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CHAPTER

ONE

INTRODUCTION TO THE COURSE

Why does this course exist? Doing research in Geophysics requires processing lots of data. As
an example, Hi-net is a seismic network operating in Japan. It consists of 1000 stations, each
recording 3 components, at a frequency of 100 Hz. This turns out to be about 9 TB of data every
year.

We could not possibly process this amount of data by hand. Instead, we need to automate this task
using a computer. This course is meant to help you learn how to do this.

But we are not here simply to automate data processing tasks – we are scientists, so it is important
to keep in mind the particular needs of scientists when writing computer programs to analyze data.

The scientific method says that we need to do tasks

1. Accurately

2. Reproducibly

3. Efficiently

These are listed in order of importance, as there may be tradeoffs between these goals in a given
task. For instance, an earthquake may only happen once, so we cannot expect reproducible results
in that case. Note that efficiency is last – it is far more important that you write code that is correct,
easy to understand and maintain, and produces reproducible results than code that runs fast.

1.1 What is data?

At the basic level, data is a bunch of numbers. However, that by itself is not enough, as we need to
know units, as well as how the data was collected, where it was collected, etc. This is usually called
metadata, which means data that describes other data. How do we handle data on a computer?

1. Binary (i.e. sequences of 0s and 1s) – A computer treats everything as a sequence of 0/1, so
perhaps this is a good approach.

Pros: This turns out to be very efficient, as we do not add anything extra above what the
computer needs to understand the numbers

1
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Cons: The data is not human readable, and there is no way to include metadata. Byte
ordering is not standardized (artifact of history of computer hardware development)

2. ASCII (i.e. text file) Data is represented as a series of text characters.

Pros: Human readable format, also allows for combination of data and metadata in the same
file

Cons: Text representation of numbers is less efficient than straight binary format, so datasets
can be very large if there is a great quantity of data.

3. Combination Format Format combining both text and binary, for instance text metadata and
binary for the numerical aspect of the data. Also includes proprietary formats like Microsoft
Excel.

Pros: Overcomes limitations of both file formats.

Cons: Need to define a standard format for doing so, but there are often competing version
for a particular type of data. Also need special software to read data formats, as special
formats may not be built into all software packages. Proprietary formats may not be useful
without the special software needed.

1.2 What does Data Analysis involve?

1. Reformatting data: You may get data in one format, but software that you have requires
another. For instance, you might get a text file that contains all the correct information, but
needs to be put into a different text format for use with another program. Or you might need
to convert from ASCII to binary or vice versa.

This is something you should always automate! Human typing errors are very common.
Computers do not make mistakes or get tired.

2. Processing data: This is the actual number crunching part. You might use a program from
someone else, or a program that you write yourself.

This course uses high level tools for analysis. High level means that there are many built-in
tools and capabilities in the software. This is a good approach for many reasons

• Shorter code is easier to debug, so more likely to be correct.

• Built-in tools are likely to have been more rigorously tested than something you write
yourself. Also more likely to be more efficient than your implementation. It is a good
idea to avoid re-inventing the wheel!

Eventually, you may need to write your own code and for performance reasons you might
need to use a lower level programming language. Fortunately, writing a computer program
is highly transferrable across different programming languages, so if you get good at using
a high level language, it will not be too difficult to translate your skills to another language
as nearly all of the same concepts will still apply.

2 Chapter 1. Introduction to the Course
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3. Representing processed data: In publications, you are most likely going to publish plots
and maps, rather than the data itself. We will explore computer tools for making graphs
and maps in this class, which are much more efficient than drawing the plots yourself in a
drawing program.

4. Automating everything: To do your analysis in an accurate and reproducible fashion, you
should automate as much as possible. This reduces errors, increases efficiency (computer
programmers are notoriously lazy), and makes things easy to do again in case you realize
you need to do something differently.

1.2. What does Data Analysis involve? 3
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CHAPTER

TWO

UNIX BASICS 1

As discussed in the first lecture, analyzing data often requires several different tools that you must
string together and run on a large number of data files. This would be tedious if done by hand, and
you are very likely to make a mistake. The Unix shell is the tool that is most commonly used to tie
together different tasks. I use a Unix shell every single day, much more often than any other tool
that we will be covering in this class, and thus it is very important to develop your Unix skills.

We often have to interact with the operating system to get the computer to perform some task. In
many cases, this task is not particularly straightforward without a large amount of work on your
part. Let’s say that in your research, you are detecting and locating earthquakes, and have some
computer code that analyzes a large number of waveforms that you automatically download from
the internet every day. To do this efficiently, you would need to figure out which files on your hard
disk include new waveform data, and process only those data files. To do this manually, you would
need to look through potentially hundreds to thousands of files to find the few newest ones, and
then manually type all of them into some file to analyze those files. That would be extremely time
consuming, and you are also likely to make some sort of typing error in the process, or miss some
new piece of data.

Instead, what would be ideal is to be able to tell your computer to find all of the files in the folder
where you keep your waveforms that were created in a certain time period (say, since you last
performed your analysis), and then feed those into your code to do the analysis. Computers are
very good at doing such rote tasks quickly and efficiently; we just need to know how to explain to
the computer what we are trying to do. This is not easy to do on a Windows computer or within
the operating system GUI on a Mac or a Linux machine, but it is very possible (notice that I did
not say easy!) using the Unix command line.

In addition to my notes on Unix, I have included a link to a book on the course website that provides
an introduction to using the Unix terminal on Mac OS X. You should read through both of these
before coming to class, and be ready to spend the class time playing around with the shell to start
getting comfortable.

5
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2.1 Unix Philosophy

The Unix family of operating systems originated in the late 60’s/early 70’s at AT&T’s Bell Labs.
Since then, many different versions have been developed that are very similar (but not exactly
alike), including BSD Unix (developed at Berkeley in the 70’s), Sun Solaris (now owned by Ora-
cle), and the various flavors of Linux. The Mac OS is a descendant of BSD Unix, while some of
the other Unix-like operating systems that you are likely to encounter (Sun, Linux) broke from the
original Unix system at different points. This means that there are usually slight differences be-
tween the operating systems in terms of the specific commands. However, the “Unix Philosophy”
is generally the same across these operating systems and the differences usually involve only slight
tweaks to the command syntax.

Put broadly, the “Unix Philosophy” is one of modular commands that are designed to do just one
simple, well-defined thing and to do it well. If we need to do something different, rather than
modify that original command, we start from scratch and make a new command, and then have
some way for the two commands to interact so that we can string them together and perform a
task. This is in contrast to Windows (and the GUI-side of Mac OS), where the operating system
has been designed to help even the novice user perform simple tasks. Because the Unix commands
are not simple and obvious, it has a much steeper learning curve than using a system like Windows
– in Windows, the smarts are stored in the OS, while in Unix the smarts are stored in the user. It
has also been said that “Windows makes easy tasks easy; Unix makes difficult tasks possible.”

Unix systems are multitasking and multi-user (note that any user can use any computer in the Mac
Lab, and the machines have no trouble performing more than one task at a time). Originally, the
only way that the user could interact with the operating system is through the command terminal
(either a teletype where you typed commands and then a printer printed out the response or a
single terminal window on a monitor), but most Unix systems these days have at least a file system
browser that shows you the filesystem graphically. However, when you connect to a computer
remotely, you still need to do so using a terminal. You may occasionally have a problem with
your computer and need to boot in what is known as “safe mode” where you only can access your
machine through a terminal. This means that knowing how to do everything in a terminal is a must
for any Unix user.

2.2 Browsing the Filesystem

Enough about philosophies and history: how do we use a Unix Terminal? Open the
terminal and type pwd followed by a carriage return. The terminal should print out
/gaia/home/<username>/. This is what is known as your home directory (or folder), and by
default your new terminal sessions start in this directory. The command pwd is the Unix command
that tells you the current working directory (pwd is short for Print Working Directory). Note how
the command follows the Unix philosophy: it does only one thing.

Unix uses a hierarchical filesystem. The topmost directory is what is known as Root, and all other
directories fall into a place within the hierarchy, illustrated below (note that this isn’t complete, it
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just illustrates the big picture):

/ (Root)

Applications gaia

home

egdaub

Documents

MATLAB SAC

Public

jadoe

Documents

MATLAB SAC

Public

bin etc opt

Note that in the directory /gaia/home/ there are multiple directories, with each directory cor-
responding to one user. This highlights the multiuser nature of Unix: every user has their own
space to store things. We can specify a location in the filesystem with either a full name (i.e.
/gaia/home/egdaub/Documents/MATLAB), or we can specify a relative location from the
current directory (if the current directory is /gaia/home/egdaub/, then we could simply spec-
ify Documents/MATLAB). Both are equally valid in Unix.

