
JULY/AUGUST 2007 310278-6648/07/$25.00 © 2007 IEEE

AMONG
engineers

and scien-
tists, MATLAB

is one of the
most popular

c o m p u t a t i o n a l
packages. Part of

MATLAB’s popularity
stems from its simple,

yet sophisticated, graphics
capabilities. While basic

plots are relatively easy to
obtain, specialized plots require
a little more effort to produce.

This article introduces MATLAB’s
Handle Graphics, which provide a
mechanism to fully control and customize
graphics objects in MATLAB. With a basic
understanding of Handle Graphics, users can pro-
duce plots that meet the unique needs and quality stan-
dards commonly required by the profession. Several exam-
ples are presented to illustrate the concepts.

Preliminaries
Before diving headfirst into MATLAB plotting, a few preliminaries are in order. Many readers may safely skip this section and

move straight to the section “Generic plotting.”
First, due to its ubiquity in engineering environments, its powerful features, and its refined interface, this article discusses

techniques that are specific to MATLAB. However, excellent alternatives exist that possess similar functionality. In particular,
Scilab is an open-source platform that is very similar to MATLAB, including its use of object-oriented graphics. Many of the

topics discussed in this article can be achieved in similar fashion with
Scilab. Furthermore, Scilab is available free of charge over the Internet at
<http://www.scilab.org/>.

Second, while some MATLAB programming experience is helpful to
fully understand this article, novice users can appreciate much of the
discussion if a few basics of MATLAB programming are covered.
While a comprehensive introduction is not intended or feasible, the
following overview covers the essential MATLAB structures found in
the upcoming examples.

To begin, MATLAB is a high-performance language for tech-
nical computing that integrates computation, visualization, and programming into a single, easy-

to-use environment. In the most basic operation, commands are issued at the MATLAB com-
mand prompt (>>), and MATLAB responds with an action. Help on any MATLAB com-

mand is easy to obtain by simply typing help followed by the command name.
Integrated, fully searchable, browser-based help provides more comprehen-

sive assistance when needed.
MATLAB offers a wide range of built-in functions. Enter these
function names with the appropriate arguments, and

MATLAB evaluates them. Arguments can be
scalars, vectors, and in some

©
P

H
O

T
O

D
IS

C

Roger A. Green

Getting a handle
on MATLAB
graphics

32 IEEE POTENTIALS

cases matrices. Table 1 provides some example functions that
are utilized in the upcoming examples.

Once suitable data is generated, MATLAB provides a vari-
ety of commands to easily generate and annotate plots. Table
2 details some plot-related commands that are utilized in the
upcoming examples.

To effectively utilize MATLAB functions and commands,
several special characters and constructs are indispensable,
including those listed in Table 3. One particularly important
application of the : notation is the generation of a vector of
equally spaced numbers. This is accomplished by typing
(a:b:c), where a is the start value, b is step size, and c is
the termination condition. For example, (0:0.5:1.75) gen-
erates the length-4 vector [0, 0.5, 1.0, 1.5].

As a programming language, MATLAB supports a wide
range of general-purpose structures such as for-loops, while-
loops, and switch statements. These structures, which are
accessed with the for, while, and switch commands, are
terminated in each case with the end command.

Now acquainted with these essential MATLAB commands
and structures, we are ready to proceed to the primary topic:
improved MATLAB plotting.

Generic plotting
Pick up the proceedings from almost any engineering confer-

ence, and you are bound to find it chock-full of MATLAB plots.
Chances are also good that many of those plots are quite diffi-
cult to read. Generic commands tend to produce generic plots.

To highlight some of the inadequacies typical of generic
plotting, let us consider three examples in roughly increasing
order of complexity. Each is easy to produce with standard
MATLAB commands, and, in each case, standard commands
produce less than satisfying results.

