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Abstract. We study the ability of statistical tests to identify nonrandom3

features of earthquake catalogs, with a focus on the global earthquake record4

since 1900. We construct four types of synthetic datasets containing vary-5

ing strengths of clustering, with each dataset containing on average 100006

events over 100 years with magnitudes above M = 6. We apply a suite of7

statistical tests to each synthetic realization in order to evaluate the abil-8

ity of each test to identify the sequences of events as nonrandom. Our re-9

sults show that detection ability is dependent on the quantity of data, the10

nature of the type of clustering, and the specific signal used in the statisti-11

cal test. Datasets that exhibit a stronger variation in the seismicity rate are12

generally easier to identify as nonrandom for a given background rate. We13

also show that we can address this problem in a Bayesian framework, with14

the clustered datasets as prior distributions. Using this new Bayesian approach,15

we can quantitatively bound the range of possible clustering strengths that16

are consistent with the global earthquake data. At M = 7, we can esti-17

mate 99th percentile confidence bounds on the number of triggered events,18

with an upper bound of 20% of the catalog for global aftershock sequences,19

with a stronger upper bound on the fraction of triggered events of 10% for20

long-term event clusters. At M = 8, the bounds are less strict due to the21

reduced number of events. However, our analysis shows that other types of22

clustering could be present in the data that we are unable to detect. Our re-23

sults aid in the interpretation of the results of statistical tests on earthquake24

catalogs, both worldwide and regionally.25
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1. Introduction

The occurrence of a number of earthquakes above magnitude M = 8 in the past decade26

has led to speculation that large earthquakes cluster in time. The recent occurrence of27

earthquakes includes three of the six largest earthquakes on record, including the 200428

MW = 9.2 Sumatra earthquake, the 2010 MW = 8.8 Maule, Chile, earthquake, and the29

2011 MW = 9.1 Tohoku earthquake, and a number of additional events above M = 8, as30

can be seen from the earthquake record shown in Fig. 1(a). These large events can have31

an outsized effect on seismic hazard through their large release of stored elastic energy,32

causing destructive strong ground motions and tsunamis. If large events do cluster in33

time, this could change the way that seismic hazard is estimated worldwide.34

To evaluate this hypothesis, a number of studies have compared the global earthquake35

record since 1900 to a process that is random in time [Bufe and Perkins , 2005; Michael ,36

2011; Shearer and Stark , 2012; Daub et al., 2012; Parsons and Geist , 2012; Ben-Naim37

et al., 2013]. A process that is random in time is also known as a time-homogeneous38

Poisson process, and such a process assumes that the event occurrence times are uncorre-39

lated. The majority of these studies tend to show that earthquake occurrence worldwide40

since 1900 shows no deviation from a process that is random in time, other than localized41

aftershock sequences. This is illustrated in Fig. 1(b) for the Ben-Naim et al. [2013] study,42

showing the likelihood that the catalog is random (through a p-value, calculated using43

Monte Carlo simulation) for several magnitude thresholds with and without aftershock44

removal. While some of the statistical tests applied to the catalog appear to show devia-45

tions from random event occurrence at minimum magnitude levels M = 8.4 − 8.6 [Bufe46
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and Perkins , 2005; Ben-Naim et al., 2013], such as in Fig. 1 at M ≥ 8.4-8.5, these devia-47

tions are not strong enough to conclude that the earthquake record is nonrandom. This is48

because tests using magnitude thresholds selected a posteriori underestimate p-values, as49

shown by Shearer and Stark [2012]. The global catalog over this time period is regarded50

as complete only for M ≥ 7, thus the catalogs in these studies contain a relatively small51

number of events, particularly at high magnitude levels.52

More recent seismic catalogs have been used to examine the ability of large earthquakes53

to trigger earthquakes above M = 5. One study showed that the 2012 Mw = 8.6 Indian54

Ocean event triggered aftershocks above M = 5 worldwide [Pollitz et al., 2012] followed55

by a quiescent period [Pollitz et al., 2014]. A more comprehensive study looking at many56

events above M = 7 showed that triggering of this nature may not be common [Parsons57

and Velasco, 2011], while another more recent study concluded that there is no evidence58

for elevated seismicity rates from M = 5.2 − 5.6 over recent years [Parsons and Geist ,59

2014]. Further, the Parsons and Velasco [2011] study showed that instantaeous triggering60

(i.e. triggering coincident with surface wave arrivals) of larger events above M = 5 is61

not observed as frequently as observed triggering rates for smaller M < 5 earthquakes62

would predict [Velasco et al., 2008]. The observational evidence thus suggests that small63

events are routinely triggered [Hill et al., 1993; Gomberg et al., 2004; Freed , 2005], and64

there is some evidence large earthquakes can have global effects on moderate-sized events.65

However, the likelihood that large events trigger other moderately large events on a global66

scale remains unclear.67

In this study, we address the ability of statistical tests to identify catalogs as nonrandom,68

with a particular focus on the global dataset since 1900. We produce a series of simu-69
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lated datasets that are clustered by construction, and systematically vary the strength70

of the clustering to assess how well different statistical tests can identify these datasets71

as nonrandom. While this question has been addressed previously in a study by Dimer72

de Oliveira [2012], here we perform a more systematic study of various dataset types73

with clustering of different strengths. In particular, our study aims to bound the range74

of clustering strengths that are most likely to be consistent with the global earthquake75

catalog. Through these synthetic tests, we can assess the results of the numerous studies76

performed on the global earthquake record and interpret the implications for earthquake77

interaction and earthquake hazard worldwide.78

2. Synthetic Datasets

We generate four types of synthetic datasets that are nonrandom by construction for79

analysis using various statistical tests. The synthetic datasets are each designed to be80

similar to the global earthquake record since 1900, with a few simplifications. The sim-81

ulations are all 100 years in length, and contain an average of 10000 events above a82

minimum magnitude threshold of M = 6, illustrated in Fig. 2. Event magnitudes are83

drawn from a Gutenberg-Richter distribution [Gutenberg and Richter , 1954], with a cu-84

mulative distribution function CDF (M) ∝ 10−bM with b = 1, a minimum magnitude of85

Mmin = 6, and a maximum magnitude of Mmax = 9.5, with a few additional simulations86

varying these parameters described below. The magnitude frequency statistics of this dis-87

tribution are shown in Fig. 3. This distribution shows that the datasets contain ∼ 1000088

events at M ≥ 6, ∼ 1000 events with M ≥ 7, and ∼ 100 events with M ≥ 8. All of these89

numbers differ slightly from the observed values in the earthquake record since 1900 –90

the PAGER catalog [Allen et al., 2009] supplemented with the United States Geological91
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Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog contains ∼ 180092

events above M = 7 over 115 years.93

The combined PAGER and PDE catalog is estimated to be complete for M ≥ 7 using94

both the Maximum Curvature and b-value Stability Methods [Woessner and Wiemer ,95

2005]. With this completeness magnitude, b = 1.26 in the observed magnitude-frequency96

distribution using the Maximum Likelihood Method [Aki , 1965]. However, an analysis97

of the more recent International Seismological Centre Global Earthquake Model catalog98

[Storchak et al., 2013] shows that for events in that catalog since 1917, b ≈ 1 [Michael ,99

2014]. For the PAGER global catalog, the number of independent events above M = 7100

varies from ∼ 500 − 1500, depending on the criteria used in aftershock identification101

[Michael , 2011; Shearer and Stark , 2012; Daub et al., 2012]. Because a different choice of102

declustering algorithm can always alter the number of events in the catalog, for simplicity103

we use b = 1 with a rate of 100 events/year to produce a round number of events at various104

magnitude levels for the majority of our simulations. To evaluate if our results are sensitive105

to the details of the magnitude distribution, we also perform additional simulations with106

different b-values of 0.8 and 1.2, and a set of simulations with a minimum magnitude of107

Mmin = 5.108

For each type of dataset, we create 20 different versions, varying the clustering strength.109

The background rate ranges from 98 events/year in the least clustered version to 22110

events/year in the most clustered version. According to each prescription below, we111

either explicitly add additional events according to certain rules (the case for the ETAS112

simulations), or we vary the seismicity rate from event to event using certain rules (the113

case for the other three synthetic datasets). In each case, parameters are selected such114
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that our simulations produce on average 100 events/year over a fixed 100 year duration.115

