the rate dependence of friction is indepen-
dent of the degree of localization. However, the transition from rate strengthening
for homogeneous deformation to rate weakening for localized deformation can be
incorporated by modifying the strain rate dependence of the maximum effective
temperature (Equation (2.12)) to the form used in Manning et al. [66].

Core samples from the creeping section of the San Andreas Fault Observatory
at Depth (SAFOD) indicate that slip occurs throughout the entire gouge width of
about 2-3 m (i.e. not localized within the layer) [41]. Laboratory experiments with
gouge from the creeping section indicate rate strengthening friction parameters
[131]. These results are consistent with STZ Theory, which predicts that rate
strengthening materials form shear bands only as transient phenomena [66]. When
a rate strengthening material is loaded at a relatively constant rate, STZ Theory
predicts that steady sliding is stable and deformation is accomodated over the
entire width of the fault gouge, in agreement with the SAFOD experiment.

Slip surfaces are often observed at the boundary between gouge and the host
rock in both exhumed faults [37] and laboratory experiments [32]. In STZ Theory,
the position where the shear band forms depends on where the initial effective
temperature is largest. If there are two or more positions with an equally large
initial effective temperature, strain localizes to one. If one of the possible locations
is at the boundary, the shear band prefers to form at the boundary rather than in
the interior of the gouge layer. Boundary conditions on the effective temperature
may also play a role. Our simulations use no conduction boundary conditions, but
other boundary conditions, such as fixed effective temperature at the boundary,
may yield different results for the preferred shear band location.

STZ Theory provides a microscopic physical basis for plastic deformation in
fault gouge. There are also many other processes that are important during seismic
slip which are likely to couple to the STZ dynamics, and are not yet incorporated
into STZ Theory. Brittle fracture, wear, and comminution create the finely grained
gouge in the fault zone [129]. Fracturing rock dissipates energy and creates smaller
grains, which might change parameters such as the effective temperature diffusion
length scale or the STZ reversal time scale. Thermal heating and weakening,
melting, and pressurization of fluids are also believed to be important during
fault slip [123, 21, 22, 132, 113]. These processes likely influence the rate at which
STZs reverse and how the effective temperature evolves. Determining how these
additional processes couple to the STZ friction law may provide further constraints
on the physics of the earthquake source.
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Chapter 6

Localization in Rate
Strengthening Materials

In this chapter, we study strain localization in rate strengthening materials,
including glasses and fault gouge at high temperatures and pressures. In rate
strengthening materials, the shear stress increases as the material is sheared at a
faster rate. Because glasses are studied at the laboratory scale, while earthquake
rupture occurs at the fault scale, this chapter spans many scales and does not
fit easily into the organization of the dissertation by increasing scale. Because
this research builds upon both interface scale and fault scale results, we present
it here.

The results for glassy materials in this chapter are based upon simulations
by Lisa Manning and appear in work published by Manning, Daub, Langer, and
Carlson in Physical Review E [66].

6.1 Rate Strengthening Friction

Many amorphous materials, such as glasses and fault gouge under high tem-
perature and pressure conditions that occur below the seismogenic zone, do not
show rate weakening behavior. Instead, the shear stress increases as the material
is sheared at a faster rate.

In the STZ equations, the constitutive parameter that determines the frictional
rate dependence is the effective temperature activation barrier, χw. The value of
this parameter relative to unity determines whether the shear stress increases or
decreases as the material is sheared at a faster rate. This parameter also plays
an important role when analyzing the stability of steady sliding with a spatially
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uniform effective temperature. If χw < 1, steady sliding is linearly unstable – any
spatial perturbation to the effective temperature spontaneously grows into a shear
band as the material is deformed. If χw > 1, steady sliding is linearly stable, and
the effective temperature remains homogeneous in the material.

However, shear bands are observed to form in rate strengthening materials.
Metallic glasses fail along narrow shear bands [31], and localized deformation is
observed in rocks below the seismogenic zone [39]. Why does localization happen
if steady sliding is linearly stable?

Shear bands form in the STZ model due to a transient instability, rather than
a linear instability [80, 66]. Shear bands form because the system is driven away
from steady-state, and the shear bands persist for large strains. A metallic glass
is cooled to form a glassy state before it is sheared and driven away from steady-
state, and rapid coseismic slip due to an earthquake nucleating in the seismogenic
zone drives the fault at depth away from its slowly creeping steady-state. In this
chapter, we investigate the dynamics of localization in these rate strengthening
materials to determine the large scale implications.

6.2 Deformation of Glassy Materials

Glasses are a class of materials that interest a wide range of scientists, includ-
ing physicists, materials scientists, and engineers. Like granular fault gouge, a
glass does not form a regular crystal structure, and laboratory experiments show
that glassy materials form shear bands when they are deformed [31]. Experiments
and simulations indicate that glasses exhibit rate strengthening frictional behav-
ior [31, 28], which means that there are some important differences between the
deformation of glasses and slip on earthquake faults. In this section, we discuss
simulations that examine deformation and failure in an STZ model for glassy
materials.

