
Effective temperature dynamics of shear bands in metallic glasses

Eric G. Daub,1, 2, 3 David Klaumünzer,2 and Jörg F. Löffler2
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Abstract

We study the plastic deformation of bulk metallic glasses with Shear Transformation Zone (STZ)

Theory, a physical model for plasticity in amorphous systems, and compare it with experimental

data. In STZ Theory, plastic deformation occurs when localized regions rearrange due to applied

stress and the density of these regions is determined by a dynamically-evolving effective disorder

temperature. We compare the predictions of STZ Theory to experiments that explore the low-

temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal

temperatures and strain rates. By following the evolution of effective temperature with time,

strain rate, and temperature through a series of approximate and numerical solutions to the STZ

equations, we successfully model a suite of experimentally observed phenomena, including shear-

band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow

stress, and a strain rate- and temperature-dependent transition from stick-slip (serrated flow) to

steady-sliding (non-serrated flow). We find that STZ theory quantitatively matches the observed

experimental data and provides a framework for relating the experimentally measured energy scales

to different types of atomic rearrangements.
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I. INTRODUCTION

Deformation and flow in amorphous materials, such as glasses, foams, colloids, thin films,

and granular materials, are not completely understood, and scientists do not have a first

principles physics-based model for how amorphous materials deform and fail. The dynamics

of deformation exhibit a wide range of phenomena, including plastic deformation once the

yield stress is exceeded, strain and strain rate dependence of the flow stress, localization

of strain, and stick-slip behavior [1–4]. Because amorphous materials exhibit similar types

of macroscopic behavior and all are characterized by a disordered microscopic structure,

development of a physical theory for deformation and failure that provides predictive power

has been a subject of considerable research.

An example of such an amorphous material is a bulk metallic glass. Bulk metallic glasses,

which are formed by rapidly cooling a melt of a particular composition, are of potential

interest in numerous material applications, as their amorphous atomic structure leads to a

lack of dislocations which carry the plastic deformation in crystalline metals [5–7]. Therefore,

metallic glasses deform elastically up to large strains and stresses [8–11]. However, when bulk

metallic glasses do deform plastically, they often fail catastrophically due to the formation

of localized shear bands [12–15]. Understanding the basic physics of bulk metallic glass

plasticity remains an important research problem for exploring the basic physics of glasses,

for developing applications utilizing these materials, and for predicting the dynamics of

deformation and failure of amorphous materials in general.

Theoretical studies of the deformation and flow of amorphous materials typically fall

into two categories. At the microscopic scale, molecular dynamics studies probe disordered,

glassy materials at the atomic scale [16, 17], providing microscopic resolution of atomic

displacements and rearrangements. These studies have been invaluable in attempting to

understand the atomic scale mechanisms responsible for deformation, but can only be con-

ducted over limited length and time scales, scales much smaller than those typically probed

by experiments. At the other extreme, phenomenological constitutive models, based primar-

ily on experimental data, have been developed to describe material deformation and failure.

This approach has been an extensive part of studies of granular fault materials in the context

of earthquakes through the phenomenological Dieterich-Ruina friction laws [18, 19]. Con-

stitutive models can capture some of the dynamics observed on the length and time scales
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of experiments, but provide limited physical insight into the deformation process.

Attempts to bridge these two approaches has been the goal of many theoretical models in

recent years, where one attempts to gain insight from microscopic mechanisms determined

in atomistic simulations, while producing a continuum model that can be applied at scales

similar to those of experiments. Some approaches start from an inherently liquid-like model

[20, 21], to which solid-like features are added, while others are based on a solid-like starting

point and incorporate liquid-like flow through flow defect mechanisms [22–24]. One example

of a solid-like flow defect model is Shear Transformation Zone (STZ) Theory [16, 25], which

has been applied to a wide range of amorphous materials, including metallic glasses [26–

28], granular materials [29], and earthquake faults [30–33]. While STZ Theory has been

successful in many situations, several of its ingredients remain poorly constrained by data,

and further work is needed to assess the validity of many of its assumptions.

In this study, we apply STZ Theory to the deformation behavior of a Zr-based bulk metal-

lic glass (Vit105) under compression. In particular, we focus on the temperature and strain

rate dependence of plastic flow and aging behavior, for which a suite of experimental obser-

vations has been collected [13, 34–38]. We show that STZ Theory with a now incorporated

temperature-dependent relaxation term captures the full range of experimental observations

in a simple theoretical framework. We also demonstrate that STZ Theory provides a means

of relating energy scales measured in experiments to the basic energy scales in the theory.

The close match between experimental and theoretical results shows that STZ Theory is

able to capture the deformation behavior of bulk metallic glasses over a broad range of

temperatures and strain rates.

II. EXPERIMENTAL CHARACTERIZATION OF SHEAR BANDS IN METAL-

LIC GLASSES

When subjected to an external load at ambient temperatures, metallic glasses deform

plastically in a localized manner by the formation of shear bands [13–15], an example of which

is shown in Fig. 1. At higher temperatures closer to the glass transition temperature, shear

localization is typically not observed, and deformation occurs homogeneously throughout

the sample.

Plastic deformation in shear bands can exhibit stick-slip behavior, also known as serrated
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FIG. 1. SEM image of a bulk metallic glass sample following uniaxial compression. Plastic defor-

mation occurred via a single shear band that intersects the surface of the sample. The shear offset

can be observed at the sample edge, and is circled in the image.

flow (see Fig. 2(a)), where localized plastic deformation occurs intermittently with periods

of slow elastic loading followed by rapid slip [13, 35, 39–43]. Stick-slip theory [44–46] shows

that the rate dependence of the steady-state flow stress plays a central role in determining

if stick-slip occurs. The rate dependence of the flow stress can be expressed mathematically

through m = dσ/dγ̇, where σ is the flow stress and γ̇ is the strain rate. If m < 0, the

material is rate-weakening and stick-slip can occur if the elastic stiffness of the system is

sufficiently low. If m > 0, the material is rate-strengthening and stick-slip behavior cannot

occur. For a Zr-based metallic glass, Dubach et al. [13, 43] performed a series of velocity step

tests to explicitly measure the rate dependence of the flow stress. These tests showed that

metallic glasses in the non-serrated flow regime exhibit rate-strengthening behavior, while

tests in the serrated flow regime show rate-weakening behavior. Additionally, an Arrhenius

scaling was observed for the transition from steady sliding to serrated flow as a function of

strain rate and temperature, with an activation energy scale of 0.37 eV [13], as illustrated

4



59 59.2 59.4 59.6 59.8 60
Time (s)

1900

1920

1940

1960

1980

S
tr

e
s
s
 (

M
P

a
)

0.24

0.25

0.26

0.27

U
n

ia
x
ia

l 
D

is
p

la
c
e

m
e

n
t 

(m
m

)

0.002 0.004 0.006 0.008 0.01 0.012 0.014

Inverse Temperature (1/K)

10
-4

10
-3

10
-2

10
-1

S
tr

a
in

 r
a
te

 (
s

-1
)

300 200 150 100 77

Temperature (K)

Serrated Flow
No Serrations
STZ Transition
Q = 0.42 eV

(a) (b)

m < 0

m > 0

FIG. 2. (a) Serrated flow in a compression test of a Zr-based metallic glass sample at a strain rate

of 10−3 s−1 and at room temperature [34]. The upper curve (vertical scale on the left) shows the

evolution of the shear stress, with periods of slow elastic loading followed by periods of rapid slip.

The lower curve (vertical scale on the right) shows the axial displacement, which confirms that the

sample deformation is intermittent in time. (b) Map showing deformation type as a function of

strain rate and inverse temperature [13]. Serrated flow occurs for high temperatures and low strain

rates, and occurs when the material is rate-weakening (m < 0). At higher strain rates and lower

temperatures, the material is rate-strengthening (m > 0) and no serrations are observed. The

transition from serrated to non-serrated flow predicted by STZ Theory (details in Section V B) is

shown with the solid line. In both the experiments and theory, the transition from steady sliding to

serrated flow follows an Arrhenius scaling and shows a good match with the data. The activation

energy from fitting the data is 0.37 eV, a good match with the value of 0.42 eV found from the

theory.

in Fig. 2(b).