Because of how Unix commands work, it can be slightly annoying to have files and directories
with spaces in their names (spaces usually designate the end of one argument and the start of the
next). Many people choose to avoid having spaces in file and directory names, instead using the
underscore character _ in place of the space (you may have noticed that I do this with most of
my files). You can use spaces in file and directory names, but when entering the name into the
Unix command line, you need to put a backslash (\) prior to the space to tell the terminal to
interpret that as a space within the path rather than the end of the path. For instance, the path
to the directory Drop Box in all of your Public folders must be entered into the terminal as
/gaia/home/<username>/Public/Drop\ Box to avoid problems.

We can change our position within the hierarchy using the cd command (short for Current Di-
rectory or Change Directory). If we are in our home directory, and want to change to the
Documents directory, we enter cd Documents (Unix is case sensitive, so you need to cap-
italize Documents). Try that, and then use pwd to verify that we are in the Documents folder.
Note that we can use either the relative or the full location in the filesystem when using cd.

What if we need to descend a level in the hierarchy? We could type out the full location of the
directory one level higher, but if we are very deep in the chain and just want to go up one level,
that would be annoying. Instead, we can use .. (two periods) to refer to the directory one level
higher. Thus, to change from Documents back to our home directory, we can type cd .. to go
up a level. Note that we can combine .. with other directory locations: if I am in Documents
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and want to enter my Public folder, I can enter cd ../Public and make the change with a
single command.

One other thing that is handy when navigating the file hierarchy is ~, which is the same as the
home directory. To navigate to your home directory from anywhere, you can type cd ~.

Once we are in the desired directory, how do we see what is in that folder? We use the ls (list)
command, which lists all of the contents in the current directory. Try it out – it will print all of the
files and directories in the current directory to the terminal, like this (obviously your filenames will
be different):

MATLAB data_syllabus.synctex.gz
awk data_syllabus.tex
ceri7104_dataanalysis.docx gmt
compexam homework
csh lectures
data_syllabus.aux python
data_syllabus.log sac
data_syllabus.pdf studentwork

However, you may notice that unless you already know what these files are, the standard ls is not
particularly useful. To see more information, enter ls -l to see more information about all of
the files, which should print out something like this:

total 472
drwxr-xr-x 53 egdaub staff 1802 Nov 4 2015 MATLAB
drwxr-xr-x 2 egdaub staff 68 Aug 10 2015 awk
-rw-r--r--@ 1 egdaub staff 147712 Sep 25 2015 ceri7104_

→˓dataanalysis.docx
drwxr-xr-x 3 egdaub staff 102 Jan 7 2016 compexam
drwxr-xr-x 9 egdaub staff 306 Dec 17 2015 csh
-rw-r--r-- 1 egdaub staff 84 Aug 25 2015 data_syllabus.aux
-rw-r--r-- 1 egdaub staff 5231 Aug 25 2015 data_syllabus.log
-rw-r--r--@ 1 egdaub staff 52581 Aug 25 2015 data_syllabus.pdf
-rw-r--r-- 1 egdaub staff 15882 Aug 25 2015 data_syllabus.

→˓synctex.gz
-rw-r--r-- 1 egdaub staff 4942 Oct 19 2015 data_syllabus.tex
drwxr-xr-x 56 egdaub staff 1904 Dec 17 2015 gmt
drwxr-xr-x 77 egdaub staff 2618 Dec 7 2015 homework
drwxr-xr-x 148 egdaub staff 5032 Nov 24 2015 lectures
drwxr-xr-x 12 egdaub staff 408 Oct 19 2015 python
drwxr-xr-x 11 egdaub staff 374 Nov 19 2015 sac
drwxr-xr-x 12 egdaub staff 408 May 2 12:34 studentwork

This tells us much more about the files and directories in here. The first column tells us several
things: the leading d tells us whether or not this item is a directory, and then the remaining r, w,
and x items tell us the permissions of a file, which we will discuss in the next lab. The @ is specific
to Mac OS, and means that there are additional file attributes that we can view. The second column
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tells us the number of items in that particular directory or file, and the third and fourth column tells
us who owns the file, and the group that that user belongs to (staff). Then we have the size of
the item, followed by the date and time when it was last modified, and finally the name. This gives
us much more information about the files which could be potentially useful to us.

Why did we get different output that was different in this case for the same command? The addition
of the -l to the command, which is an example of a command line option that told the OS that
you wanted a particular version of the command (in this case, -l means that you want the “long”
version of ls). Many commands have numerous options that you can specify – ls, which is one
of the simplest and most used commands in Unix, has almost 40 different options.

ls is not restricted to listing all of the contents in the current directory. If you give ls a file name,
it will list that file, or give you a message telling you that file does not exist. While this may not
seem useful right now, when we talk about wildcards you will see how this can be a useful tool.
Also, you can give ls a directory, and it will list all files in that directory without having to make
that your working directory.

As you navigate through the filesystem, you will find a couple of terminal shortcuts to be useful.
You can access your command history using the up and down arrows, so if you want to re-enter
a previous command, use the up arrow to bring it back into the command window. You can also
tab-complete files; if you type part of a file name and then press the tab button, the terminal will
complete the file name if there is a unique file that starts with the characters you have typed. If
there is not a unique file, then the terminal will complete it as far as it can until it reaches an
ambiguity. If you are already at a point where there are more than one possible completions, it will
not complete, but if you press tab again, it will bring up all options that match what you have typed
so far.

One other command that I use often is Control-u, which deletes everything that you have typed
so far in a command. This usually happens to me when I have started a long command, and then
realize that I forgot to enter some other command first. Control-u clears all of the text in the
command line so that you don’t have to delete the entire string of text manually.

2.3 Getting Help

What if you need a specific option among the 40 options within ls but you don’t know what it
is? You can read the manual for a Unix command by typing man <command>. For instance, to
see all of the options for ls, enter man ls into the command line. You should see a long page
describing ls and all of the options. Scroll down with the down arrow (one line at a time), the
space bar or “f” key (one page at a time), or back up with the up arrow key (line) or the “b” key
(page) to read the documentation. Type “q” to exit the manual page. If you ever do not know how
a command works, the manual page is often helpful (though in the spirit of the Unix Philosophy,
they can often be rather opaque).
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2.4 Viewing Text Files

Using cd and ls we have found the directory and file that we are interested in. How do we view
the contents of a text file? There are several commands that can be used in the command line to do
this.

If you just need to see the first several lines of a file (say you want to double check that the file is
what you think it is), you can use the head command. If you have a text file textfile.txt,
you can view the first several lines with head textfile.txt. Similarly, if you just want to
see the final lines of a file, you can use tail.

What if you want to look at more than just the beginning or end of a text file? You can print the
entire file to the screen using cat (short for concatenate). To view the file textfile.txt, enter
cat textfile.txt to see the whole file printed out to the terminal.

(One technical note: you may have wondered why a command to print a file’s contents has the
name concatenate. This is due to some of the peculiarities of Unix. More generally, cat can
take several text files and concatenate them into a single file; here we just give it one file so
it concatenates it with itself. cat takes the concatenated file and sends it to what is known as
“standard output,” which in this case means that is prints the file contents to the terminal. This is
how we can use a command that was designed to concatenate files to simply display a file in the
terminal.)

If our file is short, then it does not matter whether we use head, tail, or cat to display a file.
However, if our file is very long, then cat will just dump the entire file to the screen, regardless
of how long it is. For us, this is not a big deal (we can just scroll up in the terminal window to see
the entire file), but for past users of Unix that had a terminal that could not scroll, this would pose
a problem as we would only see the end of the file. (Users using the teletype would be able to read
the entire printout, but for very long files the file would take a very long time to print, which would
be rather annoying). To make looking at files more manageable, Unix has the more command,
which prints a file one page at a time. However, more can only scroll forward, so the ironically
named less command that allows for both forward and backward scrolling has superseded more
(on a Mac if you type more you will actually run less). You can scroll forward page by page
with less using the spacebar or the “f” key, or line by line with the arrow key. To go backward,
use the up arrow to go line by line or the “b” key to go page by page. Type “q” to exit less.

(The differences between more and less lead to the often repeated Unix joke that less >
more, which is supposed to make it easy to remember which command to use.)

One other useful command line tool for learning about files is wc (Word Count). wc can
count the number of words, lines, characters, and bytes in a file. Usage is wc <filename1>
<filename2> <filename3> ... where the arguments are the names of the files that you
wish to evaluate. For example, to see the word count for the file testfile.txt enter wc
testfile.txt into the terminal. You can use a number of command line options: -l only
counts the number of lines, -w only counts the number of words, -c only counts the number of
bytes, -m counts the number of characters, and -L determines the length of the longest line. I often
use wc -l to determine the size of an ASCII dataset where each line contains a data item so that
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I know what to expect when loading the data into MATLAB or some other program.

2.5 Editing Text Files

To edit a text file from the terminal, we can edit a text file using a number of different command
line editors. While it is certainly possible to edit a text file on a Mac using the TextEdit program,
if you are connecting to a Unix system remotely, or need to start your Unix machine in safe mode,
the only way you will be able to edit a text file is through an editor. Knowing how to use a terminal-
based text editor is an essential Unix skill, and most find that in many cases, a terminal-based text
editor is faster and more efficient than an editor like TextEdit.