As in our studies of friction in Chapters 2 and 3, we study a material under
simple shear (Figure 6.1). The important time scales in the problem are the STZ
rearrangement time scale, the stress equilibration time scale, and the inverse plas-
tic strain rate. Because the materials are sheared slowly, the stress equilibration
time scale is much faster than the inverse plastic strain rate. Therefore, we assume
the stress is constant across the width of the material, and the stress τ evolves
according to:

dτ

dt
=
µ

w

(
V0 −

∫ w

−w
γ̇ dy

)
. (6.1)

The boundaries are driven at a constant rate V0, and µ is the shear modulus for
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Figure 6.1: Diagram of a glassy material under simple shear. The boundaries are
driven at a fixed rate V0. We assume that the stress is constant, as its equilibration
time scale is much faster than the strain rates we consider in this problem. The
effective temperature evolves dynamically to determine the plastic strain rate in
the material.

elastic deformations in the material.
The plastic strain in the material is determined by STZ Theory. The strain

rate, shear stress, and effective temperature are related via the STZ equation,

γ̇ = f (τ) exp (−1/χ) . (6.2)

The strain rate in the material is dictated by the evolution of the effective tem-
perature in the material,

∂χ

∂t
=

γ̇τ

c0τy

(
1− χ

χ̂ (γ̇)

)
+

∂

∂y

(
γ̇D

∂χ

∂y

)
. (6.3)

Equations (6.1) and (6.3) are integrated with zero effective temperature flux
boundary conditions at y = ±w.

For glassy materials, we utilize simulation data to constrain the stress depen-
dence f(τ) and the maximum effective temperature χ̂(γ̇) [28]. The rate switching
function R(τ) that we use in this study is a combination of an exponential stress
dependence at low stress, and a square root power law stress dependence at large
stresses. The simulations tend to be in the large stress limit, so the stress depen-
dence in the STZ equation is approximately

f (τ) ≈ 2ε

t0

(
τ

τ1

)1/2 (
1− τy

τ

)
. (6.4)

125



CHAPTER 6. LOCALIZATION IN RATE STRENGTHENING MATERIALS

The parameter τ1 sets the stress scale for STZ reversals.
The effective temperature depends on the strain rate in the material. A plot of

the negative logarithm of the strain rate versus the inverse steady-state effective
temperature is shown in Figure 6.2 [61]. The curve shows a linear regime at
high strain rates, which we use for earthquake rupture because earthquake slip
generally occurs at high strain rates. We are interested in the deformation of glassy
materials at low and high strain rates, so we include the portion of the curve where
the effective temperature is independent of the strain rate. Our equation for the
maximum effective temperature χ̂ is [61]

log

(
q0
t0γ̇

)
=
χw
χ̂

+

(
χ1

χ̂− χ0

)
exp

(
−b χ̂− χ0

χA − χ0

)
. (6.5)

The first term on the right hand side accounts for the linear dependence at high
strain rates, and the second term produces a constant effective temperature χ0 at
low strain rates.

We start from zero shear stress and a constant effective temperature with a
perturbation of the form δχ sech(z/δz) added at the center of the material. We
then shear the material at a constant driving rate. We vary two parameters: the
initial effective temperature, and the driving rate. We vary the constant starting
effective temperature to simulate variability in the cooling of the glassy material
before it is sheared. We also vary the driving rate to determine how the material
deforms over a range of strain rates.

Deformation in the STZ model occurs in four different ways: homogeneous
deformation, “disorder limited” shear bands, “diffusion limited” shear bands, and
material failure. Each of these types of deformation occur for different sets of the
initial effective temperature and the plastic strain rate.

Homogeneous deformation occurs for all strain rates for large values of the ini-
tial effective temperature. Homogeneous deformation occurs because the material
is too close to steady-state for the transient instability to occur. An example of
the plastic strain rate as a function of position for several different values of the
shear strain is shown in Figure 6.3. For the smallest values of the strain, the plas-
tic strain rate is zero throughout the material. This is because plastic deformation
occurs only after the shear stress builds up elastically from zero to the yield stress.
Once the material yields, the strain rate is roughly constant throughout the ma-
terial. The strain rate is slightly elevated in the center due to the perturbation to
the initial effective temperature, but this is a small difference.

For lower values of the initial effective temperature, strain localizes into a
shear band. The material is farther from steady-state if the effective temperature
is lower, and leads to a transient instability. One example of localized strain is a
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Figure 6.2: Plot of the negative logarithm of the non-dimensional strain rate
q = t0γ̇ versus the inverse effective temperature. The different colored curves
correspond to varying thermal temperature in the simulation data. There are two
important regimes: the linear rate-dependent portion of the curve, which occurs
at high strain rates, and the glassy portion of the curve, where the effective tem-
perature is independent of the strain rate. Deformation of glassy materials occurs
at both low and high strain rates, and so the maximum effective temperature
χ̂(γ̇) must account for both regimes for this study. Figure taken from Langer and
Manning [61].
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Figure 6.3: Snapshots of plastic strain rate as a function of y-position in the
material for varying shear strains for an example of homogeneous deformation.
The strain rate is zero for small strains until the stress reaches the yield stress, and
then the strain rate is roughly constant throughout the material. Homogeneous
deformation occurs if the initial effective temperature is larger, as the transient
instability relies on the material being driven away from steady-state.
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Figure 6.4: Plastic strain rate as a function of position for a “diffusion limited”
shear band. The various curves show the strain rate at several values of the strain.
(a) Deformation is localized to a sharply peaked shear band, the thickness of which
is set by the diffusion length scale. (b) As the material deforms further, the strain
rate decreases and the shear band thickness increases, but deformation remains
highly localized.