Additionally, slide-hold-slide experiments have been conducted to examine the static re-

strengthening effect that occurs during the stick phase of serrated flow [38, 47] (see example

experiment in Fig. 3(a)). These experiments generally show that the stress overshoot follow-

ing a hold increases logarithmically with waiting time, and that the characteristic time scale

for aging (that is, the waiting time at which non-zero stress overshoots are first observed)

decreases as the temperature increases. By conducting tests at different temperatures, the

underlying mechanism of shear band re-strengthening was shown to be thermally activated
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FIG. 3. (a) Example of a slide-hold-slide experiment at 173 K in the non-serrated flow regime

[38, 47]. The plot shows stress as a function of time, with holds of 0.8 s, 1.1 s, and 1.8 s during

the experiment. The stress has been de-trended to remove an overall decrease in flow stress with

increasing strain. After each hold, the stress overshoots its steady-state value when shearing is

re-started. (b) Stress overshoot as a function of waiting time. The overshoot grows logarithmically

with time, and the characteristic time scale for aging varies with temperature, giving an energy

scale of 0.16 eV. Predictions based on numerical integration of STZ Theory (lines; see details in

Section IV) match the general aging behavior observed in the experiments (symbols).

with an activation energy of 0.16 eV [38, 47].

Temperature also plays a role in determining the flow stress in metallic glasses. Ex-

periments show that metallic glasses exhibit a temperature-dependent flow stress at low

temperatures. Various studies [12, 36, 43, 48, 49] have reported an increase in flow stress

at low temperatures as large as 25% relative to the room temperature flow stress. These

results are summarized in Fig. 4 and demonstrate that temperature influences the plastic

flow of metallic glasses even far below the glass transition temperature.

In this work, we show that all of these experimental characteristics of plastic flow in

metallic glasses, namely the thermally-activated aging behavior, the temperature-dependent

flow stress, and the transition from serrated to non-serrated flow can be captured in an STZ

model based on an effective disorder temperature. We develop a series of approximate

solutions to the STZ equations to simplify the process of determining the STZ parameters

from the data. Our results allow for a simplified integration of the experimental data with
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FIG. 4. Normalized flow stress as a function of temperature taken from several experimental studies

of metallic glasses [36, 43, 48, 49]. STZ Theory predictions (for details see Section V A) are shown

for the approximate solution (dot-dashed line) and numerical integration. STZ Theory follows the

trends observed for the experimental data, and there is good agreement between the numerical and

approximate STZ solutions. Each curve is normalized by the value at 298 K. At low temperatures,

an increase in the value of the flow stress as large as 25% is observed.

the nonlinear STZ equations and provide a means for interpreting the variety of energy

scales found in the experimental data.

III. STZ EQUATIONS

In this section we present the equations of STZ Theory, which we use in the following

sections to provide a quantitative explanation of the experimental data in Section II. We

first outline the basic ideas underlying STZ Theory, focusing in particular on the equations

relevant for the bulk metallic glass experiments. More details on the complete set of STZ

Equations, the thermodynamic arguments underlying the theory, and the various systems

to which they have been applied can be found in a review by Falk and Langer [50].

In the bulk metallic glass experiments considered here, a 3 mm diameter cylindrical

sample of length l = 5 mm is subjected to uniaxial compression. Elastic deformation

occurs both due to elastic deformation of the sample and compliance of the experimental

apparatus. Plastic deformation is accommodated in localized shear bands, and the stress
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evolves according to:

dσ

dt
= µ

(√
2ε̇l

w
− γ̇

)
. (1)

The effective elastic modulus (combining the elastic behavior of both the sample and the

apparatus) is µ, ε̇ is the externally imposed strain rate, and γ̇ is the plastic strain rate

within the shear band, which evolves dynamically as the stress and effective temperature

change. We assume that all plastic deformation occurs in the shear band, so that the effective

externally imposed deformation rate in the shear band is
√

2ε̇l/w, with a shear band width

w = 2 × 10−8 m [42, 51]. The factor of
√

2 corrects for the fact that the shear band is

typically oriented at an angle of ∼ 45◦ relative to the compression axis of the sample (see

Fig. 1). The elastic properties of the system do not affect the steady-state behavior, but

they are important for transient stress dynamics such as stick-slip and transient loading in

a slide-hold-slide experiment.

When describing the deformation of an amorphous material, the strain tensor is often

split into affine (spatially homoegeneous) and non-affine (spatially heterogeneous) parts.

The affine part usually occurs in an elastic manner, while the non-affine deformation can

be either elastic or plastic in nature. In STZ Theory, the non-affine deformation is assumed

to be entirely plastic, and non-affine strain occurs in localized regions that undergo rear-

rangement [16, 25]. These localized regions, or Shear Transformation Zones, occur when

atoms rearrange from one metastable configuration to another. These zones have two dis-

tinct orientations, which we denote by “+” and “−”, and the two orientations are aligned

with the principal stress orientations in the material. Once a local zone is sheared into

the “+” orientation, the zone cannot accumulate further plastic strain, so in order for the

material to shear further, the “+” STZ must be destroyed, and a new “−” STZ must be

created that can be sheared to accumulate additional plastic strain. Energy dissipation in

the material constantly creates and destroys STZs, and as the material is sheared the plas-

tic deformation reaches a steady-state where there is an appropriate balance between STZ

creation, STZ destruction, and STZs rearranging from one orientation to the other. This

steady-state number density follows a Boltzmann distribution with effective temperature

χ [26], a temperature-like state variable describing configurational degrees of freedom in

the amorphous system. Effective temperature has been measured in simulations of various

amorphous materials [52], and is a dynamic quantity that evolves as the system deforms.
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The effective temperature evolves slowly relative to the fast time scale over which the STZs

are created and destroyed, and thus we assume that the number density of STZs is always

at the steady-state value specified by the effective temperature.

Quantitatively, we can express the equations of STZ Theory based on two ingredients.

First, we require an equation to relate the plastic strain rate to the rearrangement of STZs.

The plastic strain rate γ̇ is a function of the applied stress σ, the effective temperature χ,

and the thermal temperature T as follows:

γ̇t0 = ε0 exp

(
−Q

∗ − σV ∗

kT
− 1

χ

)(
1− σy

σ

)
. (2)

The plastic strain rate depends on the two factors in the exponential: the first is a thermally

activated STZ rearrangement rate with a stress-dependent activation energy [53], and the

other describes the density of STZs through the effective temperature [26]. The specific

equation used here makes the additional assumption that backward STZ rearrangements

(i.e. rearrangements where an STZ transitions from a “+” configuration to a “−” configura-

tion) are rare and can be neglected. This approximation can be made because the applied

stress is much larger than the stress scale for thermal activation, thus backward shearing

events make a negligible contribution to the plastic strain rate.

The additional parameters are Boltzmann’s constant k, the rearrangement attempt fre-

quency 1/t0 (which should be similar to a molecular vibrational frequency), the typical

number of atoms per STZ ε0, the activation barrier for STZ rearrangements Q∗, and the

STZ rearrangement activation volume V ∗. The yield stress is indicated by σy, which is the

stress below which all of the STZs are in the “+” orientation. For stresses lower than σy,

there are no STZs which are oriented appropriately to deform plastically, thus γ̇ = 0 and

no plastic deformation takes place. More details about the origin of this yield stress term

can be found in several other papers on STZ Theory [46, 50, 54], though it does not play a

significant role in the dynamics presented here.