The Mac OS comes with several Terminal-based text editors: nano (same as pico), vim (same
as vi), and emacs, plus possibly more that I do not know about. Most of these editors exist on
other Unix systems, and you should be comfortable using one of them. You should also have a
basic knowledge of how to use all of them, in case you find yourself on a situation where your
favorite editor does not exist on an unfamiliar computer.

If you already know how to use one of these editors, great. You should feel free to use whatever
editor you like in this class. (Personally, in my first Unix experiences when I was an undergraduate,
I used emacs, and so that is still my editor of choice.) However, it is always a good idea to be able
to use several command line text editors. If you have never used any of them, I recommend starting
with nano, as it is the simplest and shows you keyboard shortcuts on the screen. If you already
are comfortable using one of these editors, I would spend time during the class period practicing
with a new editor. There is a built in tutorial for vim that you can access by typing vimtutor
into the shell. You can also find tutorials for any text of the text editors using a web search.

2.6 Managing Files and Directories

Now that we know how to get around, view, create, and modify text files, we may want to rearrange
our files in some way. There are a number of commands to do this.

First, to make a new directory in the present directory, use mkdir followed by the name of the new
directory. For example, mkdir ~/Documents/SAC will create a directory name SAC in the
Documents folder. You can also do this using the Finder, but it is usually faster to use mkdir.

To copy a file to a new directory, use the cp command (copy). The syntax is cp <file>
<newfile>, so to copy the file textfile.txt to the file otherfile.txt type cp
textfile.txt otherfile.txt to copy this file. If you want to copy a file to a different
directory but keep the same name, you can replace the new file name with an existing directory. If
I have a file textfile.txt and wand to place a copy in my MATLAB directory, I would use cp
textfile.txt MATLAB (assuming that the MATLAB directory was in the current directory;
otherwise I would need to specify the full location of the MATLAB directory). Be warned that if
you specify a target file that already exists, the file will be overwritten (often without a warning!).
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To move a file to a new location (or rename it in the same location), we use the mv command
(move). mv behaves much like cp but the previous version of the file no longer exists after us-
ing mv. To rename textfile.txt to samefile.txt I would type mv textfile.txt
samefile.txt into the terminal. Again, the same caveat of not overwriting an existing file that
applies to cp applies here.

You can delete files with the rm command (remove). You should be very careful with this com-
mand, as when you delete a file from the command line it is gone forever (Windows and Mac users
will be familiar with the Recycle Bin and Trash, respectively – rm does not send files to these
locations). For this reason, it is often suggested to use rm -i instead of rm. rm -i will ask you
if you really want to delete the file and require you to type yes or y into a prompt to confirm.
This is in general a good idea, and many system administrators make this the default behavior (i.e.
when you type rm, the terminal automatically interprets it as rm -i). However, when this is the
default behavior, it encourages people to be lazy with their responses (automatically typing y for a
large number of files) or lazy in using wildcards to select files to delete knowing that there will be
a chance to use a prompt to prevent deletion. For this reason, I try to just avoid using rm as much
as possible from the command line and delete things from the Finder so that they go in the Trash
rather than being deleted forever. This same -i option is available for mv and cp in the event that
you try to overwrite an existing file using those commands.

Finally, to remove a directory use rmdir followed by the directory name. The directory must be
empty before you remove it. There is a way to remove a directory that is not empty using rm,
though it can be dangerous if it is mistyped because if you accidentally specify a directory high in
the hierarchy, you can delete your entire home directory (and if you have administrative privileges,
you could potentially delete the whole file system!). My preference here is also to delete things
from within the Finder so that I can retrieve things from the Trash if I make a mistake.

2.7 Summary

Here are a list of the commands that we introduced in this lab. They are among the most common,
and you will likely find yourself using them very often:

• pwd

• ls

• cd

• .. (directory one level higher)

• ~ (home directory)

• man

• head

• tail
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• cat

• less (same as more)

• wc

• nano

• vim

• emacs

• mkdir

• cp

• mv

• rm

• rmdir
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CHAPTER

THREE

UNIX BASICS 2

Hopefully you are becoming familiar with the terminal environment in Unix. Today we will ex-
amine more basics for working in Unix.

3.1 Wildcards

When entering file and directory names, Unix gives us a number of special ways to refer to file-
names, knowing as “globbing” using “wildcard” characters. Wildcard characters that have a special
meaning in the terminal include *, \, ?, ^ and [ ] and can be used to designate various patterns.
One example is the * character, which stands for any number of characters or any type. This is
often used to find files with a certain extension, as *.txt will match any file with the extension
.txt. You can also use multiple wildcards in the same expression; for instance if you want list all
files containing the word “data” that ends in ”.txt” you could use ls *data*.txt and the shell
would show you all of the files matching that pattern.

Other useful wildcards include:

• ?, which can be used to represent a single unknown character. For instance, ?at matches
Bat, bat, Cat, cat, and many others, but not at alone.

• [<characters>] can be used to represent any one of the characters included in the
square brackets. As an example, [CB]at matches Bat and Cat, but not bat or cat.
You can also specify a range of characters such as [A-Z] for any capital letter, [a-z] for any
lowercase letter, and [0-9] for any numeric character, or [A-Za-z0-9] for any alphanumeric
character.

• ^ negates whatever is entered. For example, [^<characters>] matches any single char-
acter except those included in the square brackets. [^C]at will match Bat, bat, cat, and
many other strings, but not Cat.

What if your expression contains one of the special wildcard characters? Like we saw with having
a space in the file name, you can enter an “escape character” by preceding the character with
a backslash \. You will also need to escape wildcards in some other situations, like when using
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wildcard to denote a file name when using find (see below). Thus if you want to match a sequence
that includes a question mark, use, for example, hello\?.txt.

There are more sophisticated pattern matching techniques called “regular expressions” which we
will use more extensively when we talk about AWK. Getting used to using these wildcards in the
terminal will make regular expressions a bit easier to understand, so be sure to spend some time
experimenting with them.

3.2 Finding Files

To make queries of files in the filesystem, use the find command, which has a number of
sophisticated options. The syntax for find is find <locations> <criteria>, where
<locations> are the directories that you wish to search (including all subdirectories) and
<criteria> are the specific options that you want to search for (these are specified by com-
mand options).

Command options for find that I use frequently include:

• -name <pattern> finds files whose name matches the given pattern. You are allowed to
use wildcards in name patterns, but you must put a backslash in front of any special wildcard
characters (otherwise, the shell expands the wildcards before searching the files, while we
want the wildcards to remain until find does its search).

• -iname <pattern> same as -name, but is case insensitive

• -type <type>, target is of a specific type, common examples include f regular file, d
directory

• -atime <time>, target has a most recent access date that differs from the present date
by exactly <time> days, rounded to the next 24 hour period. You can also specify units
other than days for <time> using any of smhdw (seconds, minutes, hours, days, weeks,
respectively). For files that are newer than the time specified, use -<time>, and for files
that are older than the time specified, use +<time>

• -mtime <time>, works like -atime but uses file modification date rather than access
date

For example, to find files within my home directory with a name that match the name “test”,
I would enter find ~ -name test -type f into the terminal. To find all directories in
my Documents directory that were modified in the past 24 hours, use find ~/Documents
-type d -mtime -1 to perform this search. Wildcards can be very useful for finding files of
a certain type; to find all SAC files in my home directory I can use find ~ -type f -iname
\*.sac to find all SAC files. Note that using -iname ensures that both files ending in .SAC and
.sac are found, and that I put a backslash in front of the wildcard character to prevent expanding
the character prior to invocation of find.
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Exercise: Practice searching for different types of files. I use this command frequently, so it is a
good idea to be comfortable with its use.

3.3 Finding Text Within Files

We can also search for text patterns within files. This is done using grep (short for Globally search
a Regular Expression and Print). The basic syntax is grep <pattern> <files> where you
specify a single pattern and (potentially) multiple text files in which to look for that pattern. For
example, if you have a list of fruits as a text file fruit.txt, then grep apple fruit.txt
will print any lines in the file that contain the string “apple.”

As the title alludes to, the pattern specification is a regular expression and can be used to match
rather complex patterns. Practice using grep, using straight text strings as well as wildcards to
make various patterns that appear in a text file. You can also use wildcards on the text files if you
want to search a large number of files for the pattern. As previously mentioned, we will come back
to regular expressions and will talk a bit more about grep.

Exercise: Using a text editor, create a text file that contains several lines of text. Use grep to find
patterns, in particular to practice using various wildcards to match patterns.