We produce 10000 realizations of each of the 20 different clustering strengths of the four116

dataset types. Thus, our results here are based on analyzing a total of 800,000 simulations117

(4 clustering types × 20 clustering strengths × 10,000 realizations).118

2.1. ETAS Simulations

Epidemic Time Aftershock Sequence (ETAS) models have been developed over many119

years to represent empirically observed features of aftershock sequences [Ogata, 1998].120

Because of the widespread use of these types of simulations to represent clustering of121

seismicity, we generate a series of datasets containing “global aftershock sequences” to122

represent one potential type of clustering in our analysis. In the ETAS models, events123

are added as aftershocks of background events according to two empirical rules. First,124

an aftershock productivity law determines the number of aftershocks produced by a main125

shock of magnitude M [Felzer et al., 2004; Helmstetter et al., 2005]:126

NAS = C ′10α(M−Mmin). (1)127

The constant α determines the relative number of aftershocks an earthquake of a given128

magnitude produces, and C ′, known as the aftershock productivity, determines the overall129

number. Observations show that α ≈ 1, and C ′ is such that a main shock typically130

produces a maximum aftershock magnitude one magnitude unit less than the main shock131

(B̊ath’s law) [Helmstetter and Sornette, 2003]. Here, we use α = 1, but vary the aftershock132

productivity to produce simulations with different levels of clustering.133
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The second empirical rule for the ETAS models is the Omori decay of aftershock rate134

with time following the main shock [Omori , 1895; Utsu et al., 1995]:135

R(t) =
A

(c+ t)β
. (2)136

In the Omori law, β describes the time decay of aftershock activity, and c is a constant137

to make the rate finite at t = 0. We use β = 1.07 and c = 3 × 10−4 years = 0.11 days,138

which are similar to ETAS parameters for Japan [Guo and Ogata, 1997]. The constant A139

is chosen such that Eq. (2) integrates to NAS:140

NAS =
∫ tmax

0
R(t) dt. (3)141

We cut off the aftershock decay after tmax = 100 years since that would exceed the length142

of our simulation. This truncation of the aftershock sequence is strictly necessary only if143

β ≤ 1.144

Aftershocks in the ETAS model also produce their own aftershocks, so Eqs. (1) and145

(2) are applied recursively to all aftershocks until no further aftershocks are produced.146

Note that aftershocks follow the same magnitude-frequency statistics as the main shocks,147

which means that the majority of aftershocks are small events. However, occasionally148

an event triggers an aftershock whose magnitude exceeds the parent event. In this case,149

the initial event is considered to be a foreshock. A consequence of this is that not all150

sets of ETAS parameters produce aftershock sequences that terminate [Helmstetter and151

Sornette, 2002], and so care must be taken in selecting parameters.152

Because the ETAS models are event-based, we set the background rate to the desired153

level, and then choose C ′ such that the synthetic datasets contain a total of 10000 events154

in 100 years on average. Specific values of the rate and the aftershock productivity C ′155
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are shown in Table 2. Because aftershock sequences can extend over long periods of time156

for the highest values of aftershock productivity, we ensure that the synthetic datasets157

are uniform in time by generating 200 years of background events and only selecting the158

final 100 years of the event sequence for analysis. This ensures that we are not “missing”159

events whose main shock may have occurred prior to the start of the simulation.160

ETAS models can also include spatial kernels to simulate clustering of seismicity in space161

[Felzer and Brodsky , 2006]. Because most statistical tests applied to the global catalog162

neglect spatial information, we do not include this effect in our simulations. However,163

spatial information is implicitly included in statistical tests on the global catalog through164

removal of aftershocks, so a more realistic way to treat the ETAS data for our purposes165

might be to perform a spatial ETAS simulation and then remove aftershocks prior to166

testing. Due to the large number of simulations considered here and the introduction167

of additional parameters for both generating and removing aftershocks, we neglect this168

aspect in our study. Additionally, we note that our simulations approximate this spatial169

effect, due to the fact that the Omori decay of the aftershock rate with time is assumed170

to be independent of spatial location. Thus, an ETAS simulation that uses a reduced171

aftershock productivity can be thought of as a proxy for a spatial simulation where events172

in the traditional aftershock zone are removed. This leaves a reduced number of global173

“aftershocks” in the simulated dataset that follow the same time decay of seismicity rate174

as the traditional aftershocks.175

A sample ETAS simulation for the strongest level of clustering is shown in Fig. 2(a),176

illustrating the seismicity rate as a function of time. Because large earthquakes have a177

pronounced effect on the rate (Eqs. (1)-(2)), a localized spike in the earthquake rate178
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occurs after each large event. The rate quickly decays with time after each event, though179

extended aftershock sequences can occur that keep the rate elevated above background180

for longer periods of time. Due to the sharp peak in the rate following large events, the181

ETAS models exhibit a higher variability in rate when compared to the other simulated182

datasets in this study.183

2.2. Magnitude-Dependent Simulations

The second type of dataset incorporates mangitude-dependent clustering, designed to184

be somewhat similar to the ETAS models, yet different in its time dependence. It is based185

on the idea that earthquake triggering is related to the strain amplitude of seismic waves,186

combined with a model where any earthquake can be a potential precursor to future187

seismicity with a rate contribution dependent on magnitude [Rhoades and Evison, 2004].188

In particular, a study by van der Elst and Brodsky [2010] showed that the seismicity rate189

increase could be quantitatively tied to wave strain amplitude using a statistical method190

applied to a large earthquake catalog. We construct a synthetic dataset based on this191

concept, where the seismicity rate at a given time is the sum of the background rate,192

plus a variable contribution that depends on the weighted magnitude of the previous 200193

events. The seismicity rate λi for the time period following event i is given by194

λi = λ0 + γ

 i∑
j=i−199

10α(Mj−Mmin) − 200

 . (4)195

The background seismicity rate is λ0, α = 1 determines the relative contribution of earth-196

quakes of different magnitude in the same manner as the ETAS models, and γ determines197

the overall rate contribution from the triggering effect. Seismic wave amplitudes scale198

exponentially with magnitude as ∼ 10M [Lay and Wallace, 1995], thus we apply a weight-199
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ing factor that depends exponentially on magnitude to determine their strain amplitude200

contribution. As with the ETAS models, spatial information is neglected. Finally, sub-201

tracting the factor of 200 ensures that the rate increase is measured relative to a baseline202

level where all events have magnitude M = 6. Following a large event, the seismicity rate203

exhibits an approximate step increase, and remains elevated for a longer period of time204

when compared to the ETAS simulations (Fig. 2(a)-(b)). The additive combination of205

past events on top of the background seismicity is the same as in the model of Rhoades206

and Evison [2004], though with a cutoff after a limited number of events.207

The duration over which far-field dynamic triggering occurs is not well quantified by ob-208

servations, as event statistics are usually accumulated over longer time periods to establish209

a change in seismicity rate [Freed , 2005]. Some studies suggest that near-field aftershocks210

may also be triggered by dynamic stresses [Gomberg et al., 2003], suggesting an Omori211

time dependence for the triggering effect. Because the ETAS simulations already con-212

sider the case of clustering following an Omori decay of seismicity rate with time, we use213

the Magnitude-Dependent simulations to consider an alternative form of a seismicity rate214

increase that is not as pronounced in time. van der Elst and Brodsky [2010] show that215

a step rate change following the triggering event predicts similar triggering statistics to216

an Omori decay, and thus we use Eq. (4) to generate this rate pattern in this simulated217

dataset. The convolution over the previous 200 magnitudes is aimed at making this step218

change last from 1-2 years, depending on the size of the the rate increase. The choice of219

200 events (rather than a specific period of time) is also made to ensure that events with220

M ≥ 8 influence the seismicity rate over multiple M ≥ 8 recurrence times (since 1 out of221

every 100 events will have a magnitude in that range).222
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For the Magnitude-Dependent simulations, we generate 15200 events with magnitudes223

following the GR distribution, and then perform the sum over event magnitudes to de-224

termine the event-by-event seismicity rate (Eq. (4)). We then generate recurrence times225

in an event-by-event fashion by drawing from an exponential distribution (the expected226

waiting time distribution for a Poisson process) given λi. Finally, we sum the recurrence227

times to get the occurrence times, and remove the first 200 events to ensure uniformity in228

time. We then select 100 years of events for analysis, and discard events that occur after229