The first example is a histogram of 1,000 observations of a
standard normal random variable Z ∼ N(µ = 0, σ 2 = 1), the
plotting for which is as follows:

01 z = randn(1000,1);
02 BinCenters = (−2.5 : 2.5);
03 hist(z,BinCenters);
04 xlabel(�z�); ylabel(�Count�);

Looking at the code, the first line creates a 1000 × 1 vec-
tor z of observations from a standard normal distribution
using the built-in function randn. Actually, randn is a
pseudorandom number generator. Pseudo-random num-
bers are deterministic sequences that mimic the behavior of
random variables. The same exact 1,000 observations pre-
sented in this article can be recreated by preceding line 1
with the command randn(‘state’,0). The second line creates
a length-6 vector that specifies the histogram bin centers,
[−2.5,−1.5,−0.5, 0.5, 1.5, 2.5]. In this case, these centers
ensure the hist command in line 3 sorts the 1,000 ele-
ments of vector z into bins that span one standard devia-
tion each, starting at zero. Line 3 is also responsible for
generating the histogram figure itself. Line 4 adds appropri-
ate axis labels to the plot.

Although straightforward, the resulting plot that is shown
in Fig. 1 is not particularly good. The standard two-column
format of most conference proceedings causes plot features
such as font size to shrink severely, which compromises read-
ability. The default bar color, which cannot be changed in the
hist command, is a dark blue that shows up nearly black
when printed with black-and-white printers. Although the
general trends of the histogram are clear, it is nearly impossi-
ble to determine the exact count in any particular bin. We
cannot tell, for example, exactly how many observations are
within one standard deviation of the mean.

The second plot is of a pair of quadrature sinusoids with
normalized radian frequency taken over a full period, as can
be seen in the following:

01 t = (0:0.01:2*pi);
02 x = cos(t); y = sin(t);
03 plot(t,x,�k-�,t,y,�k--�); grid;
04 xlabel(�t�); ylabel(�Amplitude�);
05 legend(�cos(t)�,�sin(t)�);

In this example, the first line of code creates a time vector
for a single period, (0 ≤ t < 2π) , using a step size of
�t = 0.01 . Line 2 creates the sinusoids x(t) = cos(t) and
y(t) = sin(t). The plot command plots x as a black (k) solid
(-) line and y as a black (k) dashed (--) line, both as func-
tions of the time vector t. A grid is added as well as axis
labels and a legend. The resulting plot is shown in Fig. 2.

As in the first example, plot features shrink severely when
sized for a two-column format. Line weights are too light. The
grid lines in particular are barely visible on an original print,
let alone a photocopy. The horizontal axis grid lines are not
spaced to help visualize the π/2 lag between waveforms, and
the vertical axis grid lines are unnecessarily dense. The sinu-

grid Add grid to current axes
hist Compute and/or plot histogram

legend Graph legend for lines/patches
plot Generate 2-D line plot

xlabel Label x-axis
ylabel Label y-axis

: Create vectors, subscript arrays
() Pass arguments, prioritize operators
[] Construct array, concatenate elements
... Continue statement to next line
, Separate rows/function arguments
; Separate columns, suppress output

� � Construct string/character array

besselj Bessel function of the first kind
cos Cosine function, radian measure

length Determine the length of a vector
max Largest elements in an array

num2str Convert number to a string
randn Standard normal random numbers
sin Sine function, radian measure

Table 1. Example MATLAB functions.

Table 2. Example MATLAB
plot-related commands.

Table 3. MATLAB special characters.

JULY/AUGUST 2007 33

soids touch the upper and lower portions of the plot box, giv-
ing a crowded appearance. The horizontal axis extends
beyond the computed data, leaving wasted blank space. The
plot legend is not only difficult to read, but it obscures the
data. Overall, the plot is pretty miserable.

The third example attempts to reproduce a Bessel function
plot from Chapter 5 of the communications systems text by
Carlson et al. Unlike the histogram in the first example or the
sinusoids in the second example, Bessel functions are difficult
to accurately sketch by hand. Fortunately, MATLAB makes
plotting them simple, as shown in the following example:

01 beta = (0:0.1:15); n = [0:3,10];
02 for i=1:length(n),
03 J(i,:) = besselj(n(i),beta);
04 end
05 plot(beta,J);
06 xlabel(�beta�); ylabel(�J(n,beta)�);
07 legend(�n=0�,�n=1�,�n=2�,�n=3�,�n=10�)

Here, the first line establishes the argument of the Bessel
functions, (0 ≤ β ≤ 15), as well as the Bessel function orders
to be plotted, n = [0, 1, 2, 3, 10]. Iterating over n, the for-loop
uses the built-in MATLAB function besselj to evaluate Jn(β),
the desired Bessel functions of the first kind. It is tedious to
manually plot each curve, so the plot command passes a
matrix argument J so as to produce each curve simultaneous-
ly. Finally, axis labels and a legend are added.