Because the effective temperature is a dynamic quantity, the second required ingredient is

an equation that describes the time evolution of the effective temperature. We assume that

the effective temperature follows a heat equation, with terms for dissipation and relaxation

[26, 55]. The evolution of the effective temperature is governed by the following equation:

dχ

dt
=

γ̇σ

c0σy

(
1− χ

χ̂(γ̇)

)
−R exp

(
− Q

kT
− β

χ

)
. (3)
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The effective temperature evolution equation contains two terms. The first is a dissipation

term that drives the effective temperature towards its kinetically ideal value χ̂. The second

term describes the relaxation of the effective temperature. The relaxation term has both a

thermally activated factor and a factor dependent on the effective temperature that describes

the number density of zones that can relax. Using a thermal contribution to the relaxation

of effective temperature below the glass transition temperature has not been considered in

previous studies using STZ Theory and we will show that this modification of Eq. (3) is key

for explaining all of the experimentally observed phenomena in metallic glasses considered

in this study. Other parameters in the effective temperature equation are a specific heat

c0, a relaxation rate R, an energy scale for forming relaxation zones β (scaled by the STZ

formation energy), and the activation energy for relaxation events Q. For the kinetically

ideal effective temperature, we choose a simplified form of the version used in Langer and

Manning [56] based on simulations done by Haxton and Liu [57]:

χ̂ =
χw

log
(
q0
γ̇t0

) . (4)

The steady-state effective temperature introduces two additional parameters: the normalized

strain rate at which the steady-state effective temperature diverges q0, and the normalized

energy scale that determines the effective temperature rate dependence χw. Values for χw

have been estimated based on simulation data, but experimental verification is more difficult

as effective temperature cannot be measured directly. Part of the new contributions in this

work is to show how the steady-state effective temperature can be constrained solely from

experimental data.

STZ Theory introduces a number of parameters, some of which have been constrained

based on physical arguments, while others have been fit using experimental and simulations

results [26, 50, 56]. However, these previous efforts of fitting STZ Theory have either relied

on data taken above the glass transition temperature to fit parameters that determine the

viscosity curves [26], or numerical simulations that explicitly measure the effective temper-

ature [56]. For metallic glass experiments at temperatures well below the glass transition

temperature, these data are not available, and application of the theory needs to be inde-

pendently verified using experimental results to see if the theoretical ideas that form the

basis for the theory match experimental observations at low temperatures. In this study, we

use a series of approximate solutions combined with numerical integration to perform this
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low-temperature analysis. Our study provides a new way to understand the dynamics of

STZ Theory over a new range of experimental conditions not previously considered. In the

sections that follow, we describe the essential results from our approximate solutions, the

details of which can be found in the Appendix.

IV. AGING BEHAVIOR

First, we examine the dynamics of aging in STZ Theory, and compare the theory with

aging data from slide-hold-slide experiments. Previous studies have examined the dynamics

of slide-hold-slide experiments with STZ Theory [45, 58], and while these studies show some

of the qualitative effects found in the experimental data, we examine the aging behavior

quantitatively in this study. In a slide-hold-slide experiment, the sample is first sheared at

a constant rate for sufficient time to reach a steady-state. Shearing is stopped temporarily

to allow the system to age for a specified length of time, denoted by tw, and shearing is

then resumed. By measuring the transient dynamics of the stress when shearing resumes,

we obtain quantitative information on the dynamics of aging during the hold.

An example of a series of slide-hold-slide tests calculated using STZ Theory is illustrated

in Fig. 5. The thermal temperature is T = 173 K, the strain rate is γ̇ = 10−3 s−1, and

holds of 1, 3, and 10 seconds occur during the test. Other parameters are given in Table I.

The upper figure shows the stress as a function of time, and the lower figure shows the time

evolution of the effective temperature. As can be seen from Fig. 5, during the hold, the stress

and the effective temperature both relax with time away from their steady-state values. The

effective temperature relaxes due to the relaxation term in the effective temperature equation

of motion (Eq. (3)), while the stress relaxes due to continued plastic deformation (Eq. (1)

with ε̇ = 0). Upon reloading after the hold, there is a transient peak in the stress, and the

size of this overshoot grows with the length of the hold. The peak in the stress occurs because

the effective temperature relaxes during the hold – relaxation of the effective temperature

decreases the number of STZs, and thus an increased stress is required to initiate plastic

deformation when shearing is resumed.

An approximate solution to the time relaxation of the STZ equations (provided in Ap-

pendix A) allows us to derive an approximate expression for the stress overshoot following
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FIG. 5. Slide-hold-slide behavior of STZ Theory at T = 173 K and γ̇ = 10−3 s−1, with three holds

of duration 1, 3, and 10 seconds starting at 1, 7.5, and 16 seconds, respectively. Parameters are

given in Table I. The upper plot shows the evolution of the stress as a function of time, while

the lower plot illustrates the dynamics of the effective temperature as a function of time. After

each hold, the stress overshoots the steady sliding value, and the magnitude of this overshoot peak

relative to the steady sliding stress quantifies the effect of aging. During each hold, both the stress

and effective temperature relax, and then return to steady-state once deformation resumes.

a hold of length tw:

∆σ =
kT

V ∗β
log (1 + tw/τ) . (5)

Here, τ is the characteristic time for the onset of effective temperature relaxation, determined

from τ ≈ χ2
ss/(βR exp(−Q/kT −β/χss)), where χss is the steady-state effective temperature

at the beginning of the hold. For holds of duration less than τ , the stress overshoot tends

to zero. Changing the value of τ has the effect of moving the aging curves horizontally on

a plot of ∆σ as a function of tw.

This approximate solution reveals three important results regarding the aging behavior:

(1) the stress overshoot ∆σ grows logarithmically with waiting time, (2) the stress overshoot

tends to zero for holds less than the time scale τ , which scales with temperature as τ ∝

exp(Q/kT ), and (3) the magnitude of the stress overshoot is proportional to kT/(V ∗β).

Results (1) and (2) are directly confirmed by the experimental results in Fig. 3(b), which

show a logarithmic increase in stress overshoot as a function of waiting time, as well as a

horizontal shift in the stress overshoot curves as the temperature changes. The amount of

this horizontal shift follows an Arrhenius scaling, and confirms the temperature dependence
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of the characteristic time τ , with τ ∝ exp(Q/kT ) [47].

The solution in the appendix is only an approximation, as it ignores stress relaxation

and the subsequent reloading that occur during a slide-hold-slide experiment. The solution

assumes infinite stiffness while reloading, but due to the finite stiffness of the experimental

apparatus, some plastic deformation occurs during re-loading. This means that the approxi-

mate solutions are an upper bound on the size of the stress overshoots, and we must explicitly

account for the re-loading when comparing the theory to experiments. Thus, to make direct

comparisons with the experimental data we numerically integrate the effective temperature

evolution equation (Eq. (3)) and the stress evolution equation (Eq. (1)). To model the series

of slide-hold-slide tests, the strain rate ε̇ is set to zero during the hold portions of the tests

and set to 10−3 s−1 during the sliding portions of the tests. Parameters are given in Table I.

The results from the numerical calculations are shown in Fig. 3(b), and confirm the general

behavior found in the approximate solutions. The upper bounds from the infinite stiffness

approximation for ∆σ in Eq. (5) are shown in Fig. 6. The infinite stiffness upper bounds

are larger than the numerical results by as much as a factor of two, showing that the finite

stiffness cannot be neglected. Agreement is very good between the experiments and the

numerical results at low temperatures (Fig. 3(b)), while at higher temperatures the time

scale τ in the theory deviates slightly from the time scale observed in the experiments. This

is because the steady-state effective temperature decreases with increasing temperature at

higher temperatures, introducing some additional temperature dependence into the theory

that is not observed in the experiments.

One aspect of the experimental aging data that is not clear is whether the rate of increase

of ∆σ with log(tw) is temperature-dependent (i.e. if the slopes of the best fit lines to the

experimental points of Fig. 3 vary with temperature). STZ Theory predicts that the slope

should increase linearly with temperature, which can be seen in the results in Fig. 6. The

experiments do not show a clear trend, because they were conducted over a range where

T changes only by a factor of 1.5. Error bars on the experimentally determined stress

overshoots are ∼ ±5 MPa, so from the data it is not clear if the scaling between ∆σ and

log(tw) is temperature-dependent.
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TABLE I. Parameter values for the bulk metallic glass data.