100 years. We produce 5000 additional events beyond the typical 10000 to ensure that230

our simulations are never shorter than 100 years in the event of a large number of short231

interevent times. The coefficient γ is determined for each of the 20 synthetic datasets in232

order to produce simulations that contain on average 10000 events in 100 years. Parameter233

values are shown in Table 2.234

An example Magnitude-Dependent synthetic dataset is shown in Fig. 2(b) for the high-235

est clustering strength. When compared to the ETAS model, the spikes in the seismicity236

rate for the Magnitude-Dependent simulations are much reduced in amplitude and are237

extended in time. This is because the rate increases are much less localized in time when238

compared to an Omori decay – when a large event occurs, the seismicity rate is elevated,239

but fairly constant over the ensuing time period.240

The relative lack of changes in the seismicity rate for the Magnitude-Dependent simula-241

tions illustrates an important issue in earthquake statistics. Because the time period over242

which the effects of an earthquake are evident is reasonably long, the true background243

seismicity rate (22 events/year) is rarely observed in Fig. 2(b). There is always some244

earthquake that is influencing the seismicity rate, causing the nominal background rate245
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(i.e. the rate inferred by an observer through examination) to not reflect the true back-246

ground rate. While this problem exists in all earthquake records (observed and simulated),247

its effect is more pronounced here because the true background rate is never observed.248

This type of clustering is therefore more difficult to detect, despite the true background249

rate being identical to the other datasets, because the tests cannot distinguish the nominal250

and true background rates.251

2.3. Event Clusters

We generate a third type of nonrandom dataset by inserting two randomly placed, non-252

overlapping ten-year long clusters with an elevated seismicity rate. In these simulations,253

the seismicity rate is elevated from λ0 to a level λ0 +λclust for a specified number of events254

Nclust following two random events, chosen such that the two clusters are non-overlapping255

and that both clusters fit within the total length of the simulation. The number of events256

with an elevated rate Nclust increases as the clustering strength increases. The number of257

events Nclust and the rate change λclust are chosen so that the duration of each cluster is258

on average 10 years, and the dataset contains on average 10000 events over its 100 year259

duration. Given a desired background rate λ0 one can determine Nclust and λclust by:260

Nclust =
10000− λ0 × 100 years

2
+ λ0 × 10 years (5)261

λclust =
10000− λ0 × 100 years

2× 10 years
. (6)262

The particular values of λclust given our values of λ0 can be found in Table 2. As with263

the Magnitude-Dependent rate simulations, the simulations are created in practice by264

drawing 15000 recurrence times from an appropriately scaled exponential distribution265

given the seismicity rate for a particular event, and then restricting our analysis to 100266
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years. As with the Magnitude-Dependent datasets, we produce far more than 10000267

events to be certain that all of our simulations are 100 years in duration. Magnitudes are268

assigned independent of the seismicity rate, following the same distribution as the other269

simulations.270

This model is inspired by the “clusters” of magnitude 8.4 and larger events observed271

in the years 1950-1962 and 2004-2012 [Bufe and Perkins , 2005; Ben-Naim et al., 2013].272

While there is no clear evidence that seismicity at lower levels was higher during these273

time periods, we use this aspect of the global earthquake catalog as a guide in creating274

our synthetic datasets to better understand how strong such clusters would need to be275

in order to be detectable by statistical tests. We also note that the study by Dimer de276

Oliveira [2012] used temporal clusters of larger (M ≥ 8) events in his analysis of simulated277

clustered data, giving us a point of comparison between our study and other work on this278

topic. An example of the seismicity rate as a function of time for an Event Clusters279

simulation is shown in Fig. 2(c).280

2.4. Stochastic Rate Simulations

The final type of dataset that we consider is one in which the rate varies stochastically281

in time. As with the Magnitude-Dependent and Event Clusters simulations, the rate λi282

changes from event to event. For the Stochastic Rate datasets, the event rate following283

event i is λi = λ0 + λσ,i, where λσ,i is drawn from a one-sided normal distribution. The284

distribution peaks at zero (i.e. the equivalent two-sided normal distribution has zero285

mean) and has a standard deviation σ. To set the level of clustering, we vary the value286

of σ. As with the other simulations, σ is chosen given λ0 so that the 100 year portion of287
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the synthetic dataset that we use in the analysis contains on average 10000 events. The288

specific values for each background rate are presented in Table 2.289

This set of simulations was selected to provide a scenario where the rate does not vary290

in a predictable fashion with time, and consequently the nonrandom character of the291

simulation is very difficult to detect, as we will see through our analysis. An example of292

a Stochastic Rate simulation with the strongest level of clustering is shown in Fig. 2(d).293

3. Quantifying Clustering Strength

To calibrate the parameter values used in generating our synthetic data and to quantify294

the clustering in the resulting event sequences, we use two different measures of the295

clustering strength. The first is the branching ratio, defined as the fraction of events296

that are in excess of the background seismicity level [Sornette and Sornette, 1999]. This297

quantity was initially developed for ETAS models, as it represents the fraction of events298

that are aftershocks, but it applies generally to all of the models considered here through299

our knowledge of the background seismicity rate. For each synthetic dataset, we generate300

20 different random ensembles with branching ratios varying from 0.02 to 0.78 with a301

spacing of 0.04. This means that the background rate ranges from 98 events/year to 22302

events/year, with a difference of 4 events/year between each successive clustering strength.303

The parameter controlling clustering strength for each simulation type is then changed304

by trial and error so that the simulations show an overall event rate of 100 events/year.305

Parameter values for the different models are provided in Table 2.306

While the branching ratio is only dependent on the background event rate, the actual307

details of how the event rate varies with time changes across the different synthetic datsets.308

Thus, we would like to have an independent measure based on fluctuations in the rate309
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that quantifies the strength of clustering. For each type of synthetic dataset, we calculate310

the coefficient of variation (COV, the standard deviation normalized by the mean) of the311

rate, assuming the rate is piecewise constant in time. Then we find the mean over all312

10000 realizations (only 1000 realizations are used in the rate calculations for the ETAS313

simulations, due to a greater computational cost associated with determining the rate314

in the ETAS model). The mean rate COV is shown as a function of branching ratio315

for all four types of synthetic datasets in Fig. 4. For each type, the mean rate COV is316

linearly dependent on the branching ratio, with a different constant of proportionality for317

each type. Because the details of the time variation in the rate changes for each type of318

clustering, we do not expect the mean rate COV to be the same for each type of synthetic319

data. In particular, we find that the ETAS models have the most strongly varying rate,320

while the magnitude-dependent rate fluctuates the least in time.321

In the remainder of this study, we use the branching ratio as our primary indicator of322

clustering strength due to its simple origin, ease of calculation, and uniformity across the323

different types of synthetic datasets. However, our results show that mean rate COV is324

a better indicator of how easily the nonrandom character of a particular dataset can be325

detected, suggesting that rate variations give a better characterization of the nonrandom326

behavior for a particular type of synthetic data.327

4. Statistical Tests

We select eight statistical tests used in the literature to test the synthetic datsets for328

deviations from random event occurrence. These tests can be divided into two classes:329

parameter-free tests, and parameter-based tests. We choose four versions of each, and330

apply each of them to all 800,000 realizations of our synthetic datasets. The parameter-331
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free tests include a test based on the variance of the recurrence times [Ben-Naim et al.,332

2013], a Kolmogorov-Smirnov (KS) test that compares recurrence times to an exponential333

distribution [Michael , 2011], a KS test that compares event occurrence times to a uniform334

distribution [Shearer and Stark , 2012], and an autocorrelation test [Michael , 2011; Parsons335

and Geist , 2012]. We also choose four tests that require choosing parameter values,336

including a multinomial chi-squared test [Gardner and Knopoff , 1974; Shearer and Stark ,337

2012], a Poisson dispersion test [Shearer and Stark , 2012; Daub et al., 2012], an alternative338

chi-squared test [Brown and Zhao, 2002; Luen and Stark , 2012], and a test that looks for339

a seismicity rate increase following large events [Michael , 2011]. Due to the large number340

of simulated datasets, we do not vary the parameter values.341

Most of these tests have been applied to the global earthquake dataset, as well as other342

types of earthquake catalogs. We summarize the results of application of these tests to343

the PAGER/PDE dataset through the end of 2014 in Table 1. The tests are applied at344

minimum magnitudes of 7, 7.5, and 8 both with and without removal of aftershocks using345

the procedure described in Daub et al. [2012]. In general, the catalog does not show a346

significant deviation from random event occurrence once aftershocks are removed, other347

than an apparent long-term variation in the seismicity rate at M = 7 that has been348

attributed to differences in event magnitude estimation over time [Daub et al., 2012].349