3.4 Permissions

Back in the last lab, we noted that ls -l gave us a rather cryptic list of characters at the beginning
of each entry:

total 472
drwxr-xr-x 53 egdaub staff 1802 Nov 4 2015 MATLAB
drwxr-xr-x 2 egdaub staff 68 Aug 10 2015 awk
-rw-r--r--@ 1 egdaub staff 147712 Sep 25 2015 ceri7104_

→˓dataanalysis.docx
drwxr-xr-x 3 egdaub staff 102 Jan 7 2016 compexam
drwxr-xr-x 9 egdaub staff 306 Dec 17 2015 csh
-rw-r--r-- 1 egdaub staff 84 Aug 25 2015 data_syllabus.aux
-rw-r--r-- 1 egdaub staff 5231 Aug 25 2015 data_syllabus.log
-rw-r--r--@ 1 egdaub staff 52581 Aug 25 2015 data_syllabus.pdf
-rw-r--r-- 1 egdaub staff 15882 Aug 25 2015 data_syllabus.

→˓synctex.gz
-rw-r--r-- 1 egdaub staff 4942 Oct 19 2015 data_syllabus.tex
drwxr-xr-x 56 egdaub staff 1904 Dec 17 2015 gmt
drwxr-xr-x 77 egdaub staff 2618 Dec 7 2015 homework
drwxr-xr-x 148 egdaub staff 5032 Nov 24 2015 lectures
drwxr-xr-x 12 egdaub staff 408 Oct 19 2015 python
drwxr-xr-x 11 egdaub staff 374 Nov 19 2015 sac
drwxr-xr-x 12 egdaub staff 408 May 2 12:34 studentwork
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These characters signify what are known as “permissions.” These characters tell us who is allowed
to read (r), write (w), and execute (x) this file. There are three sets of letters signifying this that
follow the first characters, which tells us whether or not the entry is a directory): the first set of
three tells us what the owner is allowed to do (for the above list, the owner is egdaub), the second
set of three tells us what the group is allowed to do (for the above list, the group is staff), and the
third set tells us what any other user is allowed to do. Thus, the sequence -rw-r--r-- signifies
that the user can read and write the file, the group can read the file, and others can read the file.
These are the default permissions for a newly created file. Note that for the directories, the listing
is drwxr-xr-x. The leading d says that this is a directory, and that all can read and execute,
but only the owner can write. Execute is a bit of a misnomer here because this is a directory (you
cannot really “execute” a directory, it just means that said class of users can cd into that directory
and search in that directory).

These permissions can be changed using the chmod command (Change Mode). The syntax is
chmod <mode> <files> and there are several different ways to specify the mode. You can
add, remove, or set specific permissions for specific groups using the letters u, g, o, and a (for user,
group, others, and all respectively), the operators +, -, and = (add permission, remove permission,
and set permission, respectively), and r, w, and x (read, write, and excecute, respectively). Thus, to
add execute privileges for the user, enter chmod u+x file.txt into the terminal. To remove
read and write privileges for others, enter chmod o-rw file.txt into the terminal. To give
everyone read, write, and execute access, enter chmod a=rwx file.txt into the terminal.
You can also specify more than one file in the command, and the specified changes will be made
to all the files given in the command.

A shorthand way to specify permissions is to use an octal number to specify the binary representa-
tion of read, write, and execute as follows:

Permissions --- --x -w- -wx r-- r-x rw- rwx
Binary 000 001 010 011 100 101 110 111
Octal 0 1 2 3 4 5 6 7

To set owner permissions to rwx, group to r-x, and others to r--, you can enter chmod 754
file.txt (the first octal number is for the owner, the second is for the group, and the third is
for others). This is shorter than specifying each one individually through multiple commands, so
if you need to change many different permissions at once, this is a handy trick.

3.5 Aliases

You may have noticed that some of your Unix commands can get a bit long and difficult to type if
you choose a number of options. If you have a command that is long and is one you use frequently,
you may consider making an alias. An alias is a way to essentially define your own Unix command
using some other command. For instance, if you want to always remove files using rm -i, then
you could make an alias to do this. Enter alias rm 'rm -i' and then a carriage return. This
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sets the command rm to execute rm -i automatically. Try this, and see that it will ask you to
confirm when deleting a file. To undo an alias, precede the command with a backslash (\rm).
To remove an alias, use the unalias command (unalias rm to remove the example here).
unalias -a will undo all aliases.

3.6 Other Shells

One thing to note here: the syntax for an alias in the shell that you are currently using (the Tenex
C shell tcsh) is different from some other Unix shells. Each of these different shells represent
a terminal with different available commands and shortcuts. While they are all relatively similar,
they are not exactly the same. Other shells available in the Mac Lab include the Bourne-again shell
bash (default on most GNU/Linux systems), the Korn shell ksh, the Tenex C Shell, and the Z
Shell zsh. While the majority of the commands that we will use work in all shells, there are some
specific ones like this that are specific to a certain type of shell.

To run a different shell, enter the appropriate command into your present terminal. It will start a
new session within that shell (the current directory will remain the same). To exit, type exit and
you will return to your first shell. You can set your default shell in Terminal to be whatever you
like – go to Terminal > Preferences... and set the “Shells open with” command to whatever shell
you want. You need to give the full path, and all of the shells are under /bin.

3.7 rc files

If you want to set up an alias for all of your terminal sessions, is there a way to avoid typing in
the alias every time you start up a terminal? You can automatically set things like aliases using a
startup file. For the default tcsh in the Mac lab, the startup file is a file in your home directory
~/.tcshrc and is executed automatically every time you start up a tcsh session. Note that the
file begins with a period – this means that this is a file that is not normally visible when you type
ls in your home directory. To see files that begin with a period, use the ls -a option. When
you ls -a in your home directory, if you still do not see the file, then it does not exist. You can
create this file in a text editor like nano – enter nano .tcshrc when in your home directory,
and then type in any commands you would like to be executed by default on startup. Common
things to put in a startup file include setting aliases, changing the terminal prompt appearance, and
setting variables known as environment variables (more on that later in the semester). Try putting
an alias in your startup file, restarting the terminal, and seeing that the alias is in effect. The other
shells have similar startup files, such as ~/.bashrc, though some have more than one possible
startup file and preferential execution of one versus the other, depending on whether the shell is
the login shell or was launched from another shell. If you want to keep using tcsh, then do not
worry about login versus non-login shells – regardless of how your shell is launched, it will always
execute ~/.tcshrc file when it starts.
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3.8 Making Programs Interact

3.8.1 Standard Input/Output and Pipes

One thing you may be wondering now is if the Unix philosophy is to make simple, robust programs
that do one thing and do it well, how do we use multiple programs to do something complex? This
requires that we introduce the concept of “pipes,” “standard input,” and “standard output.”

As you may have noticed, all of the commands you have typed typically print out some result to
the screen. This could be a list of files using ls or find, the contents of a text file using cat, or
a list of lines matching a pattern using grep. This output is referred to as “standard output” and
every Unix command that produces output prints it to the screen in roughly the same way.

Programs can also receive input via what is called “standard input,” which can come from the
keyboard, from a file, or from the standard output of another program. This interaction where the
standard output of one program becomes the standard input of another is referred to as “piping”
and is the principal way that we can do more complicated Unix tasks using the basic commands.

As a very simple example, let’s say that we have a directory containing a large number of files and
we want to be able to look at the long format list (ls -l) of the contents. However, we want
to read this in the terminal with the less program, rather than having to manually scroll up and
down. This can be accomplished using a “pipe:” enter ls -l | less into the terminal, and
you should have the list contents open using less. The verical line | is what is known as a “pipe,”
and its meaning here is to tell the terminal to use the standard output of the command ls -l as
the standard input to the less command. We can then read the output from ls -l in less like
it is any old text file.

While this may seem really simple (and you would be correct) we can do more complicated things.
We can search within the output of some program using grep via a pipe – to find out which files in
a directory some user can read, write, and execute, enter ls -l | grep rwx and the terminal
will print the lines that contain the string “rwx.” Using grep in a pipe to find patterns in the output
of some other command is a very common use of pipes, and you are likely to come across many
examples where this is useful.

3.8.2 Input and Output Redirection

There are other ways to deal with command output, as you can save results of terminal operations
as files. Saving output to files (as well as using files as standard input) is done with the operators
<, >, >>, and the command tee. < signifies that the file following the < operator is to be used
as input to the command. Many of the commands that we have already seen use files as standard
input without needing to use < (for example, try entering cat testfile.txt and cat <
testfile.txt; the output should be identical), but you will likely encounter cases where you
need to specify the use of a file as input.

The operators >, >>, and the command tee can all be used to save command output to a file. >
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saves the command line output in a new file, overwriting the old file in the event that file exists. Try
entering ls > temp.txt into the terminal; the result should create a file “temp.txt” containing
the result of the ls command. >> will append the results of a command to the file. Check the
contents of “temp.txt,” and then enter ls -l >> temp.txt. Use less to view “temp.txt” to
verify that it contains the results of both the short and the long list command.