As shown in Fig. 3, the resulting plot again suffers from
being crammed into a two-column format: lines are too thin
and fonts are too small. A more serious problem occurs when
trying to identify particular curves. When plotting a family of
curves simultaneously, as done in this case, MATLAB distin-
guishes the curves using a default color sequence. When such
plots are exported to a black-and-white document, one of two
things generally happens: 1) the colors are replaced with
black lines, as happened in the current case, or 2) the colors,
when printed in black and white, produce various difficult-to-
distinguish shades of gray; in some cases, these gray lines are
so light that they hardly appear on paper at all. Either case is
unacceptable as it is impossible or very difficult to distinguish
individual curves.

There is no escaping that Figs. 1, 2, and 3 are generic plots
with significant deficiencies.

Handling plot customization
We know our generic plots need customization. The ques-

tion, then, is “How do we handle plot customization effective-
ly?” In MATLAB, the answer is exactly that: a handle.

Every MATLAB graphic you produce is comprised of vari-
ous objects. These objects possess properties that can be easi-
ly modified, if only you know how to access them. Handles
are numbers that uniquely identify every graphic object you
create. By knowing an object’s handle, you can easily access
that object’s properties and also modify those properties.
Figure windows are objects with particularly easy-to-know
handles: the handle for Figure X is just the integer X.

Objects are often contained within another object. An axes
object, for example, is contained within a figure object. In this
case, the axes is considered a child object of the parent figure
object. If you delete the parent, all of its children disappear
too. It is important to understand object hierarchy and basic
object types.

The parent of everything is MATLAB’s root, which is identi-
fied by handle 0. Figures come next, each with integer-valued
handles. As expected, any figure is a child of the root. Axes
are found in figures, which, in turn, are comprised of objects
such as line, patch, surface, rectangle, image, light, and text
objects. Other objects exist, such as those used for graphical

Fig. 1 The generic histogram plot is not particularly good.

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

z

C
ou

nt

Fig. 2 The generic plot of two quadrature sinusoids shrinks
severely when sized for a two-column format.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

A
m

pl
itu

de

cos(t)
sin(t)

Fig. 3 The generic plot of Jn(β) for various n suffers from the
two-column format:lines are too thin and fonts are too small.

0 5 10 15
−0.5

0

0.5

1

beta

J(
n,

be
ta

)

n=0
n=1
n=2
n=3
n=10

34 IEEE POTENTIALS

user interface (GUI) applications, which will not be covered in
this article. For typical plotting applications,

root ⊃ figure ⊃ axes ⊃

line
patch

surface
rectangle

image
light
text.

For most plots, understanding the root, figure, axes, line, and
text objects are all that is needed.

Knowing what objects exist is one thing; knowing how to
create them and how to modify their properties is another.
Fortunately, basic creation is simple. Except for root, which
always exists when MATLAB is running, you can always create
an object by simply typing the object name at the MATLAB
command prompt. Type figure and a figure object is created.
Type line and a line object is created in the current plot. In a
twist on biology, if you try to create a child when no suitable
parent exists, MATLAB just creates the parents needed by the
child. For example, typing line when no graphics objects
exist will not only create the desired line but also the parent
axes and figure objects. Perhaps we can now answer the age-
old question, “Which came first, the chicken or the egg?”

An object’s handle is returned if you simply assign a vari-
able during creation of the basic object types. For example,
typing LineHandle = line creates a line object and assigns
the line’s handle to the variable LineHandle.

MATLAB help provides detailed descriptions and syntax for
each of these commands. For example, typing help axes tells
you about the axes command as well as axes objects. Of
course, many generic MATLAB commands, such as plot and
hist, create graphics objects during the course of their execu-
tion. Some of these commands can return a handle (e.g.,
Handle = plot(0) creates a plot with a dot at (1,0). The dot
is a line object whose handle is assigned to the variable
Handle), others cannot (e.g., hist cannot output a handle).