“diffusion limited” shear band. Figure 6.4 plots the plastic strain rate as a func-
tion of position for a “diffusion limited” shear band. In this type of deformation,
a very narrow shear band forms that accommodates all of the deformation in the
material. Diffusion and energy dissipation are balanced in the effective tempera-
ture evolution equation, and the diffusion length scale determines the shear band
thickness.

Another variety of localized deformation that occurs is “disorder limited” shear
bands, shown in Figure 6.5. The plots show shapshots of the plastic strain rate
as a function of position at various strains. In this case, the plastic strain rate is
much larger in the center of the material. This shear band is called a “disorder
limited” shear band because the shear band thickness is much larger than the
length scale in the diffusion term. The effective temperature in the shear band
grows more quickly than in the rest of the material until it is equal to the maximum
effective temperature. The effective temperature cannot become any larger in the
center, but the strain rate in the material does not match the imposed strain
at the boundaries. In order to accommodate additional deformation, the shear
band instead spreads out until the strain rate matches the applied rate at the
boundaries.
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Figure 6.5: Plots of plastic strain rate as a function of y-position in the material
for several values of the shear strain for a “disorder limited” shear band. The
strain rate is much larger in the center of the material, indicating that the defor-
mation occurs in a localized shear band. The thickness of the shear band is much
larger than the diffusion length scale, which distinguishes this from the “diffusion
limited” shear band shown in Figure 6.4.
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Figure 6.6: Deformation map for glassy materials as a function of the initial effec-
tive temperature and the applied strain rate. The different colors show when ho-
mogeneous deformation, “disorder limited” shear bands, “diffusion limited” shear
bands, and material failure occur. The map also shows where transition regions
lie between the different types of deformation.

The final type of localized deformation that occurs is material failure. In this
case, the strain rate is so highly localized that the strain rate exceeds the strain
rate where STZ Theory breaks down (q0/t0). At strain rates this large, defor-
mation no longer occurs as isolated STZs, and the constitutive equations are not
valid. This type of deformation occurs at the lowest initial effective temperature.
At very low initial effective temperature, there are very few STZs and therefore to
drive the material at a high plastic strain rate, the stress must be very large. The
effective temperature grows more quickly than the stress relaxes, and the strain
rate becomes so large that the effective temperature diverges. When STZ Theory
breaks down, the material behaves more like a fluid, and a constitutive relation for
amorphous flow is required to describe subsequent deformation of the material.

We can construct a deformation map for glassy materials as a function of the
applied strain rate and the initial effective temperature to determine when ho-
mogeneous deformation, “diffusion limited” shear bands, “disorder limited” shear
bands, and material failure occur. Figure 6.6 shows this deformation map. The
boundaries between the different types of deformation are not sharp, and a shear
band that is initially “diffusion limited” can become a “disorder limited” shear
band at large strains. Therefore, there are transition regions on the deformation
map between the various regimes.

Our numerical studies illustrate that rate strengthening materials can deform
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in many different ways than rate weakening materials – rate weakening materi-
als either form “diffusion limited” shear bands or fail. Rocks can also exhibit
rate strengthening friction parameters, and we discuss the deformation of these
materials in the following section.

6.3 Localization in Coseismic Slip Below the

Seismogenic Zone

When under the high temperature and pressure conditions deep in the earth’s
crust, rocks deform in a ductile manner [15, 16, 17], and the frictional behavior is
rate strengthening. This is observed in the field in rocks known as S-C mylonites
[39]. These rocks are sheared in a ductile manner due to the slow creep of in-
terseismic loading. The deformation occurs broadly throughout the rocks. This
deformation is illustrated in Figure 6.7. On the left, in Figure 6.7(a), the broad
ductile deformation is the roughly diagonal lines running from the lower left to
the upper right. On the right, in Figure 6.7(b), the blue lines indicate the shear
fabric that is observed in the rocks in the field.

This broad deformation is superimposed with narrow localized deformation
that is distinct from the ductile deformation. The localized deformation occurs
when an earthquake propagates down into the ductilly deforming layer, shearing
the material much faster than the slow creep of interseismic loading. The localized
deformation is illustrated by horizontal lines in Figure 6.7(a), and the red lines in
Figure 6.7(b).