Sometimes if you are piping the result of one command to another, you have some intermediate
output that you might want to save for another purpose. To save the standard output from a com-
mand while simultaneously sending the same output to standard output, the tee command can be
used. Basically, tee <filename> saves its standard input to file, but also sends its standard
input to standard output. Try using tee by entering ls -l | tee temp.txt. The ls -l
results should both print to the terminal and save to the file “temp.txt.”

3.8.3 xargs

One final trick for making programs interact is the following: what if you have some program that
takes a number of individual file names as input, rather than standard input (i.e. a text stream)? For
example, in the piping example above, we piped the output of ls into grep to search the output
for a certain pattern. However, what if we didn’t want to search the output for that pattern, but
rather the contents of those particular files for a pattern? We cannot do that using a pipe. Similarly,
if we want to find a bunch of files, and then copy them to some other directory, we cannot use
standard output in the cp command, since cp takes a file and copies it to another directory.

You can perform the above operations by making commands interact with the xargs command.
xargs takes standard input and reformats it as a list of arguments, then repeatedly executes the
command that follows using each of the elements of the list as an argument. By default, xargs
puts the argument at the end of the command, so if you have a command where the inputs need
to be placed at a different point in the command, you should specify where xargs should put the
arguments using the -J option and some other character as a placeholder (see an example of how
to do this below).

As an example, let’s say I want to search every shell script (files with a suffix ”.sh”) in my home
directory for the pattern “gmt” to figure out which of my shell scripts invoke GMT commands. This
is one of those cases where I need to use xargs to turn standard output into a list of arguments. I
can do this with find ~ -name \*.sh | xargs grep gmt as a terminal entry. The first
command is find to find all shell scripts (files ending in ”.sh”) in my home directory. The find
command by itself sends a list of files to standard output. Since grep needs a list of arguments,
rather than standard output, xargs is used to transform standard output into a list of arguments.
What is actually happening is that xargs tells the terminal to execute the command grep gmt
<file> repeatedly, where <file> is replaced on each successive execution with a line from the
output from the find command. Note that in this case, because xargs puts the argument at the
end of the command by default, and grep takes its target file as its last argument, we could use
xargs without needing to specify any options.

As another example, here is a situation where we cannot use xargs without any options. Let’s
say that we want to copy every file that we modified in the past 24 hours to a single folder as a
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backup copy. Since cp takes a filename as an argument, rather than standard input, we need to
use xargs to achieve this. Also note that the syntax for cp is cp <file> <target>, so the
default usage of xargs will not work because we need to insert our filenames in the middle of
the command. To successfully perform this operation, we use the -J option for xargs, where we
designate a special character to serve as a placeholder, and then xargs replaces the placeholder
with the argument derived from the input in each execution of the command. Assuming that the
directory ~/backup already exists, then we can copy all recently modified files to this directory
by entering find ~ -type f -mtime -1 | xargs -J % cp % ~/backup into the
terminal. The first part of the command is the find operation, which sends the files satisfying the
critera to standard output. This is then piped into xargs, which takes the list of files and inserts
each part of the list into the appropriate place in the cp command (using % as the placeholder,
which is specified by the -J option). Note that other versions of Unix may have a different way of
doing this command substitution, so check the manual page if you are on a system other than the
Mac OS.

Do not worry if you do not totally understand how to use pipes, redirections of output, and xargs,
and everything else here. Unix takes time to learn how to make it do what you want. Over the
semester, as we work with Unix more and start using Shell Scripts, AWK, and GMT, you will
gradually become more comfortable with this. However, nothing can take the place of practice: if
you want to truly become comfortable with Unix, then you should use these tools on a daily basis
in your research.

3.9 Summary

Here are a list of the commands that we introduced in this lab. They are among the most common,
and you will likely find yourself using them very often:

• Wildcards *, \, ?, ^ and [ ]

• find

• grep

• chmod

• alias

• unalias

• tcsh and many other shell types

• > (redirect to file)

• < (redirect from file)

• | (pipe to next command)

• tee (send to file and standard output)
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• xargs
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CHAPTER

FOUR

BASIC PROGRAMMING WITH PYTHON 1

Now that we have a sense of how to use the Unix shell, we will examine some programming
basics. Today we will be mostly getting acquainted with Python, which is a common programming
language used in many scientific fields. Python has several nice features that make it useful for
beginning programmers, and the standard implementation of Python is open source and free. You
are of course free to install Python on your own computer if you want to practice programming
away from the computer lab. Python is my default programming language for general scientific
computing. I use it almost as often as a Unix shell, as there are extensive tools for scientific number
crunching, analysis, and plotting. As we will see, MATLAB is another option for many of these
types of tasks, but I find the Python programming language to be more powerful and flexible and
thus I have found that for me, Python has almost completely replaced MATLAB. I do more serious
computing in a compiled language like C or Fortran, but if the task is simple and does not need to
be optimized for performance, Python is typically my choice.

This lab session will be interactive, as I will demonstrate everything myself on the computer. You
should type along with me when I am demonstrating something, and then I will give you a chance
to practice on some exercises.

4.1 Python

Python is a high level programming language. “High Level” refers to the fact that the language
comes with many built-in features that might not be present in other languages (and you would
therefore need to write these yourself). The higher the level of a language, the shorter programs
tend to be. This is generally a good thing – it is better to have a group of coordinated experts
implement a feature to get it working correctly than to have every single user write their own
version. It also saves you time, in that programs are faster to write and debug.

One reason Python is often used for introductory programming is that Python programs tend to be
rather literal. They often read fairly clearly in English, making them easier to understand. This is
not always the case, as we will see as the semester progresses (just wait until you are trying to wade
through an incomprehensible GMT shell script, and you will appreciate many aspects of Python).

A second feature of Python is that it uses indentation to denote syntax. This means that Python
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takes the layout and spacing of a program into consideration when interpreting its meaning. The
alternative is to use specific characters to denote the meaning. While one method is not better than
any other, it is generally agreed that the type of indentation required by Python is good program-
ming practice, as it makes programs more readable and easier for humans to interpret. For this
reason, I consider the requirements imposed by Python a good thing for beginners, as it forces
them to develop good programming habits. I will demonstrate how this works as we go today.

We will be using Python 2 in this class. It is important to note that code written for Python 2
and Python 3 are not interchangeable – there are some important issues with the language that
have been cleaned up in Python 3. If you want to install Python on your own computer and use
examples from this class, make sure you install Python 2 (or understand how you need to change
your code for Python 3).

4.2 Interpreted vs. Compiled Languages

One issue with programming is the fact that the processor on your computer cannot directly in-
terpret a program. Computer processors can only do a limited number of operations (think add,
subtract, multiply, divide and logical operations), so every operation must be translated into a se-
ries of instructions of this type. Fortunately, we have computer programs that are able to do this
for us. There are two types: interpreters and compilers.

• Interpreters turn a program into instructions one line at a time. The interpreter reads a
line of code, checks if it is valid code, creates a set of instructions, and then executes the
instructions. It then proceeds to the next line until the end of the code to be executed is
reached.

• Compilers read the entire program and turn the whole thing into executable instructions,
saving the instructions as an executable file. The instructions are not executed until the file
containing the instructions is run.

These two models have pros and cons. Interpreters are easier to use in general, because the in-
terpreter has direct access to the part of the code is currently being executed. If it encounters a
problem, it can tell you exactly where it ran into that problem in your code. However, because it
is constantly creating instructions and executing them on the fly, interpreters cannot perform opti-
mizations as readily as compilers, so code performance can suffer as a result. Compilers tend to
create code that runs faster, but if there is an error in your code, it can be much more difficult to
track down since it is not known which part of your code produced the instructions that could not
be executed.

All of the languages that we will use in this class are interpreted. This makes them easier to use,
but not ideal if performance is necessary. However, computers these days tend to be fast enough
that you are unlikely to need a compiled language unless you are doing some serious number
crunching.
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4.3 Interactive Sessions and Scripts

To start up the Python interpreter, open a Unix shell and type python and a carriage return.
You will see some information about the version of Python and then a prompt >>>. This is an
interactive session with the Python interpreter. You can enter one set of instructions at a time, and
the interpreter will execute them as they are typed, printing out the results to the shell. This is a
nice way to use Python for simple work, as you can check your work as you go along by directly
seeing the output results. To exit, type exit() at the prompt.

For more complicated work, it is convenient to save all of the code to be executed into a single
file, say myscript.py and then run the entire file through the Python interpreter. This is called
running a script, in that the file is a set of commands to be executed (much like a script is a set of
lines to be read in a performance), and can be done by typing python myscript.py followed
by a carriage return into the Unix shell. This will run the entire script, with any output written to
the shell.

Initially, you will probably do your programming interactively in Python until you get the hang of
it. After that, as your programs get more complex, you will want to write scripts using a text editor
(hopefully you will use this as a chance to practice with a command line editor) and then run them
directly from the shell.