The findobj command can find handles if you know what
you are looking for. For example, typing findobj
(�type�,�line�) returns handles for all visible line objects in
root. Actually, you can hide an object’s handle so that the find-
obj command will not find it, a topic we will not cover here.

Of course, you can change �line� into whatever object
you desire. For those desiring the power to destroy, passing a
handle to the delete command destroys the corresponding
object and all of its children. Like real life, you can really
wreak havoc by deleting objects. Unlike real life, your power
of destruction in MATLAB is somewhat limited because you
cannot delete the root.

Ready? GET, SET, go!
Now that we know about graphics objects and their han-

dles, we need just a few commands to effectively use them.
There are two really important commands, so important, in
fact, that they deserve their own line

get and set.

The get command is used to get information. The set
command is used to set properties, although it can also be
used to get information on how to set something.

Let us begin with the root. By typing get(0), MATLAB
returns a list of root properties, most of which can be changed
with the set command. One of these properties is called
Format, which determines how to display data to the screen.
If you do not know the options, type set(0,�Format�) and
MATLAB will return the options of how to set Format

[short | long | shortE | longE | shortG |
longG | hex | bank | + | rational].

Typing set(0,�Format�,�rational�) causes MATLAB to
display numbers as rational numbers. For example, typing pi
now returns 355/113, an approximation of π that is good to
about six decimal places. There are a couple of variations to
the get command that are quite useful: gcf gets the current
figure handle, gca gets the current axes handle, and gco gets
the current object handle.

Custom plotting
We now have the knowledge we need to transform generic

plots into something much more special. To demonstrate how, we
revisit our three original examples. For each plot, font sizes are
increased to improve readability. In the histogram plot, shading is
lightened and bin counts are added to the top of each shaded bar.
In the cosine plot, grid spacing, axis and curve labeling, and line
weights are all improved. In the Bessel function plot, improve-
ments are made in line weights and styles, curve and axis labeling,
and equation display. The code for each case is described in turn,
preserving as much of the original code as possible.

To begin, we address the major deficiencies of the original
histogram shown in Fig. 1 as follows:

01 z = randn(1000,1);
02 BinCenters = (-2.5:2.5);
03 hist(z,BinCenters);
04 set(gca,�FontSize�,24);
05 xlabel(�z�); ylabel(�Count�);
06 set(gca,�XLim�,[-3,3],...
07 �YTick�,(0:100:400));
08 PatchHandle = findobj(�Type�,�Patch�);
09 set(PatchHandle,�FaceColor�,[0.8 0.8 0.8]);
10 BinCounts = hist(z,BinCenters);
11 for i=1:length(BinCounts),
12 text(BinCenters(i),BinCounts(i),...
13 num2str(BinCounts(i)),...
14 �FontSize�,24,...
15 �HorizontalAlignment�,�center�,...
16 �VerticalAlignment�,�bottom�);
17 end

The first three lines are identical to the original. The hist
command on line 3 creates the figure, axes, and other objects
that comprise the histogram. Not knowing the axes handle,
line 4 uses the gca command to fetch the current axes handle,
which the set command then uses to adjust the font size to
24 point. This is done prior to the line 5 axis labeling com-
mands since they happen to inherit the axes font size proper-
ty. The larger font size helps ensure the text is readable when
the graphic is reduced to fit into tight spaces such as a two-
column conference format.

Lines 6–7 set two other axes properties: one to ensure the
x-axis limits are ±3 and another to force the y-axis tick labels
to step from 0 to 400 in increments of 100. The findobj com-

JULY/AUGUST 2007 35

mand in line 8 locates the handle of the patch object that cre-
ates the blue-colored bars in the original histogram, and line 9
changes the histogram bar color to a more printer-friendly
light-gray using the RGB triple [0.8, 0.8, 0.8].

By setting the hist command equal to a variable, as done
in line 10, MATLAB returns a vector containing the bin counts
for the histogram. This vector is used in the loop that spans
lines 11–17 to label each of the six bins with its exact bin
count. Lines 12–13 specify the x-position, y-position, and string
arguments required by the text command. Basically, a text
string with the current bin count is located at the top of the
corresponding histogram bar. Lines 14–16 supplement the
text command and set various text object properties includ-
ing horizontal and vertical alignment properties to ensure that
each text object is centered above its corresponding bin.