The p-values here are in some cases different from values reported in the literature. This350

is due principally to differences in the declustering methods, and to a lesser extent to351

differences in the Monte Carlo methods used to estimate the p-values – in particular, for352

computational reasons we condition on the observed rate in this study, rather than the353
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observed number of events. When these differences are accounted for, our p-values are in354

agreement with previously reported values.355

For all of the results that follow, we will use the criteria that a deviation at the 1%356

level constitutes a nonrandom result, meaning that the dataset in question has a value357

of the test statistic that is larger than 99% of random realizations. This is smaller than358

the frequently used value of 5% often used in hypothesis testing, as well as the 2.3%359

value associated with a test statistic that is more than two standard deviations from the360

mean for a normal distribution, another common cutoff. While this lower cutoff is chosen361

for conservative purposes, we have performed our analysis using different cutoff values,362

both higher and lower. We find that the relative frequency of detection between different363

tests, clustering strengths, and magnitude levels to be independent of the choice of cutoff364

value. The particular value of the detection power for a specific test, clustering level, and365

magnitude cutoff will change if a different significance value is selected, but the relative366

values and overall trends remain unchanged.367

4.1. Variance Test

The variance test compares the normalized variance of the recurrence times to the368

normalized variance expected if the event times are uncorrelated [Ben-Naim et al., 2013].369

Given N events, we compute a sequence of N − 1 recurrence (or interevent) times tr and370

compute the normalized variance V371

V =
〈t2r〉 − 〈tr〉2

〈tr〉2
(7)372

where 〈·〉 indicates the average. The normalized variance is expected to be nearly unity373

for a random sequence of events, though for datasets with small numbers of events, the374
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distribution peaks at a smaller value [Ben-Naim et al., 2013]. A dataset is flagged as non-375

random if the normalized variance is significantly larger than its expected value (i.e. the376

variance test is one-sided), which is determined by Monte Carlo simulation using 10000377

random realizations. The random realizations have a background rate of 100 events/year378

and last for 100 years, and the magnitude distribution is drawn from the same distribution379

as the simulated datasets. Note that due to the high computational cost of simulating all380

possible numbers of events, here we condition on the background rate and duration, rather381

than on the number of events as was done by Ben-Naim et al. [2013]. The variance test382

compares the entire distribution to the expected distribution for random event occurrence383

(i.e. all recurrence times are considered in calculating V ), weighing the long recurrence384

times more heavily. If a dataset contains an excess of long recurrence times, the test flags385

the sequence as nonrandom.386

4.2. Kolmogorov-Smirnov Tests

The KS methods compare the cumulative distribution function (CDF) determined from387

the data with the distribution expected for random event occurrence. The KS test com-388

putes a test statistic based on the largest absolute deviation between the two CDFs, and389

then assigns a p-value based on the test statistic and the number of observations in the390

data. For the KS exponential test [Michael , 2011], we look for a deviation between the391

expected and observed distribution of recurrence times, which is sensitive to short-term392

clustering in the data but not to long-term changes in the rate. Because the exponential393

distribution depends on the rate, which must be estimated from the data, we apply an394

appropriate correction based on Monte Carlo simulations [Lilliefors , 1969]. While both395

the variance test and the KS exponential test are based on the distribution of recurrence396
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times, the individual events are combined in a different fashion in each test, and thus the397

tests do not give identical results.398

The KS uniform test [Shearer and Stark , 2012] differs from the KS exponential test in399

that it uses the occurrence times, rather than the recurrence times. This difference is400

crucial, because the ordering of the events is important for the KS uniform test. Consider401

a hypothetical dataset with a set of recurrence times that are exponentially distributed,402

but ordered from shortest to longest. The KS exponential test would find the sequence403

consistent with random event occurrence, while the KS uniform test would not. This404

shows that the KS uniform test is more sensitive to long-term variations in the rate.405

4.3. Autocorrelation Test

The final parameter-free test looks at the first lag of the autocorrelation of the recurrence406

times [Michael , 2011; Parsons and Geist , 2012]. If there are correlations between the407

recurrence times of consecutive events (as is expected in an aftershock sequence), this test408

will identify the data as nonrandom. It is possible to include additional lags beyond the409

first in the test [Parsons and Geist , 2012], though for simplicity we only use the first lag410

in this study.411

4.4. Multinomial Chi-Squared Test

This test looks at the detailed distributions of the number of events occurring in a series412

of K time windows [Gardner and Knopoff , 1974; Shearer and Stark , 2012]. From the data,413

we use the observed number of events per time window λ, and then determine the values414

of K− and K+. K− is the smallest integer such that the expected number of windows415

with no more than K− events is at least five, and K+ is the largest integer such that the416
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expected number of windows with at least K+ events is at least five. Mathematically, this417

can be expressed as418

K− = min

{
k : K exp (−λ)

k∑
i=0

λi

i!
≥ 5

}
, (8)419

K+ = max

{
k : K

(
1− exp (−λ)

k−1∑
i=0

λi

i!

)
≥ 5

}
. (9)420

From the values of K− and K+, the test calculates a test statistic based on the expected421

number of events per time bin Ek:422

Ek =


K exp (−λ)

∑K−

i=0 λ
i/i!, k = K−,

K exp (−λ)λk/k!, K− < k < K+,

K
(
1− exp (−λ)

∑K+−1
i=0 λi/i!

)
, k = K+.

(10)423

From the data, the test determines the observed number of time bins with fewer than K−424

events XK− , the number of time bins with k events Xk, and the number of time bins with425

at least K+ events XK+ . These values are used to calculate the Multinomial Chi-Squared426

test statistic χ2
M :427

χ2
M =

K+∑
k=K−

(Xk − Ek)2

Ek
. (11)428

We choose 1 year for the time window, so the test examines if the distribution of the429

number of events in the time windows follow the expected distribution for random event430

occurrence. The original study by Gardner and Knopoff [1974] compared the distribution431

to a chi-squared distribution, though here we follow Shearer and Stark [2012] and estimate432

the p-values through Monte Carlo simulation using 10000 random realizations. As with433

the variance test described above, for computational reasons we condition on the observed434

rate and duration, rather than the observed number of events, which are in agreement as435

long as the number of events is large.436
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4.5. Poisson Dispersion Test

The Poisson Dispersion test (also referred to as a Conditional Chi-Squared test) divides437

the dataset into discrete time bins and examines if the variance of the number of events per438

time bin is consistent with random event occurrence. Specifically, given K intervals, each439

containing Nk events, and the average number of events per window 〈Nk〉, the Poisson440

Dispersion test calculates a test statistic441

χ2
c =

K∑
k=1

(Nk − 〈Nk〉)2

〈Nk〉
. (12)442

We use 1 year for the time windows, which was used by both Shearer and Stark [2012] and443

Daub et al. [2012] on the global catalog. Daub et al. [2012] also looked at variable time444

windows, and found that the results were not strongly dependent on the choice of time445

window. We estimate the p-values by random simulation following the procedure of [Daub446

et al., 2012] and condition on the observed rate and duration, rather than the observed447

number of events as was done by Shearer and Stark [2012]. Both versions of the test when448

applied to the global earthquake catalog gave similar results. The test examines if there449

are an anomalous number of windows with a large number of events, which is indicative450

of clustering in the sequence of events being tested.451

4.6. Brown and Zhao Chi-Squared Test

This test is similar to the Poisson Dispersion test, but uses a slightly different test452

statistic that converges to a Chi-Squared distribution with sufficient data [Brown and453

Zhao, 2002]. The test calculates the test statistic using the number of observed events in454

a series of time windows and the observed seismicity rate. The test divides the dataset455

into K windows, with Nk events in the kth window. The Brown and Zhao test statistic456
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χ2
BZ is then calculated from Yk =