The deformation observed in these rocks is consistent with the predictions
of STZ Theory. During the interseismic period, because the parameters are rate
strengthening, the equations reach their stable steady-state solution. Deformation
occurs broadly over the entire fault zone, and produces the ductile strain observed
in the field. Localized coseismic slip occurs because the material is driven away
from steady state. The transient instability occurs because of the huge change in
driving rate – the long-term creeping rate of faults is of the order centimeters/year,
while coseismic slip rates are of order meters/second. This is a change of about 109

in the slip rate, and a change this large drives the gouge away from steady-state.
To explore the fault scale consequences of strain localization below the seimo-

genic zone, we study a dynamic rupture model with the fault zone governed by
STZ Theory. Figure 6.8 illustrates the fault in our model. This dynamic rupture
model is very similar to the model discussed in Chapter 5, so we only briefly dis-
cuss the differences. In this dynamic rupture model, the first important difference
is that the STZ friction parameters vary with depth, while the STZ parameters
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Figure 6.7: Rocks deformed below the seismogenic zone, known as S-C mylonites.
At the large temperatures and pressures deep in the earth, the rock deforms in
a ductile manner. (a) The fabric in the rocks is due to a combination of broad,
ductile shear, and localized strain from earthquakes that originate in the seismo-
genic zone and propagate to depth. The broad shear is indicated by the diagonal
lines, and the localized coseismic slip produces the horizontal lines. (b) Field ob-
servations of this deformation. The blue lines indicate the ductile shear, and the
red lines show the location of localized shear. Figure adapted from Simpson [39].
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in Chapter 5 did not vary spatially. The other important difference is that we
assume that the slip is only in the x-direction, and that the fault is translationally
invariant in the x-direction. This simplifies the dynamic rupture equations to 2D
anti-plane rupture propagation. Chapter 5 assumed 2D in-plane rupture propa-
gation. This model allows us to investigate if localized slip at depth alters fault
scale rupture propagation. The elastodynamics of the fault are modeled using the
boundary integral method discussed in Chapter 4.

In the dynamic rupture model, frictional quantities vary with depth. In par-
ticular, we vary the normal stress and the frictional rate dependence with depth,
consistent with the varying frictional parameters in the earth. The normal stress
increases linearly with depth, and the yield stress is always proportional to the
normal stress. The shear stress increases with depth. The normal stress and ini-
tial shear stress are shown as a function of depth in Figure 6.9(a). The initial
shear stress is perturbed over a small region at 11 km depth to initiate rupture.
The rate dependence of friction is based on laboratory studies of rock friction at
high temperatures and pressures [17]. We adopt a depth-dependent profile for the
STZ activation stress σd and the frictional rate dependence χw based on these
experiments. The dependence of the activation stress σd on depth is plotted in
Figure 6.9(b), and the rate dependence of friction is shown in Figure 6.9(c). The
rate dependence plot shows that friction is rate strengthening at shallow depths,
rate weakening in the seismogenic zone, and rate strengthening below 14.5 km
depth. The initial effective temperature varies with depth, as Figure 6.9(d) illus-
trates. The initial effective temperature is small in the seismogenic zone, as that
region has few STZs and behaves more like a solid. Deeper in the crust, the initial
effective temperature increases, as there is plastic deformation occurring at depth
due to ductile creep.

Our goal is to test if strain localization below the seismogenic zone alters rup-
ture propagation relative to homogeneous shear at depth. If strain localization is
important, then two ruptures with identical slip in the seismogenic zone should
propagate differently upon encountering the rate strengthening region. In the
seismogenic zone, it is most important that the rupture in the localized and ho-
mogeneous models are identical and propagate all the way to depth. Because of
this, we use a homogeneous rupture in the seismogenic zone for simplicity. Al-
though we showed in Chapter 5 that localization in earthquake ruptures results
in dynamic weakening and large peak slip rates, the model requires a fine grid
spacing along the spatial extent of the fault to resolve these features. We are
more interested in resolving what occurs below the seismogenic zone in this study,
which requires a that the fault have a large spatial extent.

We consider two different models with these depth dependent friction param-
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Figure 6.8: Schematic of the fault for modeling rupture propagation below seismo-
genic depth. A layer of fault gouge governed by STZ Theory is sheared between
elastic rocks. Within the gouge, we resolve the dynamic evolution of the effective
temperature, which dictates how strain localizes during dynamic fault slip. Slip
is assumed to be purely in the x-direction, and the system is symmetric in the
x-direction. Fault parameters vary with depth (see Figure 6.9). In particular, the
fault has rate strengthening properties at shallow depths, rate weakening prop-
erties in the seismogenic zone, and rate strengthening parameters below 14.3 km
depth. This captures the dynamic propagation of slip from the seismogenic zone
to the creeping zone below.
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Figure 6.9: Depth-dependent frictional parameters in dynamic rupture simula-
tions. (a) Normal stress and shear stress increase with depth. The shear stress is
increased over a small region at 11 km depth to nucleate rupture. (b) STZ activa-
tion stress as a function of depth. Up to 17 km depth, the STZ activation stress is
proportional to the normal stress, and is a larger fraction of the normal stress at
greater depth, consistent with rock friction experiments at high temperature and
pressure. (c) The rate dependence of friction varies with depth, consistent with
laboratory experiments. Friction transitions from rate strengthening (χw > 1) to
rate weakening (χw < 1) at 2 km depth, and from rate weakening to rate strength-
ening at 14.3 km depth. (d) Depth dependence of the initial effective temperature.
Below the seismogenic zone, the material is ductile and undergoes more plastic
deformation, and thus has a larger effective temperature and more STZs.
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eters. In the first model, which we refer to as Model H, the effective temperature
is spatially uniform everywhere. Because homogeneous strain produces fault be-
havior that is very similar to Dieterich-Ruina friction, a model where slip does not
localize indicates what a laboratory based friction law would predict for rupture
propagation. In the second model, which we refer to as Model L, a small per-
turbation of the form δχ/ cosh(z/δz) is added to the effective temperature in the
rate strengthening region below 14.5 km depth. In Model H, due to symmetry,
the plastic strain rate is always uniform across the fault zone. However, the ef-
fective temperature varies with depth, and is time dependent. In Model L, strain
spontaneously localizes at depth as the fault slips due to the transient instability
in the STZ equations. The effective temperature also varies with depth and with
time in Model L.