As shown in Fig. 4, we can now easily establish that
342 + 360 = 702 observations are found within one standard
deviation of the mean. While it takes a little practice to know
exactly what to set, the results are certainly worth the effort.
Compared against the original plot in Fig. 1, the new result is
clearly better.

Next, let us remake the quadrature sinusoid plot.

01 t = (0:0.01:2*pi);
02 x = cos(t); y = sin(t);
03 plot(t,x,�k-�,t,y,�k--�); grid;
04 set(gca,�FontSize�,24);
05 xlabel(�t�); ylabel(�Amplitude�);
06 set(gca,�GridLineStyle�,�--�,...
07 �YTick�,(-1:1),...
08 �XTick�,(0:pi/2:2*pi),...
09 �FontName�,�symbol�,...
10 �XTickLabel�,[{�0�};{�p/2�};...
11 {�p�};{�3p/2�};{�2p�}],...
12 �XLim�,[0,2*pi],�YLim�,[-1.1 1.1]);
13 LineHandles = findobj(�Type�,�Line�);
14 set(LineHandles,�LineWidth�,3);
15 text(pi,0,�sin(t)�,...
16 �FontSize�,24,...
17 �HorizontalAligment�,�left�,...
18 �VerticalAlignment�,�bottom�);
19 text(pi/2,0,�cos(t)�,...
20 �Fontsize�,24,...
21 �HorizontalAlignment�,�right�,...
22 �VerticalAlignment�,�top�);

Similar to the previous example, the first three lines remain
unchanged. Line 4 sets the font size for the axes object to 24
point, a property that is inherited by the line 5 axis labeling
commands. Lines 6–12 set various attributes of the axes
object. To help visibility, the GridLineStyle is set to dashed
rather than dotted. The YTick marks are set rather broadly
apart, and the XTick marks are spaced by π/2 to help empha-
size the quadrature relation between the curves. Line 9
changes the axes FontName to symbol; when combined with
lines 10–11, the horizontal axis will now show the symbol π
rather than decimal numbers since the string character p
appears as π with the symbol font set. Line 12 effectively
resizes the plot bounding box; making XLim cover one period
avoids the wasted space in the previous plot, and expanding
YLim to slightly larger than the amplitude extremes helps
make the plot seem less crowded.

In line 13, the findobj command returns the two line han-

dles corresponding to the x(t) = cos(t) and y(t) = sin(t) curves.
The set command used in line 14 changes the LineWidth of
both curves to 3. This time, it will not strain our eyes to see
the curves.

Lines 15–22 effectively replace the legend command.
Instead of a standard legend, appropriate text objects are
placed next to their respective curves. Vertical and horizontal
alignment properties are chosen to ensure that the text does
not run into the curves. As shown in Fig. 5, the new plot has
no glaring faults and is much better than the original.

Lastly, we move on to the following Bessel function plot.
01 beta = (0:0.1:15); n = [0:3,10];
02 for i=1:length(n),
03 J(i,:) = besselj(n(i), beta);
04 end
05 set(0,�DefaultAxesColorOrder�,[0 0 0],...
06 �DefaultAxesLineStyleOrder�,...
07 (�-|--|-.|:|.�),...
08 �DefaultAxesFontSize�,24,...
09 �DefaultTextFontSize�,16,...
10 �DefaultLineLineWidth�,3);
11 plot(beta,J);

Fig. 4 Custom histogram in the original point size to
demonstrate improvement to readability

−3 −2 −1 0 1 2 3
0

100

200

300

400

z

C
ou

nt

24

143

342
360

116

15

Fig. 5 Custom plot of two quadrature sinusoids in original point
size to underscore readability issues

0 π/2 π 3π/2 2π
−1

0

1

t

A
m

pl
itu

de
sin(t)

cos(t)