Parameter Description

t0 = 10−13 s STZ time scale

ε0 = 10 Number of atoms per STZ

Q∗ = 2.42 eV STZ rearrangement activation energy

V ∗ = 1.97× 10−28 m3 STZ rearrangement activation volume

σy = 1 GPa Yield stress

c0 = 2× 104 Effective temperature specific heat per unit volume

(scaled by Boltzmann’s constant times the yield

stress divided by the STZ formation energy)

q0 = 1× 10−4 Strain rate at which the effective temperature diverges

(scaled by the STZ time scale t0)

χw = 1.5 Energy scale for effective temperature rate dependence

(scaled by STZ formation energy divided by

Boltzmann’s constant)

R = 1× 106 s−1 Effective temperature relaxation rate

Q = 0.16 eV Activation energy for relaxation events

β = 0.9 Energy scale for creation of relaxation events

(scaled by STZ formation energy divided by

Boltzmann’s constant)

µ = 1.5× 10−4 GPa Effective elastic modulus of apparatus and sample

w = 2× 10−8 m Shear band width

l = 5 mm Sample length

V. STEADY-STATE BEHAVIOR

We now examine the temperature and rate dependence of the steady-state effective tem-

perature χ under continuous shearing. In order to do this, we need to find the values of

χ for which dχ/dt = 0 at different temperatures and strain rates, based on the effective

temperature evolution equation (Eq. (3)). While we focus on numerical solutions to this

equation here, we also provide an approximate analytical solution for the steady-state effec-
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of the overshoot. The overshoots determined from the approximate solutions give a reasonable

approximation for low temperatures, and show a larger discrepancy at high temperatures where

the stress overshoots are larger.

tive temperature in Appendix B. This approximate solution is given by:

1

χ
=


1
χ̂

T < Tc
1
χ̂
− Q

kβ

(
1
T
− 1

Tc

)
T ≥ Tc

, (6)

where Tc is the characteristic temperature that separates the two regimes,

Tc =
Q

k

{
log

[
Rc0σy exp (−β/χc)
γ̇σ(1− χc/χ̂)

]}−1

, (7)

where χc is a crossover effective temperature, given by χc = β((1 + 4χ̂/β)1/2 − 1)/2. In the

low-temperature regime, the steady-state effective temperature is independent of tempera-

ture, whereas at high temperatures, the steady-state effective temperature decreases with

increasing thermal temperature. The steady-state effective temperature is also dependent

on strain rate, as χ̂ and Tc are both dependent on strain rate. For low temperatures, we see

a weaker dependence of the effective temperature on strain rate, while at higher tempera-

tures the strain rate dependence of the effective temperature is stronger. Fig. 7 illustrates

these two regimes in a plot of exp(−1/χ) as a function of inverse temperature, with different

curves representing different strain rates.

15



These two regimes can be qualitatively understood by inspecting Eq. (3). In the limit of

very low temperatures, the relaxation term becomes small, such that the effective tempera-

ture tends to its kinetically ideal value χ̂ as given by the data of Haxton and Liu [57]. At

higher temperatures, relaxation sets in. Consequently, the steady-state effective temperature

begins to deviate from χ̂ and the effective temperature decreases with increasing thermal

temperature. The exact temperature at which the crossover between the low- and high-

temperature regimes occurs varies with the strain rate. All of these qualitative aspects of

the steady-state effective temperature are confirmed in the approximate analytical solution.

The approximate solution also confirms the strain rate dependence of the crossover temper-

ature between these two regimes. As will be shown in the following, the crossover between

the different regimes of steady-state effective temperature as a function of temperature and

strain rate turns out to be the fundamental phenomenon behind the experimentally observed

increase in flow stress at low temperatures as well as the transition between serrated and

non-serrated flow (or rate-weakening and rate-strengthening).

A. Steady-State Flow Stress

The temperature and strain rate dependencies of the effective temperature have several

consequences for the dynamics of plastic flow. First, one can show that the steady-state flow

stress is temperature-dependent. Using the approximate solution for the effective tempera-

ture, the corresponding steady-state flow stress is

σ =


Q∗

V ∗ + kT
V ∗

(
log

(
γ̇t0
ε0

)
+ 1

χ̂

)
T < Tc

Q∗−Q/β
V ∗ + kT

V ∗

(
log

(
γ̇t0
ε0

)
+ 1

χ̂
+ Q

kβTc

)
T ≥ Tc

, (8)

with Tc as defined above. This result is discussed in more detail in Appendix C. As with the

solution for the steady-state effective temperature, there are two regimes: a low-temperature

regime where the steady-state effective temperature is independent of thermal temperature,

and a high-temperature regime where the steady-state effective temperature changes with

thermal temperature. In the low-temperature regime, we find that the shear stress is more

strongly dependent on temperature than at high temperatures, which is illustrated in Fig. 4.

The approximate solution assumes that there is an abrupt transition between these two

regimes, but in the numerical solution the transition is more gradual. However, as shown
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FIG. 7. Strain rate and temperature dependence of the steady-state effective temperature. The

plot shows exp(−1/χ) as a function of the inverse temperature for different values of the strain

rate, with the temperature specified on the upper horizontal axis. At a fixed strain rate, the

effective temperature is constant as a function of temperature for low temperatures, while the

effective temperature decreases with increasing temperature at high temperatures. This is because

the relaxation rate is strongly temperature-dependent – at low temperatures relaxation is weak

and χ = χ̂, while at high temperatures relaxation leads to a steady-state value that is smaller

than χ̂. The temperature at which the effective temperature changes from being temperature-

independent to temperature-dependent varies with strain rate, occurring at a higher temperature

for higher strain rates. This behavior is central to determining the rate dependence of steady flow,

as at low temperatures the steady-state stress is rate-strengthening, while at high temperatures

the steady state stress is rate-weakening. The rate dependence can be observed by noting that

for a two decade increase in the strain rate, exp(−1/χ) increases by less than two decades at low

temperatures, whereas a two decade increase in the strain rate causes exp(−1/χ) to increase by

more than two decades at high temperatures (the vertical lines at the sides illustrate a two decade

change in exp(−1/χ)). This explains why serrated flow is seen at higher temperatures, as a rate-

weakening behavior is required for stick-slip instabilities to occur, and why the strain rate at which

flow transitions from serrated to non-serrated flow is temperature dependent.
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in Fig. 4, the approximate and numerical solutions are in close agreement with one another

even near the temperature at which the transition between the two regimes occurs.

Physically, the shear stress is more strongly dependent on temperature at low tempera-

tures because of the interplay between the temperature dependence of the effective temper-

ature and the thermal activation of STZ rearrangements. In the low-temperature regime,

the effective temperature is independent of thermal temperature. Thus, if the thermal tem-

perature increases, there is no change in the number of STZs. However, because thermal

activation of STZ rearrangements is enhanced, the flow stress decreases because the STZs

rearrange at a faster rate. Therefore, at low temperatures the flow stress decreases linearly

with increasing temperature.

At higher temperatures, the effective temperature is itself dependent on the thermal tem-

perature, and the behavior changes. An increase in the thermal temperature still enhances

thermal activation of STZ rearrangements, but because the effective temperature decreases

as the thermal temperature increases, there are fewer STZs. Thus, the decrease in the

number of STZs mitigates the thermal activation effect, and we expect to see a weaker de-

pendence of the steady-state flow stress on temperature. The scaling remains linear, though

with a smaller slope than is found at low temperatures.

These two different regimes are observed in experiments, as shown in Fig. 4, which il-

lustrates the temperature dependence of the flow stress in STZ Theory compared with the

metallic glass data [36, 43, 48, 49]. At low temperatures there is a strong dependence of the

flow stress on temperature, while at higher temperatures the flow stress has a temperature

dependence that is weaker. The predictions of STZ Theory compare favorably with the

experiments. A previous study by Johnson and Samwer [59] showed that the bulk metallic

glass flow stress scales approximately with T 2/3. In the STZ equations presented here, we

find that there are two regimes, each with a linear scaling between flow stress and tempera-

ture, but with two different slopes. Because the slopes in these two regimes differ, the overall

scaling between the flow stress and the temperature across both regimes will be weaker than

linear, with a scaling exponent similar to the 2/3 observed in the data. Thus, we find that

the temperature dependence of both thermal activation of STZs and changes in the STZ

density provide an explanation for the scaling observed in the Johnson and Samwer study.
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B. Transition to Serrated Flow

Another consequence of the temperature and strain rate dependence of the effective tem-

perature is the transition between serrated and non-serrated flow. Experiments show that

bulk metallic glasses deform via steady sliding at low temperatures and high strain rates,

while flow exhibits stick-slip behavior at high temperatures and low strain rates [13, 35].