First, we examine the dynamics of strain localization in Model L. Figure 6.10
shows the shear stress as a function of slip at a depth of 15.75 km, which is over
a kilometer below the transition to rate strengthening. The shear stress increases
before slip initiates, and then gradually decreases before reaching a steady shear
stress. Note that the final sliding shear stress is greater than the initial stress.
This occurs for two reasons. First, the stress increases because the slip rate
increases, as the friction parameters are rate strengthening. Because the fault is
rate strengthening at depth, there is also greater slip in the seismogenic zone than
at depth. Due to the elasticity of the rock, this slip deficit increases the shear
stress at depth. These two factors combine to produce a negative stress drop
below the seismogenic zone.

Figure 6.11 illustrates the plastic strain rate profile for several representative
points shown on the stress versus slip plot (Figure 6.10). For small slips, the
effective temperature is approximately spatially uniform across the fault zone.
This is because the perturbation to the effective temperature is still growing, and
the shear band has not formed. Once the stress weakens, the plastic strain rate
forms a sharp and narrow peak. This peak decreases in size as the fault slips
further, but the deformation remains localized for the duration of coseismic slip.
This shows that nearly all of the coseismic slip at depth in a dynamic rupture is
accommodated in a narrow shear band.

At the fault scale, we compare the slip propagation below the seismogenic
zone to assess the impact of localization on rupture dynamics. Figure 6.12 shows
three snapshots of the slip rate as a function of depth. The left plot Figure 6.12
demonstrates that rupture propagates unstably through the seismogenic zone,
and that the rupture is identical for both models as desired. The slip rate is
larger in the down dip direction because the increasing normal stress also increases
the stress drop. The plot in the center shows the slip rate shortly after the
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Figure 6.10: Shear stress as a function of slip for a point below the seismogenic
zone (15.75 km depth) for Model L. Stress increases to a peak value as slip initiates,
and then drops as the fault slips. The stress drops off more quickly once the shear
band forms, and reaches a steady sliding stress above the initial value due to
the rate strengthening nature of the material. The colored points indicate times
when the plastic strain rate is plotted as a function of position in the fault zone
(Figure 6.11).
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Figure 6.11: Snapshots of the plastic strain rate as a function of position in the
fault zone for various times shown in Figure 6.10. The curves are for Model
L, and are at a depth of 15.75 km, which is below the seismogenic zone in the
rate strengthening region. For small values of the slip, the strain rate is uniform
throughout the fault zone. When the shear stress begins to drop more rapidly, the
strain rate becomes very large and sharply peaked. The peak strain rate drops as
the fault continues to slip, and strain remains localized for the duration of seismic
slip.
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ruptures encounter the rate strengthening region. The slip rate at the rupture
front decreases dramatically for slip below the seismogenic zone. The inset shows
that there is a small difference in the slip rate in the rate strengthening region. Due
to localization, the slip rate is larger, though this is a small effect – both Model
H and Model L are arresting in the rate strengthening region. The rightmost plot
shows that rupture arrests after reaching about 17 km depth. The slip rate also
decreases when it reaches the rate strengthening region at the surface, but the
rupture is able to slip all the way to zero depth.

There is only a small difference between the two models because regions with
rate strengthening parameters have negative stress drops, and therefore are energy
sinks. Shear stress must drop to release stored elastic strain energy from the bulk.
If the stress increases, slip stores additional strain energy in the elastic bulk, and
ruptures that encounter rate strengthening regions quickly arrest. Therefore, by
examining how the shear stress evolves with slip for Model H and Model L, we
can determine how localization changes the energy balance of slip at depth.

Localization changes two aspects of the shear stress during slip: the final shear
stress, and the rate at which stress drops from its peak value to reach the final
shear stress. For rate weakening parameters, both of these changes encourage
rupture propagation. The final sliding stress is lower, because the elevated strain
rate in the shear band leads to dynamic weakening, and the increase in the rate
at which stress drops reduces frictional dissipation.