√
Nk + 3/8 and 〈Yk〉 as457

χ2
BZ = 4

K∑
k=1

(Yk − 〈Yk〉)2 . (13)458

We choose 1 year for the time window, and estimate the p-value by Monte Carlo simulation459

using 10000 random realizations. As with the other tests, we condition on the rate and460

duration when using simulation to quantify the variability the the Brown and Zhao test461

statistic. This test is designed to be similar to the Poisson Dispersion test, though we462

find in practice that the Poisson Dispersion test tends to be more reliable at detecting the463

nonrandomness in our simulated data.464

4.7. Big Event Triggering Test

The final test looks for a rate increase within a set of time windows following events465

above a chosen cutoff magnitude Mbig [Michael , 2011]. We use a time window of 1 year466

and Mbig = 8.5 in the test, though Michael [2011] examined the various parameter values467

more systematically. The test determines the number of events Nw that occur within468

the time windows following events with M ≥ Mbig, and then uses a binomial test to469

determine the probability of Nw events occurring in those windows if the true rate is470

always the observed seismicity rate (less the events with M ≥ Mbig, which are used to471

define the windows). If the number of small events that occur in the windows following472

the large events is greater than expected, then the test flags the data as nonrandom. Note473

that unlike the other tests, the Big Event Triggering test makes an assumption about474

the specific mechanism of triggering (i.e. large events will tend to trigger small events).475

This may make the test more sensitive for detecting the nonrandom behavior that occurs476

in our simulations where large events trigger small events (ETAS, Magnitude-dependent)477
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while reducing its sensitivity to clustering that does not following the specific triggering478

model.479

5. Test Results

We test our synthetic datasets using the eight statistical tests described in Section 4480

at the 1% level. We threshold each sequence of events in magnitude at several levels, as481

is frequently done with the global earthquake record [Michael , 2011; Shearer and Stark ,482

2012; Daub et al., 2012; Ben-Naim et al., 2013], with magnitude levels ranging from M ≥ 6483

(the entire dataset) to M ≥ 8 with increments of 0.1 magnitude units. This allows us484

determine the likelihood of detection for datasets with between 10000 and 100 events on485

average, depending on the magnitude level chosen.486

Each type of synthetic dataset has 20 versions with different clustering strengths, and487

each of the 20 versions is simulated 10000 times. For each set of magnitude level and488

clustering strength, we determine the detection power, in other words the probability489

that the test identifies the synthetic dataset as nonrandom. If the detection power is490

nearly unity, then the test reliably identifies the nonrandom aspects of the simulated data,491

while if the detection power is close to zero, then the test cannot distinguish between the492

simulated events and a random sequence of events.493

We summarize the results of the statistical tests in Figs. 5-8. Each subplot of the figures494

shows the magnitude level on the vertical scale and branching ratio on the horizontal scale,495

with the color scale indicating detection power. Plot (a) shows the detection power for the496

variance test, (b) illustrates the detection power for the KS exponential test, (c) depicts497

the detection power for the KS uniform test, (d) shows the results for the autocorrelation498

test, (e) illustrates the detection power of the Multinomial Chi-Squared test, (f) depicts499
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the results for the Poisson Dispersion test, (g) shows the Brown and Zhao Chi-Squared500

test, and (h) illustrates the detection power of the Big Event Triggering test. The results501

for the ETAS simulations are shown in Fig. 5, the results for the Magnitude-Dependent502

simulations are illustrated in Fig. 6, the results for the Event Clusters can be found in503

Fig. 7, and the results for the Stochastic Rate simulations are shown in Fig. 8.504

As expected, all tests show improved detection power as the strength of the cluster-505

ing increases, and performance decreases as the magnitude threshold increases (and the506

number of events decreases). We also find the expected result that some tests are better507

suited for detecting certain types of nonrandom behavior than others. For example, the508

KS uniform, autocorrelation, and multinomial do not perform as well as the other tests509

on the ETAS simulations. The KS uniform test is best at detecting long term variations510

in the seismicity rate, while the aftershock sequences that characterize ETAS simulations511

are localized in time and do not introduce a change in the seismicity rate over long time512

periods. Conversely, the KS uniform test performs better than the KS exponential test513

for the Magnitude-Dependent simulations. This is because the Magnitude-Dependent rate514

change extends over longer periods of time, which is more difficult to detect when using515

the interevent time distribution.516

The nonrandomness of the Event Clusters is easily detected by all of the tests, though517

the Multinomial Chi-squared test does not perform well at high magnitudes, as it looks518

at the detailed distribution of events per time bin, details that cannot be discerned for519

small numbers of events. All tests are successful because this type of clustering intro-520

duces both long-term variations in the rate, as well as many extra short recurrence times521

during the clusters. Interestingly, the Big Event Triggering test is still able to flag the522
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Event Clusters datasets as nonrandom, despite making the incorrect assumption that the523

seismicity rate increases following large events. The test can identify these datasets as524

nonrandom because it preferentially samples the elevated rate of smaller events during the525

two clusters, due to the fact that the events with Mbig are also more likely to occur during526

the clusters. However, it does require more data than many of the other tests, so it does527

suffer to some degree for its incorrect assuption. On the other hand, the Stochastic Rate528

datasets are the most difficult to identify as nonrandom, as the rate changes are variable,529

being neither localized in time (like the ETAS simulations) nor extended in time (like the530

Magnitude-Dependent and Event Clusters datasets). Only the tests that use the distribu-531

tion of the recurrence times (the Variance and KS Exponential tests) have much success532

with this type of clustering. The other tests fail due to a lack of a long term rate change533

(KS Uniform), no correlation between successive recurrence times (Autocorrelation), lack534

of short term clustering over time scales of ∼ 1 year (Multinomial, Poisson Dispersion,535

and Brown and Zhao tests), and no relationship between large events and seismicity rate536

increases (Big Event Triggering).537

5.1. Sensitivity to Magnitude-Frequency Distribution

Because of the differences in the magnitude-frequency distribution between the PAGER538

and GEM catalogs, we perform additional tests using ETAS simulations that are generated539

using varying magnitude-frequency distributions. In particular, we run two additional540

sets of simulations maintaining Mmin = 6 but changing the b-value to 0.8 or 1.2, and one541

additional simulation with b = 1 but Mmin = 5. In the case of the variable b-values, the542

relative number of small versus large events changes, so we can examine if the magnitude543

distribution within an aftershock sequences affects the ability of the various statistical544
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tests to identify the nonrandom character of that aftershock sequence. Similarly, the545

Mmin = 5 simulations test whether or not we bias our results by not simulating the546

smaller events that exist in natural seismicity sequences below the detection threshold in547

a catalog. The parameter values for these three additional ETAS models are shown in548

Table 3, and are chosen to maintain the overall rate of 100 events/year in our simulated549

datasets. Note that by changing the b-value, the number of events at higher magnitudes550

are different (the number decreases for b = 1.2 relative to the b = 1 simulations, and the551

number increases for b = 0.8 relative to the b = 1 simulations), while the overall number552

of events at all magnitude levels remains the same for the Mmin = 5 simulations.553

The results of this analysis are shown in Figs. 9-11. Each figure shows the same set554

of plots as described for Fig. 5, but with a different magnitude-frequency distribution:555

Fig. 9 shows the results for b = 0.8 and Mmin = 6, Fig. 10 illustrates the detection556

power for the various statistical tests for b = 1.2 and Mmin = 6, and Fig. 11 shows the557

detection capabilities of the tests for the ETAS simulations with b = 1 and Mmin = 5.558

The detection power changes somewhat for the varying b values, but the differences can559

be attributed entirely to changes in the number of events. When b = 0.8, there are more560

large magnitude events, and thus we find the statistical tests have greater detection power561

when compared to the b = 1 results, and when b = 1.2, the reverse is true. For simulations562

with Mmin = 5, the results are essentially the same as for Mmin = 6. These additional563

simulations suggest that our results should be broadly applicable to other earthquake564

catalogs with different magnitude-frequency distributions, as it is primarily the number565

of events that controls what clustering can be detected.566
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6. Analysis of p-values

The detection power analysis of the various statistical tests applied to the synthetic567

datsets provides information on the clustering strengths that are detectable in the global568

earthquake dataset. However, this analysis requires a choice of the p-value that is con-569

sidered to be statistically significant, an issue on which there is often some debate. To570

avoid the problem of choosing a significance level, we instead analyze the p-values that do571

not give a statistically significant result to see how much information the p-values contain572

about the clustering level. If p-values turn out to be predictive of clustering strength,573

then instead of picking a significance level, one could simply test the data and then infer a574

likely range of clustering strengths based on the p-value. This approach can be thought of575

as applying a Bayesian framework to the problem, with the clustered datasets producing576

the prior distribution. Through our analysis, we can use our simulation results to find the577

posterior distribution of the clustering strength of the earthquake record conditioned on578

the p-value observed by applying the statistical test to the global earthquake record.579