4.4 Basics

Start up the Python interpreter. I will provide some demonstrations of the following on the screen.
You are encouraged to type along with me – playing around with an interpreter is usually the best
way to learn how to do things. I will show you the following:

• Basic data types: integers, strings, and floating point numbers make up the most elemen-
tary objects in almost any programming language, including Python. Integers are signified
by simply entering the integer into the interpreter: 5, -1 and 10000 are valid integers in
Python. Strings are any set of characters enclosed by either single ' or double quotes ("). If
you want to include quotes in the string, then either use the opposite type of quotation marks
to enclose the string, or put a backslash (\) before the quote inside of the string. Finally, you
can denote a floating point number (i.e. a number with a decimal part) by typing a number
with a trailing decimal point, such as 100. or 0.001, or writing the number in scientific
notation like 1.e-3.

You can change between these data types in Python. To change to an integer, use int(
); to change to a float, use float( ); and to change to a string, use str( ). Some
transformations are not possible: for instance, if you have a string that contains non-numeric
characters, you will not be able to change it into a float or an integer. If you change a float
into an integer, Python will drop the decimal part of the number. If you are intending to write
a program to work with a certain data type, it is a good idea to convert any program input
into the correct datatype to prevent errors further down the line.
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• Basic operations: Python can do basic operations on these primitive data items. For in-
stance, to add two integers, you can enter 2 + 3 and the interpreter gives you back the
result. Built-in operations on integers include addition (+), subtraction (-), multiplication
(*), division (/), exponentiation (**), and the modulus operation (the remainder after divid-
ing the first number by the second, denoted by %). Note that when dividing two integers, you
get an integer back!

Operations follow the standard order of operations. To alter the order in which operations
are carried out, use parentheses to group operations: 2 * 3 + 4 is not the same as 2 *
(3 + 4).

These same operations, except for modulo, can be applied to floating point numbers. The
only difference is that you always get a floating point number back, rather than an integer.
If you combine integers and floats, Python will automatically change the integer into a float
and perform the floating point version of the operation.

For strings, operations include addition (which concatenates two strings), and multiplication
(which repeats the string a given number of times). Note that if you try to do something
nonsensical like add a string and an integer, Python gives you an error message.

• Print Statements: To print something out, use the print statement. Often, beginning
programming books and tutorials start with a program known as “Hello world!” In Python,
this program is very succinct, taking up only a single line: print 'Hello world!'.
You can also print the results of more complicated operations. Print statements are useful
for debugging, as they let you see intermediate results on the screen, allowing you to check
if they are correct.

• Assigning variables: While you can do basic calculations with Python, a programmable
computer isn’t particularly useful unless you can store intermediate results to be re-used
later. Otherwise, you would have to repeatedly type in complex expressions, where you are
likely to make a mistake, which defeats the purpose of having a computer do the calculations.
Assignment is done through the assignment operator =, which binds a name on the left hand
side to a value on the right hand side.

Variable names can be anything you like, within a set of rules: (1) variable names must start
with a non-numeric character (numbers are allowed, but not in the first position), (2) they
cannot contain any special protected characters (like =, +, ., etc.) that have other meanings
in Python, (3) they cannot be certain protected keywords (we have not encountered any yet,
but we will see examples today such as if and for).

Assignment is very handy, as it lets you (1) re-use previous results without repeating the
calculation (or having to type it in again!), (2) break up complex statements that are difficult
to type into multiple pieces, and (3) choose informative variable names can help make your
code easier to read by a human (such as me when I am grading your homework, or most
importantly yourself in 2 weeks when you are re-visiting a piece of code that you completely
forgot about in the meantime).

• Input: To enter data from the keyboard, we can use raw_input( ). If you provide a
string to raw_input, that string will be displayed on the screen when asking for input. So
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for example, I can use the following code to enter a string into a Python program:

a = raw_input('Enter a string: ')

The string entered will then be stored in variable a. Raw input is always a string; if you need
to enter a numeric value, use int(a) or float(a) to convert the string to the appropriate
type.

• Comments: All programming languages have characters that tell the program to ignore
whatever is written afterwards. This lets you add documentation that explains why you are
doing what you are doing (again, something that is very handy to you in 2 months when you
re-visit some code you wrote and forgot about), explain details about how something works,
and things like that. Documenting code is a very important habit to develop. I will mark
you down on homework assignments if you turn in code that isn’t documented sufficiently.
Comments can be either full line comments, or occur inline after other Python code.

Comments in Python are designated using the pound character (#). In general, it is a good
idea to document how and why you are doing what you are doing, rather than what you are
doing. Take the following comment examples to see which is more useful:

# npoints is one less than a
npoints = a - 1

This is not particularly helpful, as it is obvious from the code itself what you are doing in
this case. A more useful thing to comment is explain why you are doing something:

# decrease a by one to get npoints, as first is double counted
npoints = a - 1

This is much more helpful – not only do we know that npoints isn’t the same as a, but why
they are not the same. If we need to modify the code, comments explaining why something
was done would be more informative for us.

All of the above are basic features of any programming language, so these are not particular to
Python (and we will see them again several times during the semester).

4.5 Conditional Statements (if)

Above, we saw a bit about the fundamental building blocks of any programming language. How-
ever, these pieces alone aren’t enough to make computers particularly useful. This is because the
Python interpreter executes every line we enter, one at a time. But what if some future calcula-
tion depends on the result of a previous one? We would need to do the intermediate calculation,
then decide for ourselves what action to take, and only then could we enter the remaining set of
instructions.

We can avoid this by using an if statement. The basic structure of an if statement is as follows:
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if condition1:
statement1

elif condition2:
statement2

...
else:

statement

Depending on the various conditions, this program will execute different statements. If boolean
condition1 is true, then the program executes statement1. If condition1 is false, then
the program checks if statement2 is true; if so it executes statement2. You can add as many
elif blocks to the program as you like, and the interpreter will continue checking them one at a
time until it encounters one that is true. If none of the preceding statements are true, then when the
else part is reached, statement will be executed.

In an if statement, the elif and else blocks are optional. You do not need an else block at the
end, nor do you need any elif blocks in the middle. You can therefore tailor the if statement to
do whatever specific steps you need for any type of condition.

The condition parts are what are known as boolean datatypes: they can only have two values,
either True or False. This is another type of basic item that is found in all programming lan-
guages, and you can usually also use 1 for true and 0 for false. One way to get a boolean is to
make a comparison. For instance, if you have an integer variable a, you could see if that variable
is equal to 1 with the statement a == 1 (note that comparisons in Python use the double equals
sign, while assignment uses a single equals sign; this is true for most programming languages).
Other comparisons include: > (greater than), < (less than), >= (greater than or equal to), >= (less
than or equal to), and != or <> (not equal to, both are equivalent).

Booleans can be combined to form booleans using the operations and and or. a == b and c
== d is true only if a and b are equal and c and d are equal. If either of the two comparisons are
false, then the whole thing is false. or only requires that one of the conditions be true. Multiple
booleans can be combined with parenthesis (if needed to specify precedence). If you want the
opposite of a given comparison operation, use not before the comparison. So for instance, not
1 == 2 is True, while not 2 > 1 is False.

One thing you should have noticed above is that all of my statements were indented from the left
by the same amount. In general, it is a good idea to indent blocks of code that belong together like
this – it makes it clear to the reader what code is executed when each of the various conditions are
true. You should always indent your code consistently in this class when turning in assignments,
and if I find it hard to read, I will take off points.

However, most programming languages do not require you to indent your code this way. Some
other characters indicate which statements belong to the various code blocks. Python, on the other
hand, requires that you indent your code consistently and actually uses the spacing to interpret the
meaning of your program. If you try to run a Python program that is not consistently indented,
you will either (a) get an error message back, or worse (b) your program will run but not give you
the right answer. Some people find this aspect of Python to be annoying, but to me this is a very
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positive feature about Python (particularly for beginners as it forces you to develop good habits).

Spend some time experimenting with if statements. Try some with just an if, others with if and
else, and others yet with elif blocks. Print statements are good things to include in the various
blocks, as they let you know visually that your code ran as you intended.

4.6 Loop Statements (while, for)

While conditional statements help us to automatically treat different cases in different ways within
a program, the computer is not a powerful tool for automation unless we are able to do things
repeatedly. Repetition requires looping capabilities. Without a loop, the only way to write a
computer program that does more computations is to make the program longer, which requires
more typing by you (and thus, more opportunities for you to make a mistake). Loops, on the other
hand, allow you to execute something many times. This is what makes a computer a powerful tool
for analyzing data: we can do the same thing over and over again on different data without doing
extra work.

Programming languages have two basic types of loops (though some have additional variations on
them): while loops, and for loops. Let’s examine each one separately:

While Loops: These loops allow you to run a block of code repeatedly as long as a certain condi-
tion is true. This is best illustrated with an example:

a = 10
while a > 0:

print a
a = a - 1

When executed, this code will print out the integers from 10 to 1, counting down one at a time.
(Try this for yourself.) How does this work?