Here, we show how this transition arises from the temperature and strain rate dependence

of the steady-state effective temperature. We also show that this transition exhibits an

Arrhenius scaling in STZ Theory, which is confirmed by the experiments [13].

In STZ Theory, the rate dependence of the steady-state flow stress is mathematically

represented by m = dσ/dγ̇. As is shown in Fig. 7, the steady-state effective temperature

always increases with increasing strain rate. However, the steady-state flow stress can either

increase or decrease with increasing strain rate, depending on how quickly the steady-state

effective temperature increases with strain rate (see Eq. (2)). If the steady-state effective

temperature (or more precisely, the factor exp(−1/χ)) increases more slowly than the strain

rate, a counterbalancing effect requires an increase in the flow stress to raise the rate of

STZ rearrangements to maintain the prescribed strain rate. This effect leads to steady-state

rate-strengthening behavior (m > 0). However, if exp(−1/χ) increases more quickly than

the strain rate, the shear stress decreases with increasing strain rate and the material will

exhibit rate-weakening behavior (m < 0). More detailed calculations regarding the rate

dependence of the steady-state flow stress are provided in Appendix D.

The rate dependence of the flow stress in STZ Theory can therefore be determined by

examining Fig. 7. At low temperatures, as the strain rate is increased by a decade, the

factor exp(−1/χ) does not increase by a decade. This is explicitly denoted at the far

right of the plot, where a line indicating two decades on the vertical scale is drawn. This

means that the steady-state flow stress exhibits rate-strengthening behavior at low tem-

peratures. However, at high temperatures, where the steady-state effective temperature is

temperature-dependent, exp(−1/χ) increases by more than a decade with a decade increase

in strain rate. This can be seen explicitly by comparing a two decade change in the strain

rate with the vertical line indicating a two decade change in exp(−1/χ) at the far left of the

plot. This illustrates that in the STZ equations presented here, there is a transition from

rate-strengthening behavior at low temperatures to rate-weakening behavior at high tem-
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peratures. Additionally, as the strain rate increases, the transition between the two regimes

occurs at successively higher temperatures.

This result explains why serrated flow occurs in metallic glasses at high temperatures

and low strain rates, and no serrated flow occurs at low temperatures and high strain rates.

Because rate-weakening behavior is required for stick-slip to occur [44–46], serrated flow

occurs in the rate-weakening regime at high temperatures, and non-serrated flow occurs in

the rate-strengthening regime at low temperatures. There is also a strain rate dependence

in this transition: at low strain rates, we find that the transition temperature between the

two regimes is lower when compared to higher strain rates. Thus, there is a greater range

of temperatures where serrated flow occurs at low strain rates.

To confirm this qualitative picture, we explore the details of this transition in the STZ

equations quantitatively by calculating where the rate-strengthening to rate-weakening tran-

sition occurs as a function of temperature and strain rate. This calculation is provided in Ap-

pendix D, with the end result being that we expect the rate-strengthening to rate-weakening

transition to exhibit an Arrhenius scaling. The energy scale for this transition depends on

the other energy scales introduced in the theory: the relaxation activation energy Q, the

relaxation energy scale β, which is the energy scale for creating a configuration that can

relax, and χw, the energy scale controlling how the kinetically ideal effective temperature χ̂

changes with strain rate. The latter two of the three energy scales (β, χw) are normalized

by the STZ formation energy in the theory, so the STZ creation energy also plays a role in

determining the energy scale of the rate-strengthening to rate-weakening transition. Using

the parameters in Table I, we calculate that the activation energy for the transition from

stick-slip to steady sliding is ≈ 3Q = 0.48 eV (see Appendix D). Numerical calculations us-

ing the STZ equations give a value of 0.42 eV for this energy scale, as illustrated in Fig. 2(b).

This shows good agreement with the experimental data from bulk metallic glasses [13], as

well as numerical calculations estimating the energy scale of STZ rearrangements [60, 61].

One important result from the comparisons between experiment and theory is that the

energy scale for the rate-strengthening to rate-weakening transition is not a simple input into

the theory, but rather an energy scale that results from several different physical processes.

Conversely, it also shows that while experiments may not be able to directly measure all of

the energy scales that are inputs to theory (i.e. while the experiments can determine Q, the

energy scales β and χw are not directly measured), the dynamics of the serrated to non-
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serrated flow transition can determine these other energy scales. Therefore, close interaction

between experiments and theory is necessary to assess experimental results and determine

their consequences for theories of how amorphous materials deform and fail.

VI. DETERMINING PARAMETER VALUES

We use the approximate solutions discussed above to constrain the parameters that match

the experimental metallic glass data presented in Table I. First, we use physical estimates

for the STZ time scale t0 and atoms per STZ ε0. The STZ time scale is on the order of

atomic vibration frequencies of 10−13 s. Different versions of STZ Theory interpret ε0 in

slighly different ways, and the value of this parameter ranges from unity to 10 in various

studies with STZ Theory [26, 62]. We choose ε0 = 10, which is on the large end of this range,

since the experiments in question are 3D and each STZ should involve more atoms than in

2D. Because of the strong exponential dependence of the strain rate on stress, the value for

ε0 only needs to be an order of magnitude estimate; a large change in ε0 leads to only a

small change in the steady-state flow stress and has a minimal effect on the dynamics. The

activation volume V ∗ is estimated from experimental data, and is taken to be 200 atomic

volumes [43]. The yield stress plays no role in the dynamics considered here as long as it is

below the flow stresses in question, and we choose a value of 1 GPa.

The remaining parameters are estimated from the experiments through the following

steps. First, we recognize from the approximate solutions that the activation energy for

relaxation events Q is the same as the value that is extracted from the experiments. Next,

we estimate the normalized energy scale for creation of relaxation events to be β = 0.9. This

value is chosen to be less than unity so that the flow stress has a negative rate dependence at

higher temperatures, a requirement for stick-slip to occur. Smaller values of β are possible,

but we expect the energy scale for formation of relaxation events to be similar to the STZ

formation energy.

Once β has been chosen, all other parameters are constrained from application of the

approximate solutions to the experimental data. Using the approximate steady-state flow

stress curve, we estimate the crossover temperature to be Tc = 190 K at ε̇ = 10−3 s−1. Using

the flow stress data at temperatures above Tc and the equivalent equation in the approximate

solution (Eq. (8)), we can use the absolute value of the flow stress and its linear dependence
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on temperature to determine the STZ activation energy Q∗ and the kinetically ideal effective

temperature χ̂. From the data, a typical flow stress at 298 K is 1.7 GPa, increasing by about

4% at 200 K, allowing us to calculate χ̂ = 0.1 and Q∗ = 2.42 eV.

Next, with the value of χ̂ fixed, we determine the relaxation rate R. Using the time

scale for relaxation τ , which is determined from the experiments at 173 K, we can determine

R. We estimate the waiting time at 173 K to be 4 s, giving R = 10−6 s−1. Next, we

use the equation that defines the crossover temperature (Eq. (7)) to solve for the effective

temperature specific heat c0 = 2× 104.

The final step is to determine χw and q0, which set the kinetically ideal effective tem-

perature χ̂. This is done using the activation energy for the transition from serrated to

non-serrated flow, Eq. (D15), which depends on χw and the previously constrained param-

eters. In practice, the value of χw in Table I differs slightly from the value found from the

approximate solution. An activation energy of 0.37 eV gives χw = 1.9 using Eq. (D15),

though we find χw = 1.5 gives a better fit to the experimental data for the stick-slip to

steady sliding transition due to the approximate nature of the analytical solution. This

value matches the value derived for the Haxton and Liu data [56].