For rate strengthening friction, however, these two effects are competing. The
shear stress as a function of slip is shown for Model H and Model L at 15.75 km
depth in Figure 6.13. The shear stress drops more quickly in Model L, which
reduces energy dissipation on the fault. This makes the rate strengthening region
less of an energy sink, and because of this the slip rate in the strengthening region
in Figure 6.12 (center) is slightly larger. However, the final sliding stress is higher
for Model L when compared to Model H. This is because for rate strengthening
parameters, an elevated strain rate inside the shear band increases the final sliding
friction. Therefore, the increase in the shear stress competes with the reduction
in frictional dissipation, and the end result is a rupture that arrests quickly for
both Model H and Model L.

An important question that arises from this is how much seismic radiation
comes from slip at depth, and if this radiation could be detected by seismome-
ters at the surface. Because Models H and L produce nearly identical slip at
depth, seismograms almost certainly cannot distinguish between them at the sur-
face. Additionally, because the slip rate at depth is less than the slip rate in
the seismogenic zone, less radiation occurs from the deep slip. However, more
quantitative investigation of the effect of this slip on ground motion is needed.
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Figure 6.12: Slip rate as a function of depth at three different times during dy-
namic rupture for Model H and Model L. “RS” and “RW” designate the depths
that have rate strengthening and rate weakening parameters, respectively. (left)
Rupture propagates unstably through the seismogenic zone due to its rate weak-
ening parameters. The slip rate is larger in the downdip direction because the
increasing normal stress leads to a larger stress drop. The slip rate is identical for
both models, as we do not model localization in the seismogenic zone. (center)
Upon encountering the rate strengthening region, the slip rate decreases. The in-
set shows that localization slightly alters the slip rate in the strengthening region.
The slip rate is slightly larger in the rate strengthening region in Model L. (right)
The rupture arrests at the base of the seismogenic zone after propagating to about
17 km depth. Rupture reaches the surface, though the rate strengthening region
decreases the slip rate. The slip rate is nearly identical for Model H and Model L.
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Figure 6.13: Shear stress as a function of slip for a point below the seismogenic
zone (15.75 km depth) for Models H and L. The curves show the two competing
effects due to localization – Model L drops off more quickly with slip once the
shear band forms, but Model H reaches a lower shear stress. Model L remains
at a larger shear stress because the strain rate is elevated in the shear band and
the friction parameters are rate strengthening at this depth. The effects roughly
cancel each other, and rupture propagation is nearly identical between the models.
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Figure 6.14: Final slip as a function of depth for Model H and Model L. In both
models, 5% of the seismic moment occurs below the transition to rate strength-
ening. The slip propagates to 17 km depth in both models.

The final slip as a function of depth is also nearly identical between Model H
and Model L, as Figure 6.14 illustrates. In both models, about 5% of the seismic
moment occurs below the seismogenic zone, and there is no slip below 17.5 km.
Because this model is fairly simple and does not include along strike variations
in rupture propagation, it is unclear how the percentage of slip at depth might
vary with the size of the earthquake. This question arises in earthquake scaling
relations, which we now discuss.

Seismologists are interested in determining the depth of rupture propagation
on faults for several reasons. When performing seismic inversions, modelers often
arbitrarily cut slip off at 15 km depth [134]. However, if slip routinely occurs at
larger depths in earthquakes, then it is important to allow for slip at those depths
when inverting for source parameters.

Additionally, earthquake scaling relations suggest a constant stress drop and
that seismic moment should scale with the length of the rupture squared [135, 136].
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However, if slip cannot occur below seismogenic depths, then this scaling breaks
down for large earthquakes that propagate for distances longer than ∼ 15 km.
If slip does not occur below 15 km depth, then the stress drop must scale with
the seismic moment, and the scaling with the length of the rupture squared no
longer holds. The scaling of seismic moment with rupture length is observed even
for large events, which indicates that slip can propagated deeper than 15 km.
King and Wesnousky [137] measured slip in crustal earthquakes that broke the
surface, and found that the scaling relations from their data suggest that larger
earthquakes propagate below the seismogenic zone.

Hillers and Wesnousky [138] and Shaw and Wesnousky [139] investigated these
scaling relations through numerical models of many earthquake sequences. Their
results show that slip can propagate further below the seismogenic zone, though
the results depend on the parameters chosen. Hillers and Wesnousky found that
if the transition from rate strengthening to rate weakening was more gradual than
the transition predicted by rock mechanics experiments, then their calculations
produced scaling relations consistent with observations. Shaw and Wesnousky
determined that a rate strengthening region with parameters that do not vary
with depth allowed for deeper penetration of coseismic slip.

Fully dynamic rupture simulations with similar depth dependent properties
found that dynamic rupture propagates to a depth similar to the lowest depth
of slip in our model with STZ Theory [100]. However, our model captures the
localization of strain at depth, and better matches field observations of rock de-
formation. It is still unclear as to what the correct depth dependent frictional
parameters are to capture the correct physics at the base of the seismogenic zone.
The rock friction experiments that our depth dependent friction parameters are
based on use thin layers of fault gouge in the experiments, but S-C mylonites show
that the deformation over fault zones that are many orders of magnitude thicker
(on the order of a kilometer) Therefore, it is possible that the friction experiments
do not capture the correct frictional behavior of much thicker fault zones, and
the thicker fault zones exhibit frictional properties similar to the Hillers and Wes-
nousky or Shaw and Wesnousky. More research is needed to understand the role
of frictional parameters, strain localization, and elastodynamics to determine the
depths to which coseismic slip occurs.