36 IEEE POTENTIALS

12 xlabel(�\beta�,�Position�,[6.5 -0.6 1.0]);
13 ylabel(�J_n(\beta)�,�Rotation�,0,...
14 �Position�,[-1.5 0.4 1.0]);
15 set(gca,�box�,�off�,�XTick�,(0:15),...
16 �XTickLabel�,[{�0�}; {�1�};{�2�};...
17 {�3�};{� �};{� �};{� �};{� �};...
18 {� �};{� �};{�10�};{� �};{� �};...
19 {� �};{� �};{�15�}],...
20 �YTick�,(-.4:.2:1),...
21 �YTickLabel�,[{� �},{� �},{�0.0�},...
22 {� �},{� �},{� �},{� �},{�1.0�}],...
23 �XLim�,[0 15],�YLim�,[-0.5 1.1]);
24 for i = 1:length(n),
25 [mx,ind] = max(J(i,:));
26 text(beta(ind)+0.2,mx+0.05,...
27 [�n = �,num2str(n(i))]);
28 end

The data creation lines 1–4 are identical to the original.
Before moving to the plot command, however, remember
that the main fault of the original plot was that the different
Bessel function lines, when printed in black and white, could
not be uniquely distinguished. Wouldn’t it be nice if MATLAB
sequenced through line styles rather than colors when plotting
multiple curves? With Handle Graphics, we can tell MATLAB
to do just that.

A little explanation is needed to understand lines 5–10.
Although these properties do not appear when you type
get(0), you can set the default of any graphic object
property in the root. You simply concatenate Default with
an object name, such as Axes, followed by the desired
proper ty , such as ColorOrder . Thus , by typing
set(0,�DefaultAxesColorOrder�,[0 0 0]), every
plot will only sequence through a single color, black,
which is identified by the RGB triple [0 0 0]. In a simi-
lar manner, lines 6–7 provide us with our sequencing line
styles. Lines 8–10 set future text and axes font sizes as well
as line object line widths. Now, the plot command of line
11 plots the individual Bessel function curves with sequenc-
ing line styles, each black and with a LineWidth of 3.

Lines 12–14 show a method to obtain Greek characters.
The axis labels both require β as well as some subscripting.

MATLAB will generally produce Greek characters if you sim-
ply spell them out and precede them with a \ character (e.g.,
\beta produces β). Each text object has a property called
Interpreter that tells MATLAB how to read the string argu-
ment. By default, the Interpreter is set to tex. TEX founder
Donald Knuth’s TEX book is an excellent place to start learn-
ing TEX syntax.

Notice that the underscore in line 13 causes subscripting.
The Position property in lines 12 and 14 allows the axis
labels to be positioned to complement axis tick labels.
Although this is a two dimensional plot and the z-axis is irrel-
evant, the position property still requires three arguments to
specify the x-, y-, and z-positions, respectively. The rotation of
the y-axis label is set to zero so you do not need to crane
your neck to read the text.

Lines 15–23 set various axes properties, much like the
previous example. As it does not really add anything to the
plot, the plot bounding box is turned off with the Box prop-
erty in line 15. Many of the tick labels are set blank (� �) to
reduce crowding. Lines 24–28 replace the original legend
command, placing text objects near the maximum ampli-
tudes of their respective Bessel functions. The result is
shown in Fig. 6. Without a doubt, the new plot is superior to
the original Fig. 3 plot.

The really astute and detail-oriented reader will note that
the symbols in Fig. 6, while good, are not quite right. They
are too vertical and do not follow the italic bend like Jn(β). It
turns out that we can fix this, too, since MATLAB also has a
LATEX interpreter. Users who know LATEX syntax will find that
MATLAB’s LATEX interpreter is rather robust and capable of
producing complex expressions. Replacing lines 12–14 and
26–27 with the following produces the nearly perfect result
shown in Fig. 7:

12 xlabel(�β�,�Position�,[6.5 -0.6 1.0],...
�Interpreter�,�latex�);

13 ylabel(�$J_n(\beta)$�,�Rotation�,0,...
14 �Position�,[-1.5 0.4 1.0],...

�Interpreter�,�latex�);
26 text(beta(ind)+0.2,mx+0.05,...
27 [�$n = �,num2str(n(i)),�$�],...