The method for deriving parameters described here is a way to estimate the STZ parame-

ters using low-temperature data. In particular, it provides a way to estimate the steady-state

effective temperature and its rate dependence directly from the experiments, which provides

an independent confirmation of effective temperature estimates based on numerical simula-

tions. Our method also provides a complementary approach to the fitting procedures used

for data above the glass transition temperature [26]. As more experimental data for various

metallic glasses is collected over a range of temperatures, both methods for estimating pa-

rameters should prove valuable in examining the ability of STZ Theory to capture additional

aspects of failure and deformation over a range of conditions.

VII. DISCUSSION

This study shows that STZ Theory can capture several experimental observations of

the deformation of bulk metallic glasses in a consistent theoretical framework. We find

that a temperature-independent dissipation term and a temperature-dependent relaxation

term in the effective temperature evolution can explain diverse features of the observed
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deformation behavior as a function of strain rate and temperature. While some of the

individual aspects of metallic glass deformation have been studied separately in previous

studies (i.e. aging, steady-state flow, and the steady sliding to stick-slip transition), our

study integrates several types of experiments at different temperatures and strain rates

and demonstrates quantitative agreement in a variety of contexts. Our identification of

relaxation as a mechanism for producing rate-weakening behavior, while the dissipation term

produces rate-strengthening behavior, resolves previous disagreements between STZ Theory

and velocity step experiments [13] that showed both rate-weakening and rate-strengthening

behavior at different temperatures. Previous version of STZ Theory have shown that the

model is either rate-strengthening or rate-weakening [31, 54, 63], and simulations tend to

show rate-strengthening behavior [56, 57]. Further, the behavior of the dissipation and

relaxation terms over different temperature and strain rate regimes goes beyond explaining

the rate dependence and simultaneously matches the stress overshoot and steady-state stress

observations in a quantitative fashion.

Many of the parameters in the theory can be estimated on physical grounds, and the

others are constrained directly from the experimental data. We find that our parameter

values are generally consistent with other studies using STZ Theory [26, 62]. One difference

that we find is that our value for the specific heat c0 is larger by several orders of magnitude

when compared to values used in previous studies of deformation of bulk metallic glasses,

where it is found to be of order unity [26]. The previous works focused on deformation of

metallic glasses at higher temperatures, much closer to the glass transition temperature,

where deformation tends to be more homogeneous throughout the sample rather than local-

ized to a narrow shear band. Therefore, it is possible that the differing values of the specific

heat parameter are due to different temperature regimes and deformation types. Because

the specific heat parameter plays a central role in determining the transient dynamics of

deformation, further studies investigating the details of the transient dynamics of aging and

stick-slip are required to better understand the specific heat parameter and whether its value

changes with the type of deformation. We have conducted preliminary numerical studies

that suggest that c0 = 2 × 104 gives transient overshoots that are too slow to match the

observed transient stress overshoots in the Vit105 data examined here. However, studies

with c0 ≈ 1, consistent with the high temperature data near the glass transition tempera-

ture, produce transients that are much faster than the observed low-temperature behavior
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and the stress overshoots are much smaller than those observed in the experiments. Further

work to investigate the issue of transient dynamics is part of ongoing work.

In a recent paper, Sun et al. [63] used a version of STZ Theory to explore the transition

from serrated to non-serrated flow. In their work, the transition from serrated to non-

serrated flow occurs due to a different mechanism than in our work. In the Sun et al. paper

[63], the effective temperature evolves only due to dissipation and the rate dependence

of the steady-state flow stress is always assumed to be rate-weakening. In that case, the

transition between serrated and non-serrated flow occurs because of a critical stiffness. At

stiffnesses below the critical stiffness, steady sliding is unstable to perturbations and the

system deforms through serrated flow. In our work, the transition from stick-slip to stable

sliding occurs due to a competition between dissipation and relaxation leading to a change

from steady-state rate-strengthening to steady-state rate-weakening. The stiffness also plays

a role in determining the stick-slip to steady sliding transition in our model, but for the 3 mm

diameter samples considered here, the samples are relatively compliant (larger samples have

a reduced stiffness), ensuring that the elastic stiffness is smaller than the critical stiffness

for all of the experiments considered here.

We believe that several experimental and computational results support our model of the

serrated to non-serrated flow transition. First, the aging experiments show that during a

hold in a slide-hold-slide experiment, there is a time-dependent relaxation of the effective

temperature leading to a temperature-dependent stress overshoot when sliding restarts after

the hold. If we assume the absence of a thermally activated relaxation term (i.e. R = 0 in

Eq. (3)), the stress overshoot behavior does not match the temperature dependence of the

onset time scale τ observed in the experiments. Second, Dubach et al. [13, 43] conducted

explicit measurements of the rate dependence of the flow stress via velocity stepping ex-

periments. They found that the metallic glasses exhibit rate-strengthening behavior when

non-serrated flow occurs, in agreement with our model. Finally, the steady-state effective

temperature used in both this study and the Sun et al. [63] study is based on simulations

done by Haxton and Liu [57], where the effective temperature can be measured. In those

simulations, rate-strengthening behavior was observed, and Langer and Manning [56] were

able to determine a value of χw = 1.5 to fit the simulations, a value consistent with rate-

strengthening behavior. We find that this value of χw provides a good fit to the metallic

glass data in this study.
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STZ Theory is able to match a variety of experimental observations over many temper-

atures and strain rates. These comparisons are able to constrain many parameters in the

theory, particularly the energy scales for various types of rearrangements. However, it re-

mains to be determined what these energy scales are from first principles, and whether the

picture provided here where each of these energy scales is a constant suffices to capture all

essential features of plastic deformation. STZ Theory has been extended to consider a range

of energy barriers for plastic rearrangements [64, 65] (rather than the assumption here of a

single energy scale for rearrangements). While our work did not require a distribution of

energy barriers for plastic rearrangements, future work will examine this possibility and if

the predictions match the experimentally observed deformation behavior.

Our work confirms the experimental observation that there are many relevant energy

scales in the deformation of a bulk metallic glass, and the theory provides a means to

interpret and understand the experimental observations. In particular, we show that the

energy scale derived from the aging experiments is the same as the activation energy for

STZ relaxation in the theory, but that the energy scale derived from the critical strain

rate is a complicated combination of several other energy scales. This shows that it is

difficult to directly measure energy scales in a complicated system such as a glass, and

that a combination of experiments with a predictive theory is needed to make sense of

experimentally measured energy scales. Future efforts must continue to perform experiments

in conjunction with theory in order to better understand how metallic glasses deform and

fail over a range of temperatures and strain rates. This avenue of research is essential for

understanding the basic physics of deformation of amorphous materials, and the further

pursuit of this complex problem is needed to develop theories based on first principles with

predictive power, theories that will with no doubt enhance the use of amorphous materials

in a wide range of materials applications.

Appendix A: Approximate Solution for Aging Dynamics

In order to gain insight into the aging behavior of the STZ model, we find an approximate

solution to the relaxation of the effective temperature. During relaxation, the effective

temperature is governed by the differential equation:

dχ

dt
= −R exp (−Q/kT − β/χ) . (A1)
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FIG. 8. Comparison between the approximate solution and numerical integration for metallic glass

aging at 173 K. At T = 173 K, the characteristic time scale for relaxation is τ = 4.09 s. The

approximate solution provides a good fit to the solution obtained through numerical integration.

Parameters are given in Table I.

The initial value of the effective temperature is the steady-state value. Here, we assume

that the plastic strain rate is negligible during a hold. Because we observe stress relaxation

during the hold in the experiments, the experimental plastic strain rate is nonzero, and thus

these calculations provide an upper bound on the magnitude of the effective temperature

relaxation and stress overshoot during an experiment.