6.4 Discussion

Our results for rate strengthening materials show that strain localization is an
important physical process in their deformation. We find that glassy materials
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show rate strengthening behavior, and glasses can deform in several different ways.
This includes homogeneous deformation, broad “disorder limited” shear bands,
narrow “diffusion limited” shear bands, and material failure. This contrasts with
the results for rate weakening materials, which only form “diffusion-limited” shear
bands or fail in the same manner as rate strengthening materials. The formation
of “disorder limited” shear bands requires rate strengthening parameters, and
are interesting because the shear band width is a length scale other than the
diffusion length scale. The shear bands in rate strengthening materials persist for
large strains – steady sliding is linear stable, but long-lived transients can prevent
materials from ever reaching steady state.

In our models, shear bands occur due to a transient instability in the effective
temperature dynamics. However, it is also possible for shear bands to form due to
stress effects. In the simple shear geometry that we study, the static solution to
the stress equations is a spatially homogeneous stress, which indicates that stress
effects are not particularly important. Instead, the structure of the material, which
is captured by the effective temperature, is what drives strain localization. Stress
effects may be important for localization in earthquake slip below the seismogenic
zone, as the localization of slip in the seismogenic zone produces stress effects
that lead to localized slip at depth. However, because field observations indicate
a single slip surface at seismogenic depths [37], stress effects cannot explain the
multiple shear bands in Figure 6.7. Further research is needed to assess the
relative contributions of stress and effective temperature in localized slip below
the seismogenic zone.

For earthquake ruptures, strain localization in rate strengthening materials is
important for slip below the seismogenic zone. Broad and localized deformation
is observed in rocks that were below the seismogenic zone. The STZ model pre-
dicts that slow creep produces broad ductile strain, while coseismic slip generates
localized slip. We examine the fault scale consequences of localization below the
seismogenic zone, and find that the effects of localization compete – the shear
stress drops more quickly, reducing dissipation, but the sliding stress increases,
roughly canceling any benefits of reduced dissipation. Therefore, the fault scale
rupture propagation is nearly identical with and without localization.
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Chapter 7

Conclusions

7.1 Synopsis

The earthquake problem is challenging due to its multi-scale nature, with
large uncertainties at every scale. Our approach captures basic observations of
grain scale material deformation through the STZ constitutive law, and studies its
implications at larger scales in the dynamics of friction and earthquake rupture.
We find that the small scale physics has large scale implications for frictional
instabilities and dynamic rupture propagation.

The STZ model captures features of simulations of a wide range of amor-
phous materials, including glasses, granular materials, thin film lubricants, and
earthquake faults. Plastic deformation occurs in localized regions, and the total
number of STZs is governed by an effective disorder temperature. The effective
temperature quantifies the disorder in the packing of the material, and serves as a
macroscopic quantity that determines the internal state of the material. The STZ
model resolves the dynamic evolution of the strain rate in the material, which is
a unique feature of the STZ model compared to other constitutive descriptions.
Strain localization leads to dynamic weakening for rate weakening frictional pa-
rameters – the strain rate is elevated in the shear band, which reduces the sliding
friction.

Our study of stick-slip instabilities shows that laboratory scale friction dy-
namics are affected by strain localization. We find that localization increases the
critical spring stiffness where steady sliding becomes unstable, and our linear sta-
bility analysis is in agreement with numerical integration. Our simulations also
produce irregular stick-slip dynamics due to the small scale physics of localization.

At the fault scale, STZ Theory impacts earthquake rupture propagation. Our
results show that the differences between the FV law to the Dieterich-Ruina and
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Slip Weakening laws have fault scale implications. We find that for equal energy
dissipation on the fault, the FV law exhibits lower peak slip rates, smaller nucle-
ation lengths, and larger amounts of slip for friction to weaken to its minimum
value. The difference in the nucleation lengths alters the shear stress at which
rupture transitions to supershear for the laws. The rapid weakening versions of
the friction laws show that rupture can propagate at low initial shear stress as a
self-healing slip pulse, and the due to differences in small scale physics, the FV
and DR laws with rapid weakening transition to pulse-like rupture at a different
value of the shear stress.

We also compare ruptures that dynamically form a shear band to ruptures
where strain remains homogeneous at the fault scale. The dynamic weakening
of localization increases both the stress drop and the peak slip rate, and a ho-
mogeneous rupture of a narrower width cannot capture all features of rupture
propagation with localization. We also vary the diffusion length scale to assess
the role of this length scale in dynamic rupture. The diffusion length scale controls
the shear band width, and our simulations show that as the diffusion length scale
decreases, fault slip dissipates less energy and the fault slides at a lower shear
stress. Localization plays an important role in how slip propagates in space and
time at the fault scale, including lowering the shear stress at which supershear
rupture nucleates and allowing for pulse-like rupture propagation at low shear
stress. The results indicate that the dynamic weakening of localization can have
a significant impact on rupture propagation at the fault scale.