To implement this framework, we analyze the p-values that do not constitute a positive580

test (i.e. p > 0.01) for several different magnitude levels, tests, and clustering types. We581

take all synthetic realizations for which p > 0.01 and then bin the p-values specific to each582

catalog type in five different bins which are logarithmically spaced, centered at p = 0.015,583

0.038, 0.095, 0.24, and 0.602. Each bin contains simulations that are potentially from any584

clustering level. We can then determine the cumulative distribution (CDF) as a function585

of clustering strength for each set of p-values. The CDF for each bin shows the likelihood586

that the p-values in that particular bin are drawn from any of the clustering strengths587

above that particular branching ratio, and thus can be used to directly infer upper limits588

D R A F T July 22, 2015, 1:37pm D R A F T



DAUB ET AL.: STATISTICAL TESTS ON CLUSTERED DATASETS X - 29

on the branching ratio at particular confidence levels. If the CDF falls rapidly from unity589

to zero. then there is a strong correlation between p-value and clustering level and p-values590

have predictive power. On the other hand, if the decrease in the CDF from unity to zero591

is more gradual, then there is a weaker correlation between p-value and clustering level592

and little can be learned from the p-value.593

Example CDF functions calculated using this analysis are shown in Fig. 12. The plots594

illustrate the CDF as a function of branching ratio for the five bins of p-values for the595

ETAS simulations. The p-value of each bin decreases from the bottom curve to the top596

curve. Each plot shows the results for one particular statistical test, and the top set of597

plots show the CDFs for M = 7 and the bottom set of plots are for M = 8.598

The CDF plots illustrate several aspects of the test results. For the tests that perform599

well on the ETAS simulations, the CDF falls off fairly quickly as the branching ratio600

increases for all p-values. This indicates that for many statistical tests, the p-value is well601

correlated with the level of clustering even if the p-value is not low enough to constitute602

a statistically significant result. At M ≥ 8 the CDFs decrease more gradually. This is603

due to the reduced number of events at this magnitude level, and so these results are less604

useful for constraining the clustering level.605

These trends are further illustrated for datasets where the clustering is more difficult to606

detect. Figure 13 shows the same CDF plots as in Fig. 12 for the Magnitude-Dependent607

synthetic datasets. For the Magnitude-Dependent simulations, the Big Event Triggering608

test performs best, though a number of other tests also perform well, and this is reflected609

in the drop-off of the CDF curves. For the Magnitude-Dependent simulations, the tests610

exhibiting reduced detection power have CDF curves that fall off gradually, and show611
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little difference across the p-value bins. This shows that for tests where detection of the612

nonrandom character of the synthetic data is less likely, there is also little correlation613

between p-values and the level of clustering in the dataset. For the Stochastic Rate simu-614

lations (not shown), nearly all of the CDF curves provide little information on clustering615

strength.616

Figure 14 shows the same sets of CDFs for the Event Clusters. Here, all of the tests617

perform well, and produce CDFs that fall off rapidly with branching ratio. There are618

differences in precisely how fast the curves decrease across different tests, but in general619

the p-values of each test provide information on the clustering strength. At M = 7, the620

steep drop in the CDFs with branching ratio indicate that we can use our results to place621

quantitative upper bounds on the branching ratio. At M = 8, the CDFs decrease more622

slowly, but can still provide upper bounds on the clustering strength in the global catalog.623

The general trends found in our results help us understand what we can learn from the624

p-values in the global earthquake catalog. Because all of these tests have been previously625

applied to the earthquake data since 1900, where the level or type of clustering is unknown,626

we can use these results to bound the clustering level that is likely to be present in the627

data, which we discuss in the following section.628

7. Discussion

The simulations used in this study show that statistical tests cannot always detect that629

an earthquake dataset is nonrandom. There are two effects responsible for this. First,630

tests need a certain amount of data in order to distinguish nonrandom event occurrence631

from the expected fluctuations in a random process. While this result is unsurprising, our632

results confirm that this is the case for the earthquake catalog at high magnitude levels,633
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and we have quantified how this depends on the strength of the clustering. Second, we634

find that not all tests perform equally well on a given type of clustering, and that if the635

wrong test is performed, the test exhibits slower improvement as more data is added than636

a test that is better suited to identifying the given type of clustering. This suggests that637

performing the correct test is just as important as having enough data, as it makes a given638

amount of data more useful.639

This question has been previously studied by Dimer de Oliveira [2012], though only640

for higher magnitude levels and one type of clustering (similar to our Event Clusters641

simulations). The clustered datsets of the Dimer de Oliveira study varied the background642

rate from 0.1 events/year to 0.5 events/year, with a tenfold increase in the seismicity rate643

during a number of 15 year clusters during a 110 year event sequence, with the number644

of clusters ranging from 1-5. This best corresponds to our Event Clusters simulations645

at M = 8 at branching ratios of 0.62 or 0.66, with a background rate of 0.38 or 0.34646

events/year, respectively, and two 10 year clusters where the event rate is 3.4 or 3.6647

events/year, respectively. Dimer de Oliveira found that for 4 events/decade and two648

clusters, the detection power at the 5% level was about 40%. In our case, we found that649

we could almost always detect that these simulated datasets are clustered at the 1% level,650

though at slightly lower clustering levels our detection power diminishes quickly. These651

differences in detection power may be due to differences in the exact number of events,652

or the fact that we generate our data using the event rate at M = 6 rather than M = 8,653

resulting in a different amount of variability in the number of large magnitude events654

across different realizations.655
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Our results have direct relevance for studies that compare the global earthquake record656

with a process that is random in time. The results of such tests tend to find that the657

global catalog does not deviate from a random process at p-values that are considered to658

be significant, and thus our results can bound the range of clustering that could be in the659

data, yet not be detectable.660

We can use the CDFs constructed for different p-values (i.e. Figs. 12 and 14) to provide661

quantitative upper bounds on the branching ratio given the results of tests applied to the662

earthquake catalog. For instance, Michael [2011] reports p = 0.17 for the earthquake663

record for M ≥ 7 with aftershocks removed. That value falls within our p = 0.240 bin664

(though at the low end of the bin). Based on Fig. 12, this suggests that the percentage of665

events that are aftershocks is below 20% based on the 99th percentile bound, as the CDF666

drops below 10−2 at a branching ratio of 0.2 for this particular test. Other statistical tests667

give similar upper bounds when applied to the PAGER/PDE catalog, so this appears to668

be a robust upper limit based on several statistical tests.669

We can make a similar estimate for Event Clusters simulations using the results in670

Fig. 14. The best performing test on this particular type of clustering was the Pois-671

son Dispersion test. Shearer and Stark [2012] were more conservative in their removal672

of aftershocks, leaving only 509 independent events in their catalog for M ≥ 7, which673

corresponds to approximately M ≥ 7.3 in our simulations. These estimates constrain674

the branching ratio to be below 0.1 at the 99th percentile if magnitude 7 events occur in675

two large clusters using the Poisson Dispersion test. In terms of seismicity rate during676

the clusters, a branching ratio of 0.1 at M = 7 indicates a ∼ 50% increase in seismicity677

rate (from 9 events/year to 14 events/year during the clusters). We find that clustering678
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stronger than this is unlikely to give us the observed p-values. Other tests give similar679

upper bounds on the maximum branching ratio that is consistent with the PAGER/PDE680

data.681

At higher magnitude levels above M ≥ 8, we cannot constrain the branching ratio682

based on the p-values of statistical tests to the same degree as M = 7. While synthetic683

datasets that are more clustered tend to have smaller p-values, the correlation is not strong684

enough to rule out higher branching ratios with high confidence. The study of Michael685

[2011] on the M ≥ 8 earthquake data reported p = 0.61 for the KS exponential test.686

Our results for the ETAS models for that range of p-values suggest that the branching687

ratio of the global catalog is below 0.6 at the 99th percentile, a much broader range than688

we infer for the M ≥ 7 data. Similarly, Shearer and Stark [2012] found p = 0.898 for689

the Poisson Dispersion test at M ≥ 8, which suggests a branching ratio below 0.6 at690

the 99th percentile for the ETAS simulations, but an upper bound of 0.35 at the 99th691

percentile for the Event Clusters datasets. The KS Uniform test applied to the Event692