First, we initialize the variable a to be 10. Then we enter the loop, which executes as long as a is
greater than zero. At the start of the first loop, the condition is true, so the loop executes, printing
10 to the screen, and then setting the value of a to be a -1. Note that this equation does not really
make sense mathematically – how can a = a -1? However, recall that = is not an equality in
Python; it is an assignment operator. Here, we first calculate the value a -1 and assign it to the
variable a afterwards, overwriting the old value of a in the process.

From there, we have completed the loop, so the cycle starts over again. Python checks if a > 0,
and since it is, it executes the loop again. This continues until we reach the case where a is zero.
In that case, the condition is no longer true, so Python does not execute the loop, and we reach the
end of our mini program.

There are a few things to be aware of here. First, note that like with the if statement, I have
indented all of the code in the loop. This is something you should do in any program you write,
even though it may not be required, as it gives a visual cue as to what code is executed each time
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through the loop. In Python such indentation is necessary. Try running the program again, but
change the indentation: you will either get an error message, or the program may run forever,
because there isn’t appropriate spacing in the loop body.

Second, and most importantly, is that I made sure to write this loop so that a decreased every time
through the loop. Otherwise, we could not guarantee that the loop would ever finish (something
known as an infinite loop). Try running your program without the a = a -1 line: you will see
10 printed out to the screen in perpetuity. This is an important thing to keep in mind when writing
a program, as if you have an infinite loop in your code, it will never run to completion.

One thing to note about while loops is that we may not know easily in advance how many times
we need to go through the loop. In this case, it was fairly obvious how many times it would run,
but in other cases, a might decrease by a different amount each time through the loop, or it may
not decrease every time. Because of this, most programming languages have another kind of loop
that executes a fixed number of times, reserving while loops for the case where loops are executed
an unknown number of times.

For Loops: To execute a loop a fixed number of times, use a for loop. Here is an equivalent
program to the one above, using for instead of while:

for i in range(10):
print 10 - i

To use a for loop in Python, you need to tell it what specific values to iterate over. One simple
way to do this is to use range. By default, if you type range(10), then it will repeat your loop
for values ranging from 0 to 9, with increments of 1. If you want to start at a different value other
than 0, then range(1,11) will start at 1 and end with 10 (note the last value is one less than the
final number). To get regularly spaced numbers, use range(<start>,<stop>,<step>).
So to get all even numbers from 0 to 20 (inclusive), you could use range(0,21,2). Within the
loop, i then has whatever value is appropriate for that iteration through the loop.

You might notice that an explicit for loop is not really necessary for doing simple loops like this,
as you can just as easily write this as a while loop, and for loops are really only a convenience.
This is mostly true, though in Python in particular there are more complex data types where for
is much more sensible for iterating through a bunch of values, as opposed to while. In general,
I find that I use for loops much more frequently than while loops, as most of the cases where I
need a loop involves a specified number of repetitions.

Sometimes, you may want to stop running a loop in the middle of a series of iterations. while
loops provide one way to do this, but you can also change the behavior of either for or while
loops with the break and continue statements. A break statement immediately terminates
execution of a loop, while a continue statement proceeds immediately to the next loop iteration,
skipping over any remaining statements. For instance, a version of our original while loop could
alternatively be written as:

a = 10
while True:

if a == 0:
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break
print a
a = a - 1

This would produce the same output as the original program (try it!). If we wanted to run the same
skip over 5 for some reason, we could use a conditional and a continue statement as follows:

a = 11
while a > 1:

a = a - 1
if a == 5:

continue
print a

Looping constructs are central to efficient programming, as they are what make using a computer to
repeat tasks so efficient. Any time you are doing something over and over, you should get into the
habit of figuring out how to turn it into a loop – as you will see, pretty much every type of software
we deal with in this class has a way to loop over items (be it individual numbers, individual lines,
individual files, etc.).

4.7 Practice

Here are some problems to practice programming in Python. Work on writing code either directly
in the interpreter, or as an external script.

• Write a program that calculates the average of three floating point numbers, printing the
result to the screen.

• Write a program that prints out the square of each integer in a sequence of your choosing
(use range).

• Modify your previous program to exclude any numbers whose square is between 10 and 50.

• Write a program to print out all integers that are perfect squares less than or equal to 100.

• Write a program to print all positive integers less than 300 that are divisible by 3 but not
divisible by 2.

• Write a program to test if a positive integer is prime. (Reminder: An integer is prime if it
cannot be divided evenly by all smaller positive integers beginning with 2.)
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Today we continue developing basic programming skills. We will focus on two very powerful
concepts that you will see frequently in all programming languages: functions/procedures, and
data types that are collections of primitive data types.

5.1 Functions and Procedures

Our programming so far has involved using loops and conditionals to manipulate data. While
this works well, if we have a long and complicated program, the list of operations to perform can
become rather long. This makes it hard for a human to read and comprehend all that is going on,
particularly if there are many different variables that are floating around and being used. Instead,
it would be better to break the program up into a series of sub-pieces, each of which is self-
contained and can be dealt with separately. This increases comprehension of code, and is generally
considered good programming practice.

Further, we may often have a set of operations that we commonly perform. It would be rather
tedious to repeatedly write the same code (or to copy and paste it), and in doing so you are likely
to make a mistake. Additionally, if you realize that you made a mistake, or find a better way to
carry out a calculation, you would need to make changes in every occurrence of this set of code. A
better practice would be to have a single set of code to carry out such operations. This saves you
work, makes the code easier to read, and changing the code is simpler because you are certain that
there is only one place where changes need to be made.

Programming languages make this possible by being able to define functions (sometimes referred
to as procedures or subroutines if they are not truly functions). I will use function as a broad term
covering all of these things here (as Python has a single syntax covering all of them), but some
programming languages use a different syntax for functions versus procedures.

5.1.1 A Simple Example

We can define a function in Python using the def keyword. Here is a simple function that adds
two numbers together:
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def add(a, b):
'adds two numbers a and b together, returning the sum'
return a + b

There are several things going on here:

• The first line tells Python that we are defining a function because of the def keyword.
Following that, we have the name of the function (add in this case), and then the input
arguments to the function, in this case a and b. The function name is subject to the same
rules as variable names: it must start with a non-numeric character, and cannot contain
protected characters or be any protected keywords.

• The next line contains a string. This is called a docstring, and it a short piece of documenta-
tion that describes the function. It is a good idea to create docstrings for all of your functions.
The docstring should describe what the function does, what its inputs are, and what its out-
puts are. Here, a short string is sufficient to mention that a and b are numbers, and that the
function gives you back their sum. However, if you want to provide a detailed, multi-line
string, you can do so if you enclose the entire string in triple quotes (''' ... ''').

• Finally, we have the body of the function. Note that it is indented to indicate what set of
commands belong in the body of the function. This function is just one line, which adds the
two numbers and then uses the return statement to indicate that this is what you get back
when you call the function.

To call the function, we type add(3,4) into the interpreter or our script, which will either print
7 on the interpreter output, or we can embed that into code just like any other integer. So if we
wanted to use add to sum many different integers, I can enter add( add(3,4),add(6,8) )
to get 21 back. Python calls add three different times here: once with 3 and 4, once with 6 and 8,
and then a third time with 7 and 14 (the results from each previous call).

While this is a very simple example, if you needed to do a more complicated set of operations, this
will allow you to define your function just in one place, and then concisely call it many different
times. If you need to change the function, you only need to do so once. This is a very powerful
concept: it allows for modularity in your code. You can check that small functions work indepen-
dently from one another, making it easier to debug a large and complicated program. It also makes
reading a program easier, as you can keep each piece of code shorter with several function calls
replacing large sections of code. Functions are probably one of the most important concepts in
software design, and you should always strive to think about breaking your problem into smaller
pieces that can be written as functions.

5.1.2 Scope

What happens when you call a function? Python creates what is known as an environment that
is separate from the rest of your program. All variables given to the function as arguments are
available in this environment, as are any additional variables that you may define within the en-
vironment. You might have variables defined in your main program that have the same name as
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variables in your function, and the fact that Python creates a new environment means that any
changes to variables that occur within a function cannot be seen by the main program, as they are
local to the function. This is what programmers call scope: it tells you about where variables can
be seen by other things. For example, the following program will not modify the value of a in the
main program:

a = 1

def myfunc():
a = 2

myfunc() # sets a = 2 in the other environment, but changes nothing in
→˓the main program

print a # will still print 1

When a is printed, it will still have the original value of 1, rather than the local value of a during
the execution of myfunc.

However, Python does let you use variables defined in other parts of the program in a function,
with a few specific rules. If you access the value of a variable of a function, Python first checks the
environment created for the function for that variable name. If it finds one, it uses that, but if it does
not find one, it looks to the environment that called the function (called the parent environment)
and checks for that variable. If it finds one in a higher level environment, it uses that value. If it
does not find one, it keeps looking to the parent environment of the parent environment, until it
finds a value or runs out of environments to check. However, it is generally better programming
practice to just use local variables when writing a function, as the intent is not always clear when
you use variables that are not local to a function, except for global constants that should only be
defined once (for example, you do not want to have to redefine 𝜋 every time to write a function).