Strain localization is also important for rate strengthening materials, which
form shear bands due to a transient instability. We investigate this phenomenon
in glassy materials, and find that several types of deformation occur, including
homogeneous strain, localized strain in a “disorder limited” shear band, localized
strain in a “diffusion limited” shear band, and material failure. We investigate
when these types of deformation occur as a function of the initial effective temper-
ature and the average strain rate to create a deformation map for glassy materials.

Rate strengthening friction also occurs in the earth’s crust at depths below the
seismogenic zone. These rocks deform in a ductile manner during the interseismic
period, but form shear bands when coseismic slip propagating down dip from the
seismogenic zone deforms the rock. We find that strain spontaneously localizes
at creeping depths due to coseismic slip in a dynamic rupture model, and nearly
all the coseismic slip is accommodated through a narrow shear band. This shows
that the transient instability in STZ Theory can produce localized slip at depth
consistent with field observations.

In this work, we find that STZ Theory can be used to model deformation
and localization in a wide range of amorphous materials. Because the model is
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a continuum approximation, it is tractable for use in fault scale rupture models.
This approach captures the physics at each scale, and improves the predictions of
multi-scale models of deformation in a wide range of systems.

7.2 Future Directions

STZ Theory provides a microscopic physical basis for deformation in amor-
phous materials, and because it is a continuum approach it remains tractable
for modeling dynamics at the fault scale. This “vertical” approach to the multi-
scale earthquake problem reveals the fault scale consequences of grain scale strain
localization. However, the STZ model neglects many physical processes that seis-
mologists believe are important at each different scale. Future work with STZ
Theory to develop efficient ways to incorporate these additional processes into
rupture models can determine the fault scale implications.

Many of the important physical processes that are neglected in the STZ model
occur at the grain scale. These processes contribute to the dynamics of friction,
and therefore could have fault scale consequences. For example, the finely granu-
lated nature of fault gouge indicates that brittle fracture and grain comminution
are important processes during earthquake slip [129]. A version of STZ theory
could be developed that include the effects of grain wear and fracture, which
might alter the STZ equations and change the energy budget. Another important
factor at the grain scale is heating and weakening due to seismic slip [21, 22, 132].
Pore fluid pressurization at high slip rates and weakening of contacts could change
the rate at which STZs rearrange, and dramatically change the shear stress during
seismic slip.

Laboratory observations indicate that the rate dependence of rock friction is
logarithmic for small slip rates up to 0.1-1 m/s, after which thermal weakening
mechanisms become important [21]. This crossover behavior can be naturally
incorporated into STZ Theory through the parameter q0, which determines the
strain rate at which STZ Theory breaks down. While our simulations here assume
that q0 is large enough that STZ Theory is valid even at seismic slip rates, it is
possible that at large slip rates when contacts between grains are heated, defor-
mation is no longer accommodated by local STZs. A new constitutive model that
describes the deformation at these large strain rates could account for the physics
that operates at large strain rates. Current models for thermal weakening are
often phenomenological, so incorporating the ideas into STZ Theory puts these
physical mechanisms onto a stronger theoretical footing.

Many of the additional mechanisms that can be incorporated into STZ The-
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ory are important because they alter the energy balance of faulting. Even in the
absence of these mechanisms, STZ Theory can be used to investigate energy dis-
sipation during seismic slip. Because STZ Theory provides a microscopic physical
basis for deformation in amorphous materials, we can quantitatively determine
the energy balance of slip in the STZ model. In particular, energy dissipation in
the STZ model increases the configurational entropy of the gouge packing, which
is energy that is not dissipated as thermal heat. The traditional picture of en-
ergy dissipation during faulting divides energy between fracture energy, which is
energy that goes into breaking rock and creating new surfaces, and energy that is
dissipated as thermal heat [117]. STZ Theory improves upon this description by
providing microscopic physical basis for energy dissipation.

In all of our models, we assume that the time scale for stress equilibration is
much faster than the inverse plastic strain rate. This assumption simplifies the
dynamic equations for the stress in the fault gouge (Equation (3.1)). Also, it
highlights that in our model, the disorder in the material is responsible for shear
bands and not variations in the stress. However, these stress effects could be
important for localization in some cases. Stress effects are necessary to form a
shear band that extends in space (such as the fracture surface in Figure 1.8) from
a random initial effective temperature. Earthquakes that deform the fault gouge
in the seismogenic zone in a localized manner may produce localized deformation
below the seismogenic zone through this mechanism. Research that adds in stress
effects is needed to better understand the effects of shear bands in situations where
spatial variations in the shear stress are important.

All of these exciting avenues for future work show that we are just scratching
the surface of incorporating small scale physics into fault scale dynamic earth-
quake models. By combining exciting recent developments in theory, laboratory
experiments, numerical simulations, field observations, and earthquake modeling,
seismologists can improve constraints on the complex dynamics occurring in the
earth at each scale and improve estimates of seismic hazard.
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