Clusters simulations provides a similar estimate of these bounds. In terms of seismicity693

rate increases for M = 8, a branching ratio of 0.35 corresponds to an increase from 0.66694

events/year to 2.3 events/year during the clusters. Clustering strengths higher than this695

would be detectable given the amount of data in the PAGER/PDE catalog, but lower696

values produce sequences of events that are not reliably distinguishable from random697

event occurrence.698

We note that each of the clustering studies discussed above used a different method699

to remove aftershocks, while our simulations are based on the assumption that there700

are no local aftershocks in the synthetic data. Because aftershock removal is somewhat701
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subjective, there is a good chance that some background events are removed in the process702

(see Luen and Stark [2012] for a discussion of some of the issues raised by the aftershock703

removal process). Our simulations do not consider the spatial distribution of earthquakes,704

and thus do not exhibit this artifact of declustering. Further studies, for example using705

ETAS simulations with spatial kernels, are necessary to better quantify the impact of this706

effect on the results of statistical tests.707

One caveat of our analysis is that our synthetic datasets are only four of any number of708

possible ways that events can cluster in time. We have used various observations and mod-709

els for clustering to guide our development of our simulations, but this is only a partial,710

limited set of considerations. Earthquake data may also contain a combination of multiple711

types of clustering, which may affect the ability of statistical tests to identify nonrandom712

behavior, and statistical tests cannot reveal the underlying mechanism of clustering, only713

the likelihood that it is present. Because the rules for aftershock production are based714

on more robust observations than those for the other types of clustering, the ETAS sim-715

ulations may be more relevant to seismic hazard estimates. This is especially true since716

the effect of aftershocks is more localized in time than the other types of clustering, and717

aftershock forecasts are one of the few types of short-term seismic hazard estimates that718

can be made with confidence [Jordan et al., 2011]. Thus, such analysis can be extended719

using the upper bounds on global aftershock production to estimate the effect such global720

aftershocks would have on seismic hazard. Such an estimate would only serve as an upper721

bound, but could inform us whether such effects might play a role in hazard estimates.722

While our focus here is on the global earthquake catalog, our methods can also be ap-723

plied to regional catalogs at lower magnitude levels. Previous work has mostly focused724
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on earthquake catalogs in Southern California [Gardner and Knopoff , 1974; Luen and725

Stark , 2012], Japan [Zhuang et al., 2004], and Taiwan [Wang et al., 2014], but as seismic726

networks continue to grow worldwide, more regional catalogs will become available. For727

example, our CDF-based methods could be used to provide an assessment of the goodness728

of fit between ETAS models and regional catalogs and help constrain regional aftershock729

parameters [Ogata, 1992, 1998]. Knowledge of how to analyze such catalogs for seismicity730

patterns and develop models for earthquake interaction requires quantification of cluster-731

ing that is consistent with the catalog. The tools outlined here provide a means of doing732

that, and can help researchers bound the strength of earthquake interactions in a variety733

of tectonic settings.734
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Figure 1. (a) Global earthquake catalog from 1900-2014 [Allen et al., 2009], supplemented by

the United States Geological Survey Preliminary Determination of Epicenters catalog through

the end of 2014. Occurrence of several earthquakes with M ≥ 8.5 from 1950-1964 and 2004-2012

led to speculation that the largest earthquakes cluster in time. (b) Statistical analysis using

the variance of the recurrence time [Ben-Naim et al., 2013], showing calculated p-values as a

function of threshold magnitude, both with and without removal of aftershocks. The p-value

is determined by Monte Carlo simulation by calculating the fraction of random catalogs that

exhibit a normalized variance that exceeds the value calcualted for the PAGER catalog. The

results show that in general, the earthquake record does not deviate from a process that is random

in time. For magnitude levels M ≥ 8.4-8.5, the p-values appear to be low, though they are not

low enough to conclude that the earthquake record is nonrandom, as the reported p-values are

underestimates due to selection of the magnitude levels post hoc [Shearer and Stark , 2012].
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Figure 2. Examples of synthetic clustered datasets. All plots show earthquake event rate as a

function of time for a 100 year sequence containing approximately 10,000 events above M = 6.

The plots shown here illustrate the most strongly clustered example of each simulation type.

(a) ETAS model, where additional events are added to the synthetic dataset following empirical

aftershock rules. The seismicity rate is sharply peaked following large events, decaying rapidly in

time. (b) Magnitude-Dependent rate, where the seismicity rate changes based on the magnitude

of the previous 200 events. (c) Event Clusters, where two ten-year clusters of events are placed

randomly in time. (d) Stochastic Rate simulations, where the rate varies stochastically in time

from event to event, with the variations following a one-sided normal distribution.
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Figure 3. Magnitude-frequency distribution used in the synthetic datasets. Events follow

a Gutenberg-Richter distribution with b = 1 and a minimum magnitude of Mmin = 6. While

this differs from the empirical value of b = 1.26 observed for the PAGER/PDE catalog, using

b = 1 makes determining the number of events at a given magnitude level more straightforward.

Alternative magnitude frequency distributions with b = 0.8, b = 1.2, and Mmin = 5 are also

considered for the ETAS simulations.

Table 1. p-values for the statistical tests used in this study applied to the PAGER/PDE catalog

through the end of 2014. Tests include: Variance (Var), KS Exponential (KSE), KS Uniform

(KSU), Autocorrelation (AC), Multinomial Chi-Squared (MC), Poisson Dispersion (PD), Brown

and Zhao Chi-Squared (BZ), and Big Event Triggering, and details on each test are provided in

the main text. Tests are applied to the catalog both with and without removal of aftershocks

((AS) denotes removal of aftershocks, using the method described in Daub et al. [2012]) at

minimum magnitude levels of M = 7, 7.5, and 8.

Catalog N Var KSE KSU AC MC PD BZ Big Event
M = 7 1814 6.0× 10−4 1.4× 10−4 1.6× 10−5 0.95 0.0060 3.0× 10−4 0.0019 0.0076
M = 7.5 462 0.14 0.053 0.11 0.41 0.14 0.17 0.088 0.24
M = 8 87 0.34 0.71 0.15 0.29 0.60 0.59 0.51 0.29

M = 7 (AS) 1369 0.062 0.40 1.1× 10−7 0.58 0.24 0.010 0.024 0.87
M = 7.5 (AS) 385 0.81 0.69 0.18 0.21 0.66 0.69 0.60 0.64
M = 8 (AS) 77 0.68 0.81 0.31 0.24 0.22 0.91 0.78 0.24
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Figure 4. Mean coefficient of variation for the event rate over all synthetic datasets as a

function of branching ratio (or fraction of the events that are not background events) for the

four synthetic datasets considered in this study. In each case, there is an approximately linear

relationship between branching ratio and mean rate COV, and this illustrates that we have

a quantitative measure of the clustering strength for each synthetic dataset. Some clustering

types exhibit larger rate variations for the same branching ratio when compared to others, and

our results show that datasets with stronger rate variations are generally easier to detect as

nonrandom.
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Figure 5. Detection power at the 1% level as a function of branching ratio and minimum

magnitude for statistical tests applied to the ETAS models. Vertical axis indicates magnitude

level, horizontal axis indicates branching ratio, and color scale indicates detection power, or

the probability that the test identifies the event sequence as nonrandom. Results are shown

for a set of eight statistical tests: (a) Variance test, (b) KS Exponential test, (c) KS Uniform

test (d) Autocorrelation test, (e) Multinomial Chi-Squared test, (f) Poisson Dispersion test, (g)

Brown and Zhao Chi-Squared test, and (h) Big Event Triggering test. All of the tests can

detect the simulations as nonrandom, though some tests perform slightly better than others.