�Interpreter�,�latex�);

Fig. 6 Custom plot of Jn(β), in original point size, for various n
is superior to the Fig. 3 plot

0 1 2 3 10 15

0.0

1.0

β

J
n
(β)

n = 0

n = 1
n = 2

n = 3

n = 10

Fig. 7 Custom plot, in original point size, of Jn(β) using LATEX
interpreter

0 1 2 3 10 15

0.0

1.0

β

Jn(β)

n = 0

n = 1
n = 2

n = 3

n = 10

JULY/AUGUST 2007 37

Before concluding, two observations are warranted. First,
although many plot annotations and modifications are possi-
ble using pull-down menus and mouse clicks, it is preferable
to perform such operations using commands, as demonstrated
in this article. Only in this way will you be able to reliably,
accurately, and quickly produce (and reproduce) your plots,
as well as tweak the look of your plots to meet requirements.
The more complicated the plot, the more important this
advice becomes.

It is also worth pointing out that many computer systems
are not “what you see is what you get” (WYSIWYG). In other
words, what is shown on your screen may not be identical to
what is printed to a file or your printer. Thus, your MATLAB
plots, generic or otherwise, may not appear exactly as you
expect. You need to look at the end print or use MATLAB’s
print preview, which is normally WYSIWYG, to ensure that
your results are precisely what you want.

Conclusions
This article shows three examples of generic MATLAB

plots, discusses techniques to better control MATLAB
plots, and then uses these techniques to improve the three
original examples. In each case, plot customizations are
achieved using MATLAB’s Handle Graphics, which provide
a convenient and simple manner to obtain and set graphic
object properties. Colors and shading, line weights and
styles, font sizes and types, axis spacing and labeling, and
nearly every other aspect of a MATLAB plot are easily
controlled.

This article cannot tell you, however, everything that can
go wrong with your plots nor everything you might need to
do to fix them. That is your job. Still, the examples and dis-
cussion should provide a solid basis for MATLAB users to
improve plot quality. With a little creativity and patience, it is
possible to produce just about any plot imaginable.

Read more about it
• C. Gomez, S. Steer, and R. Nikoukhah, Engineering and

Scientific Computing with Scilab. New York: Springer-Verlag, 2006.
• Getting Started with MATLAB, Version 7, The MathWorks,

Inc., Natick MA, 1984–2006. PDF available as part of MATLAB
release R2006b documentation.

• Graphics, Version 7, The MathWorks, Inc., Natick MA,
1984–2006. PDF available as part of MATLAB release R2006b
documentation.

• P. Marchand and O.T. Holland, Graphics and GUIs with
MATLAB, 3rd ed. London: Chapman and Hall/CRC, 2003.

• T. Davis and K. Sigmon, MATLAB Primer, 7th ed.
London: Chapman and Hall/CRC, 2004.

• S. Campbell, J. Chancelier, and R. Nikoukhah, Modeling and
Simulation in Scilab/Scicos. New York: Springer-Verlag, 2005.

About the author
Roger A. Green (Roger.Green@ndsu.edu) is an associate

professor in the Department of Electrical and Computer
Engineering at North Dakota State University. He teaches a
variety of signal processing courses and uses MATLAB exten-
sively in both his courses and research.

IEEE Potentials is looking
for article submissions

Submit your articles to
http://mc.manuscriptcentral.com/pot-ieee

IEEE Potentials is a magazine published by the IEEE with a circulation of roughly
45,000. It is dedicated to serving the needs of undergraduate and graduate students
as well as entry-level engineers. Subjects are explored through timely manuscripts
with a goal of assisting readers on a technical, professional, and personal level.

If you’re an engineer who has cutting-edge technical ideas, formulated concepts
about what will work, or has opinions about the forces that influence the problem-
solving process, IEEE Potentials would like to hear from you.

IEEE Potentials is interested in manuscripts that deal with theory, practical appli-
cations, or new research. They can be tutorial in nature. They can be full articles or
shorter, opinion-oriented essays. When submitting an article, please remember:

> All manuscripts should be written at the level of the student audience.
> Articles without equations are preferred; however, a minimum of equations is

acceptable.
> List no more than 12 references at the end of your manuscript. No embedded

reference numbers should be included in the text. If you need to attribute the
source of key points or quotes, state names in the text and give the full refer-
ence at the end.

> Limit figures to 10 or less.
> Articles should be approximately 2,000-4,000 words in length; essays should

be 900-1,000 words.
> Include four to six lines each about yourself and any coauthors.