We find that an approximate solution for χ is

1

χ(t)
=

1

χss
+

1

β
log (1 + t/τ) , (A2)

with τ representing a characteristic onset time for effective temperature relaxation. We esti-

mate τ ≈ χ2
ss/(βR exp(−Q/kT − β/χss)), which is the characteristic time scale for effective

temperature relaxation determined from the Jacobian of the STZ equations (precisely, this

time scale is the multiplicative inverse of the derivative of dχ/dt with respect to χ). We note

that this time scale scales with temperature as τ ∝ exp(Q/kT ). A comparison between this

approximate solution and a numerical solution is shown in Fig. 8. The approximate solution

compares favorably to the result obtained by numerical integration.

Using the solution for χ, we can calculate the stress overshoot as follows. We assume that

there is little effective temperature evolution during re-loading following the hold, due to a

small plastic strain rate during reloading. This is not exactly true, and thus the calculations
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here give an upper bound on the size of the stress overshoot. The value of the effective

temperature at the peak stress σp is then the same as at the end of the hold, which we

denote by χ(tw). Since the time derivative of the stress at the peak is zero, the plastic strain

rate must be the same as the effective driving rate, or γ̇ =
√

2ε̇l/w, at the peak stress. The

plastic and effective driving rates must also be equal at steady-state, meaning that we can

write

−Q
∗ − σpV ∗

kT
− 1

χ(tw)
= −Q

∗ − σssV ∗

kT
− 1

χss
. (A3)

Since the stress overshoot is ∆σ = σp − σss, this becomes

∆σ = σp − σss =
kT

V ∗

(
1

χ(tw)
− 1

χss

)
. (A4)

Using the approximate solution for χ(tw), we find that

∆σ =
kT

V ∗

(
1

χss
+

1

β
log (1 + tw/τ)− 1

χss

)

=
kT

V ∗β
log (1 + tw/τ) . (A5)

This expression predicts a logarithmic increase in the stress overshoot with time, as is

observed in the bulk metallic glass aging experiments. The experiments also show that the

characteristic onset time τ should scale with temperature in an inverse Arrhenius fashion

(i.e. τ ∝ exp(Q/kT )), confirming our assumption that the relaxation term is thermally

activated. This correspondence allows us to identify the experimentally observed activation

energy of 0.16 eV as the activation barrier Q for relaxation events in the STZ equations.

Because these calculations assume that the plastic deformation during the hold and reload

is negligible, they give an upper bound on the size of the stress overshoot. In practice

the stress overshoots are smaller when calculated numerically. For the sake of making

comparisons with the experimental data, we use the numerical simulation results in the

main text.

Appendix B: Approximate Steady-State Solution

To examine the steady-state behavior, we find an approximate steady-state solution for

the effective temperature. The nonlinear differential equation governing the evolution of the

effective temperature cannot be solved in closed form, but we find an approximate solution
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that captures the essential regimes and can be useful for comparing with experiments. The

effective temperature evolves according to

dχ

dt
=

γ̇σ

c0σy

(
1− χ

χ̂(γ̇)

)
−R exp

(
− Q

kT
− β

χ

)
, (B1)

and we would like to determine the value of χ for which dχ/dt = 0 as a function of tem-

perature and strain rate. Since the relaxation term depends exponentially on the effective

temperature, while the dissipation term has a linear dependence on the effective tempera-

ture, a first order approximation can be found by solving for the effective temperature in

the exponential:

exp (−β/χ) =
γ̇σ

Rc0σy

(
1− χ

χ̂

)
exp (Q/kT )

⇒ 1

χ
= − 1

β

(
Q

kT
+ log

[
γ̇σ

Rc0σy

(
1− χ

χ̂

)])
. (B2)

Our approximation assumes that log[σ(1−χ/χ̂)] is relatively constant over the temperature

range in question, and that the temperature is large enough that relaxation cannot be

neglected (otherwise, χ = χ̂ and the logarithm is not defined). This suggests that we can

construct a solution with χ = χ̂ in the low-temperature regime and χ given by Eq. (B2) in

the high-temperature regime, with a crossover at Tc:

1

χ
=


1
χ̂

T < Tc
1
χ̂
− Q

kβ

(
1
T
− 1

Tc

)
T ≥ Tc

. (B3)

The crossover temperature Tc can be determined by differentiating Eq. (B2) with respect to

the inverse temperature, which yields

d(1/χ)

d(1/T )
= − Q

βk
− χ2/χ̂

β (1− χ/χ̂)

d(1/χ)

d(1/T )

⇒ d(1/χ)

d(1/T )
= − Q

βk

[
1 +

χ2

β (χ̂− χ)

]−1

. (B4)

This expression confirms our approximate solution. If χ = χ̂, the effective temperature is

independent of thermal temperature, as d(1/χ)/d(1/T ) = 0. If the effective temperature is

small relative to χ̂, then the inverse effective temperature scales linearly with the inverse

temperature, since d(1/χ)/d(1/T ) = −Q/(βk). The crossover between these two regimes

thus can be estimated by defining a crossover effective temperature χc at which the two

terms in square brackets in Eq. (B4) are equal. Thus, χc is defined by χ2
c = β(χ̂ − χc) or
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FIG. 9. Comparison between the approximate steady-state solution and the steady-state solution

found by numerical integration as a function of temperature. The strain rate is 10−3 s−1, at which

the crossover temperature is Tc = 190 K. Parameters are given in Table I.

χc = β((1 + 4χ̂/β)1/2 − 1)/2. The corresponding crossover temperature Tc can be found by

solving Eq. (B3) for the temperature at which χ = χc. The result is

Tc =
Q

k

{
log

[
Rc0σy exp (−β/χc)
γ̇σ(1− χc/χ̂)

]}−1

. (B5)

This temperature designates where relaxation begins to play an important role in deter-

mining the steady-state effective temperature. Note that the temperature Tc exhibits an

approximately logarithmic dependence on the strain rate, indicating that the crossover tem-

perature increases as the strain rate increases. This confirms the behavior found in numerical

calculations, which we present in Fig. 7 in the main text.

To confirm that this solution approximates the steady-state effective temperature, we

compare results of numerically integrating the STZ equations with the approximate solu-

tions. Fig. 9 shows the effective temperature found by Eq. (B4) and compares it to the result

found by numerically integrating Eq. (B2). The approximate solution is in good agreement

with the data obtained from numerical integration. The two solutions differ by the greatest

amount when T ≈ Tc, as the approximate solution assumes a sudden transition from one

regime to the other, while the numerical solution exhibits a more gradual transition between

the two regimes.
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Appendix C: Approximate Steady-State Flow Stress

Using the approximate solution for the steady-state effective temperature, we can examine

the temperature dependence of the steady-state flow stress. Using the equation for the

plastic strain rate, we can express the shear stress in terms of the strain rate and effective

temperature:

σ =
Q∗

V ∗ +
kT

V ∗

(
log

(
γ̇t0
ε0

)
+

1

χ

)
. (C1)

This expression is only approximate, as it neglects the term that introduces the yield stress.

Using the approximate steady-state solution to the effective temperature, we can obtain

an approximate solution for the steady-state flow stress as a function of temperature. By

inserting the approximate solution for the steady-state effective temperature (Eq. (B3)) into

the equation for the steady-state stress (Eq. (C1)), we obtain an approximate steady-state

stress:

σ =


Q∗

V ∗ + kT
V ∗

(
log

(
γ̇t0
ε0

)
+ 1

χ̂

)
T < Tc

Q∗−Q/β
V ∗ + kT

V ∗

(
log

(
γ̇t0
ε0

)
+ 1

χ̂
+ Q

kβTc

)
T ≥ Tc

. (C2)

The crossover temperature is the same one as defined in Eq. (B5). This confirms that we

expect to see two regimes in the flow stress data: at low temperatures, the steady-state

flow stress is linearly dependent on temperature, and at higher temperatures above Tc the

dependence is also linear, but with a different slope. The linear dependence of flow stress

on temperature arises because of thermal activation of STZ rearrangements. The slope

changes between the low-temperature regime and the high-temperature regime, because at

high temperatures relaxation decreases the steady-state effective temperature and mitigates

the effect of thermal activation.