For example, the reduced sensitivity of the KS uniform test is due to the aftershock sequences

being very localized in time, while the KS uniform test is more sensitive to long-term variations

in seismicity rate. The Autocorrelation and Multinomial Chi-Squared tests do not perform well

at high magnitudes, indicating that these tests require more data than the others to detect

nonrandom behavior.
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Figure 6. Same as Fig. 5 for the Magnitude-Dependent datasets. Because the mean rate

COV is less than in the ETAS simulations, this clustering is more difficult to detect. The Poisson

Dispersion and Big Event Triggering tests are the most successful for this type of clustering, as

these tests look for variations in rate over longer time periods when compared to tests such as

the Variance, KS Exponential, and Autocorrelation, which use interevent times.
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Figure 7. Same as Fig. 5 for the Event Clusters. All tests reliably detect clustering for

these synthetic datasets, though the Multinomial Chi-Squared test does not do well at high

magnitudes. Additionally, the Big Event Triggering test requires more data than the other tests,

due to the fact that the assumption that large events trigger small events does not hold for this

particular type of clustering.
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Figure 8. Same as Fig. 5 for the Stochastic Rate simulations. This type of clustering is

the hardest to detect, and several tests do not find any nonrandom behavior in the synthetic

datasets. The tests that are better able to to discern that these sequences are nonrandom use

the interevent time distribution (Variance and KS Exponential tests), though the autocorrelation

test fails since successive recurrence times vary stochastically and thus are not correlated. The

remaining tests perform poorly either due to no long term variation in the rate, or a lack of

triggering of small events following large events in the case of the Big Event Triggering test.
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Figure 9. Detection power at the 1% level as a function of branching ratio and minimum

magnitude for three statistical tests applied to the ETAS simulations with b = 0.8. The tests

are better able to distinguish the simulation data as nonrandom for high magnitudes when

compared to the b = 1 results, due to the increased number of high magnitude events in the

b = 0.8 simulations.

D R A F T July 22, 2015, 1:37pm D R A F T



X - 50 DAUB ET AL.: STATISTICAL TESTS ON CLUSTERED DATASETS

0 0.2 0.4 0.6 0.8
Branching ratio

6.0

6.5

7.0

7.5

8.0

M
in

im
um

m
ag

ni
tu

de

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

6.0

6.5

7.0

7.5

8.0

M
in

im
um

m
ag

ni
tu

de

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8 1
Detection power

(a) (b) (c) (d)Variance KS Exponential KS Uniform Autocorrelation

(e) (f) (g) (h)Multinomial Chi Poisson Dispersion Brown and Zhao Chi Big Event Trigger

Figure 10. Detection power at the 1% level as a function of branching ratio and minimum

magnitude for three statistical tests applied to the ETAS simulations with b = 1.2. The tests do

not perform as well as the tests on the b = 1 results at high magnitudes, as the larger b-value

leads to relatively fewer high magnitude events.
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Figure 11. Detection power at the 1% level as a function of branching ratio and minimum

magnitude for eight statistical tests applied to the ETAS simulations with Mmin = 5. The results

do not show much difference from those in Fig. 5, indicating that the detection power of the

statistical tests are not changed by the fact that real earthquake catalogs are missing smaller

magnitude events.
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Figure 12. Cumulative distribution functions for ETAS simulation p-values that were not

identified as nonrandom by the statistical tests (i.e., p > 0.01). The statistical test used in each

set of CDF functions is indicated above the plot. In each case, the plots show the CDF as a

function of branching ratio for five bins of p-values, centered at the values of 0.015, 0.038, 0.095,

0.240, and 0.602 (p-values increase from top to bottom on each set of curves). The top set of

eight plots shows the results for M = 7, and the bottom set of eight plots show the results for

M = 8. Tests that are more likely to detect a synthetic dataset as nonrandom also tend to have

p-values that are more predictive of clustering level than tests with lower detection power. The

CDF can be easily used to place an upper bound on the level of clustering that is consistent

with the p-value observed for the global earthquake record – for instance, the KS exponential

test applied to the PAGER/PDE catalog at M = 7 gives p = 0.17 [Michael , 2011], which is the

second curve from the bottom, and we can thus constrain the branching ratio for aftershock-like

behavior to be below 0.2 at the 99th percentile. Bounds on the branching ratio at M = 8 are

higher due to the small number of events in the simulated data.

D R A F T July 22, 2015, 1:37pm D R A F T



DAUB ET AL.: STATISTICAL TESTS ON CLUSTERED DATASETS X - 53

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

M = 8 M = 8 M = 8 M = 8

Variance KS Exponential KS Uniform Autocorrelation

M = 8 M = 8 M = 8 M = 8

Multinomial Chi Poisson Dispersion Brown and Zhao Chi Big Event Trigger

M = 7 M = 7 M = 7 M = 7

Variance KS Exponential KS Uniform Autocorrelation

M = 7 M = 7 M = 7 M = 7

Multinomial Chi Poisson Dispersion Brown and Zhao Chi Big Event Trigger

Figure 13. Same as Fig. 12 but for the Magnitude-Dependent simulations. Because this

clustering is harder to detect, the CDFs do not fall off as sharply with increasing branching ratio

when compared to the ETAS simulations. In several cases, the p-values have very little predictive

power of the level of clustering in the data, as the CDF curves fall off slowly with branching ratio,

and the curves for different p-values are nearly identical to one another.

D R A F T July 22, 2015, 1:37pm D R A F T



X - 54 DAUB ET AL.: STATISTICAL TESTS ON CLUSTERED DATASETS

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

10−3

10−2

10−1

100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

0 0.2 0.4 0.6 0.8
Branching ratio

M = 8 M = 8 M = 8 M = 8

Variance KS Exponential KS Uniform Autocorrelation

M = 8 M = 8 M = 8 M = 8

Multinomial Chi Poisson Dispersion Brown and Zhao Chi Big Event Trigger

M = 7 M = 7 M = 7 M = 7

Variance KS Exponential KS Uniform Autocorrelation

M = 7 M = 7 M = 7 M = 7

Multinomial Chi Poisson Dispersion Brown and Zhao Chi Big Event Trigger

Figure 14. Same as Fig. 12 but for the Event Clusters. With the exception of the Multinomial

Chi-squared test at high magnitudes, nearly all tests are able to provide constraints regarding

the clustering level, though tests that perform better are better able to constrain an upper bound

on the level of clustering in the synthetic dataset. Several of the tests at M = 7 suggest that

the largest clustering strength consistent with the global earthquake record is 0.1 at the 99th

percentile, while at M = 8 the upper bound on the branching ratio is below 0.35 at the 99th

percentile using the CDFs for the Poisson Dispersion or KS Uniform tests.
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Table 2. Parameter values for the synthetic datasets used in the study. Details of all models

are described in the main text.
Branching Ratio Background Rate ETAS Magnitude Clusters Stochastic

(events/year) C ′ γ λclust σ
(events/year) (events/year) (events/year)

0.02 98 0.0027 0.001 10 3
0.06 94 0.0076 0.004 30 8
0.1 90 0.0125 0.0075 50 14
0.14 86 0.0175 0.01 70 19
0.18 82 0.0225 0.0135 90 25
0.22 78 0.0275 0.0165 110 31
0.26 74 0.0325 0.02 130 38
0.3 70 0.037 0.023 150 45
0.34 66 0.0425 0.026 170 53
0.38 62 0.047 0.03 190 60
0.42 58 0.0525 0.0325 210 68
0.46 54 0.057 0.0365 230 77
0.5 50 0.0623 0.04 250 87
0.54 46 0.06725 0.0435 270 97
0.58 42 0.072 0.047 290 108
0.62 38 0.07725 0.0515 310 120
0.66 34 0.0825 0.0545 330 135
0.7 30 0.08725 0.0585 350 150
0.74 26 0.0925 0.062 370 165
0.78 22 0.0975 0.066 390 185
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Table 3. Parameter values for ETAS models varying the magnitude-frequency distribution

Branching Ratio Background Rate b = 0.8 b = 1.2 b = 1
Mmin = 6 Mmin = 6 Mmin = 5

0.02 98 0.0018 0.0035 0.0175
0.06 94 0.004 0.012 0.06
0.1 90 0.0065 0.021 0.1
0.14 86 0.0085 0.03 0.14
0.18 82 0.011 0.038 0.18
0.22 78 0.014 0.046 0.215
0.26 74 0.016 0.054 0.25
0.3 70 0.0185 0.063 0.29
0.34 66 0.02125 0.071 0.33
0.38 62 0.0235 0.079 0.365
0.42 58 0.026 0.088 0.405
0.46 54 0.0285 0.0965 0.44
0.5 50 0.031 0.1045 0.485
0.54 46 0.0335 0.113 0.525
0.58 42 0.03625 0.12 0.56
0.62 38 0.03875 0.128 0.6
0.66 34 0.041 0.138 0.64
0.7 30 0.0435 0.146 0.675
0.74 26 0.04625 0.154 0.715
0.78 22 0.04875 0.163 0.7575
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