In the high-temperature regime of the bulk metallic glass experiments, the data show that

the flow stress exhibits a weak linear dependence on temperature. This puts a constraint on

the value of the kinetically ideal effective temperature through the dependence of the flow

stress on temperature. The other parameters in the approximate steady-state flow stress

are easy to estimate based on the experiments, so this result provides a simple method

for determining the kinetically ideal effective temperature χ̂. The value of the effective

temperature that arises from this constraint is generally consistent with other studies using

STZ Theory [56].

The solution for the steady-state effective temperature determined here is only an approx-
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imation of the actual steady-state values. In practice, the transition from a temperature-

independent effective temperature at low temperatures to a temperature-dependent one at

high temperatures occurs more gradually than we assume here. Therefore these calculations

are useful for determining parameter values and limiting behaviors, while we employ the

numerical solutions of the steady-state effective temperature to make comparisons with the

experimental data in the main text.

Appendix D: Transition from Non-Serrated to Serrated Flow

Here, we provide the details of the calculation of the critical strain rate indicating the

transition from non-serrated to serrated flow and how it varies with thermal temperature.

While the result is straightforward, the resulting expressions are fairly complex and require

a few simplifying approximations.

Our goal is to find an expression for the critical strain rate γ̇cr as a function of temperature.

The critical strain rate is the strain rate at which the steady-state flow stress is rate neutral,

that is, dσ/d log γ̇ = 0. Because the metallic glass data exhibit an Arrhenius scaling, we

instead determine d log γ̇cr/d(1/T ), which should be a constant activation energy divided by

Boltzmann’s constant. To do this, we determine the critical strain rate by first rearranging

the main STZ equation (Eq. (2)):

σ =
Q∗

V ∗ +
kT

V ∗

[
log

(
γ̇t0
ε0

)
+

1

χ

]
. (D1)

Note that this expression is only approximately true – here we assume that the stress is much

larger than the yield stress. The effective temperature in this expression is the steady-state

value at strain rate γ̇, and is thus dependent on the strain rate. Differentiating with respect

to the log of the strain rate gives

dσ

d log γ̇
=
kT

V ∗

(
1 +

d (1/χ)

d log γ̇

)
. (D2)

Setting this equal to zero, we find that the critical strain rate must satisfy the following:

1 +
d (1/χ)

d log γ̇
= 0. (D3)

This condition tells us when the steady-state rate dependence is rate neutral, which defines

the critical strain rate. This condition will be used below to determine how the critical

strain rate varies with temperature.
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To make use of this condition, we need to determine d(1/χ)/d log γ̇ from the steady-state

effective temperature. The steady-state effective temperature occurs when dissipation and

relaxation balance and dχ/dt = 0:

dχ

dt
=

γ̇σ

c0σy

(
1− χ

χ̂(γ̇)

)
−R exp

(
−β
χ
− Q

kT

)
= 0. (D4)

First, we rewrite as:

log (γ̇) + log

(
σ (1− χ/χ̂)

Rc0σy

)
= −β

χ
− Q

kT
. (D5)

This can be easily differentiated with respect to the log of the strain rate:

1 +
1

1− χ/χ̂

[
χ2

χ̂

d1/χ

d log γ̇
+

χ

χ̂2

dχ̂

d log γ̇

]
= −β d1/χ

d log γ̇
. (D6)

Note that since χ̂ is a function of the strain rate, there is a dχ̂/d log γ̇ term. Using χ̂ =

χw/ log(q0/(γ̇t0)) (Eq. (4)), we find:

dχ̂

d log γ̇
=

χw

[log(q0/(γ̇t0))]
2 =

χ̂2

χw
. (D7)

Using this expression, along with the condition defining the critical strain rate (Eq. (D3)),

we find that

1 +
1

1− χ/χ̂cr

[
− χ

2

χ̂cr
+

χ

χw

]
= β. (D8)

Because the kinetically ideal effective temperature is explicitly a function of the strain rate,

we denote it as χ̂cr to emphasize that it is evaluated at the critical strain rate. Rearranging

this yields (
1

χ2
− 1

χ̂crχ

)
(β − 1) =

1

χwχ
− 1

χ̂cr
. (D9)

The effective temperature satisfies this condition at the critical strain rate.

To make use of this condition to determine the scaling between the critical strain rate

and inverse temperature, we differentiate with respect to the inverse temperature:

(β − 1)

(
2

χ

d(1/χ)

d(1/T )
− 1

χ̂cr

d(1/χ)

d(1/T )
+

1

χχ̂2

dχ̂cr
d(1/T )

)

=
1

χw

d(1/χ)

d(1/T )
+

1

χ̂2
cr

dχ̂

d(1/T )
. (D10)

Using the above result for dχ̂/d log γ̇ in Eq. (D7), we have dχ̂cr/d(1/T ) = (χ̂2
cr/χw)d log γ̇cr/d(1/T ).

Substituting this expression into Eq. (D10), we find that

(β − 1)

(
2

χ

d(1/χ)

d(1/T )
− 1

χ̂cr

d(1/χ)

d(1/T )
+

1

χχw

d log γ̇cr
d(1/T )

)

=
1

χw

d(1/χ)

d(1/T )
+

1

χw

d log γ̇cr
d(1/T )

. (D11)
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Collecting terms on either side and dividing through by χ, we find that

d log γ̇cr
d(1/T )

(
(β − 1)

1

χχw
− 1

χw

)

=

(
(β − 1)

(
− 2

χ
+

1

χ̂cr

)
+

1

χw

)
d(1/χ)

d(1/T )
. (D12)

Solving for d log(γ̇cr)/d(1/T ), we have

d log γ̇cr
d(1/T )

=
(β − 1)χw

(
− 2
χ

+ 1
χ̂cr

)
+ 1

(β − 1) 1
χ
− 1

d(1/χ)

d(1/T )

= A
d(1/χ)

d(1/T )
, (D13)

where A is defined as the proportionality factor between d log γ̇cr/d(1/T ) and d(1/χ)/d(1/T ).

This relates the change in the critical strain rate with temperature to the change in the

effective temperature with temperature. Note that this expression depends on the effective

temperature at which the transition occurs, which we can estimate using the crossover

effective temperature χc = β((1 + 4χ̂/β)1/2 − 1)/2 defined in Appendix B.

Because the strain rate and the effective temperature must also satisfy the steady-state

equation for the effective temperature (Eq. (D5)), we can differentiate that equation with

respect to the inverse temperature to eliminate d(1/χ)/d(1/T ) to obtain an expression for

d log γ̇cr/d(1/T ):
d log γ̇cr
d(1/T )

= −β d(1/χ)

d(1/T )
− Q

k
. (D14)

Here, we assume that we can neglect the temperature dependence of the log(1−χ/χ̂) term,

which is a reasonable approximation in practice (note that this assumption was also made

in obtaining the approximate solution to the steady-state effective temperature). Solving

this simultaneously with Eq. (D13) to eliminate d(1/χ)/d(1/T ), we find

d log γ̇cr
d(1/T )

= − Q

k
(
1 + β

A

) . (D15)

This expression demonstrates that the critical strain rate is expected to follow an Arrhenius

scaling as a function of temperature: d log γ̇cr/d(1/T ) is approximately constant, and this

energy scale is proportional to the activation energy for relaxation but is also dependent on

the energy scale for the kinetically ideal effective temperature χw and the energy scale for

formation of relaxation events β. For typical parameters used to match the bulk metallic

glass data, A ≈ −1.33 (this estimate varies slightly depending on the value of the strain
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rate at which χ̂ and χc are calculated; the results here use the values at a strain rate of

10−3 s−1), which leads to d log γ̇cr/d(1/T ) ≈ −3Q/k = 0.48 eV/k. This value is in good

agreement with the value determined from the numerical solution of 0.42 eV presented in

the main text.
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231 (2011).

[37] D. Klaumünzer, A. Lazarev, R. Maaß, F. H. Dalla Torre, A. Vinogradov, and J. F. Löffler,
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