5.1.3 Default Arguments

Python lets you set default values for the arguments in a function. This is done as follows:

def exponent(x, y = 2.):
'raises x to the power y, returning the result. default behavior

→˓is to square x'
return x**y

We can call exponent either as exponent(4.,3.) to cube 4, or exponent(4.) to au-
tomatically use 2 for the exponent. Any number of arguments can have default values; the only
restriction is that the required arguments (i.e. parameters with no defaults) must all be listed be-
fore any optional arguments (i.e. parameters with defaults) when defining the function. You can
specify parameters in any order that you like when calling a function if you give the parame-
ter name when calling the function: exponent(4.), exponent(4.,2.), exponent(x =
4.), exponent(x = 4.,y = 2.), and exponent(y = 2.,x = 4.) are all valid and
equivalent in Python.
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5.1.4 Functions are Objects

One convenient feature of Python is the fact that functions can be treated like any other variable.
For example, you can set a variable equal to a function, which lets you use that other variable to
call the function. For example:

def square(x):
'returns the square of input number x'
return x*x

f = square # note that I do not use ( ) to call the function, this
→˓simply binds the name f to the function square

print f(4) # prints 16

Function names are just like any other variable in Python, and so you can assign a function to any
variable name that you like. You can also pass a function to a function just like any other variable:
the function that is passed as a parameter will be assigned to the designated value within the new
environment created for the function. Here is an example:

def square(x):
'returns the square of input number x'
return x*x

def doTwice(x, f):
'applies a function f taking a single argument to input x twice'
return f(f(x))

print doTwice(2, square) # prints 16 = (2**2)**2

This is a very powerful tool, as you can create functions where the functions that are called do not
need to be known when defining the function. Many other programming languages allow for this
in addition to Python, so it is a handy trick to be aware of.

As you can see, functions are extremely powerful. Whenever you are writing code, you should get
in the habit of thinking about how to break down what you want to do into smaller chunks that
can be easily written as a function. Then, building up from the most granular level, write the base
functions, then the functions that tie those functions together, and so on until you have your entire
code written. I will try to suggest good ways to break up homework problems this way so you can
get used to this mode of thinking.

5.2 Lists

In science, we frequently have to deal with data that is a collection of numbers, rather than just
a single number. For instance, a seismogram contains values at many different times, as well as
north/south, east/west, and vertical components. GPS data also has multiple components. Datasets
like InSAR are collected over an extensive spatial area. It would not be very convenient to use
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computers to analyze these types of data if we needed to give a distinct variable name to every
single number, as that obscures the underlying structure of how the data was collected. Rather, we
would like to aggregate appropriate collections of values into single entity that we can deal with
more concisely in our programs.

One tool for handling collections of data in Python is using the built-in list datatype. A list is just
a collection of items: the items in a list can be anything: integers, floats, strings, booleans, or even
other lists. For example, here is how you create a list of integers in Python:

mylist = [ 1, 2, 3, 4, 5 ]

One nice thing about lists in Python is that not all list items have to be of the same type. You can
combine different types in the same list, though most of our uses of lists will involve situations
where the items have the same type.

5.2.1 Indexing

We can access the entire list using the variable name mylist, or we can examine the individual
items in the list using the indexing operator [ ]. To get the first item in this list, we would enter
mylist[0] (try doing this in the interpreter; it should print out 1). Note that the convention in
Python is to use 0 to indicate the first position – programming languages that work in this way
are called “zero-indexed,” and the index in such a language indicates an offset from the beginning
of the list (hence 0 means zero offset from the first position, 1 is one place away from the first
position, etc.). Some other languages (most notably MATLAB, as we will see in a few classes) use
1 to indicate the first position, and such languages are called “one-indexed.”

Python also lets you enter indices in other ways. You can get a subset of a list by specifying a
range of indices. For example, to get a sublist containing positions 1 through 3 from our list above,
we can enter mylist[1:4]. Note that the length of the sublist is the difference between the two
indices: even though we entered 4 as the second number, the final entry in our sublist is at position
3. If you want to skip over every other entry, enter mylist[1:4:2], which means “position 1
through 4, taking every 2 positions.” You can omit the starting and/or ending index if you want to
start at the beginning of the list and/or end at the end of the list: mylist[::2] gives every other
position in the entire list, mylist[1:] gives a sublist that starts at the second position through
the end of the list, mylist[:4] gives the first 4 items in the list, and mylist[:] gives the
whole list.

You can also use negative numbers for the indices. Since the index refers to offsets in Python,
a negative number just means that the offset it taken in the backwards direction: mylist[-1]
is the last item in the list, mylist[-2] is the second from the end, etc. You can also take
negative indices to be the indices for a sublist: mylist[-3:-1] gives you the final 2 places, and
mylist[::-1] reverses the order of the entire list. Negative indices are useful if you want the
last element in a list, but do not necessarily know how many total items are in the list (though you
can easily get the length of a list using len( )).

What if you need to represent 2-dimensional data? You can do so with a list of other lists. For
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example, one way to represent a 3x3 matrix is as a list of length 3, where each list entry is a list of
length three. We can define such a matrix like this:

matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]

To access the matrix elements, we now need to use two indices. Since matrix[0] refers to
the first list element (which is itself a list) then matrix[0][0] refers to the first element of
the first element. You can also use the same range tricks with multiple indices. Try some of
the following to be sure you know how they work: matrix[1][-1], matrix[::2][::2],
matrix[:][::-1], and feel free to try some other options on your own.

Getting used to indexing is tricky, so take some time now to practice. MATLAB has similar
indexing tricks, thus understanding them will be handy in many different contexts in multiple pro-
gramming languages. You might also hear people call this “slicing,” as it lets you cut a particular
piece out of a list.

Indexing can also be applied to strings in order to get a substring. If a is a string, then a[0]
returns a string only containing the first character, a[0:2] returns the first two characters, and
a[-1] return the final character. All slicing operations described above work in the same fashion
on strings as they do on lists.

5.2.2 List Operations

There are many things you can do with lists:

• Addition: You can use the addition operator to concatenate two lists. If a and b are both
lists, then a + b is a list containing all of the elements of a, followed by all of the elements
of b.

• Multiplication: Multiplying a list by an integer n returns a list that concatenates n identical
copies of the list. This is a nice trick for creating a long list where every entry is the same: if
I want a list containing 100 zeros, then I can use [0.]*100.

• Comparisons: You can directly compare lists to use in conditional statements using any
comparison operator (i.e. ==, >=, etc.). The result depends on the exact comparison being
done, but in general there is an element-by-element comparison. If using the equality op-
erator, you will get back True only if the lists are the same length and each element is the
same. If using a comparison like >= where it is possible that you could get different answers
at each place in the list, Python gives you back the result from comparing the first item in
the two lists.

• Checking if something is in a list: You can check if a certain item is in a list using the form
<item> in <list>. So for example, to check if 5 is in mylist, I would enter 5 in
mylist, which should give me back True. If you need to know the index where an item is,
use the index command: mylist.index(5) will return the first index where 5 occurs.

• Counting the number of occurrences in a list: To count the number of times that some-
thing occurs in a list, use count. So if we want to count the number of times a list entry is
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1, I would use mylist.count(1).

5.2.3 Lists are Mutable

Lists can be changed on the fly in Python. You can add items, take them away, or shuffle them
around. Some common ways to manipulate lists include:

• Append: You can add a new item onto the end of the list using append. To add the integer
6 onto the end of the list above, we would type mylist.append(6). Try this, and then
print out the entire list to verify that it has changed.

• Insert: To add a new item to a list in a specific location, use insert. You need to spec-
ify the index when you call insert, so to put item a at the beginning of list mylist, use
mylist.insert(0,a).

• Pop: To remove an item from a specific location in a list, use pop. If you do not specify an
index, pop will remove the final item in the list. So to remove the final item from a list, use
mylist.pop(), while to remove the first item, use mylist.pop(0). Note that pop
returns the item that is removed, so this is a convenient way to perform an operation on all
items on a list one at a time.

• Remove: To remove a specified item from a list, use remove, which will remove the first
instance of the given item in the list. For example, mylist.remove(5) will remove the
first occurrence of 5 in the list.

5.2.4 Iterating Over Lists

We used for along with the range function in the previous lab to repeat computations. You can
also use for along with a list to iterate over all items in a list. The syntax is

for <item> in <list>:
# repeats the body of the loop with <item> changing

So for example, if I have a list and want to print all of the entries individually,

for x in mylist:
print x

This is a handy way to loop over a list without modifying it (like you would need to do with pop).
In fact, this is exactly what Python is doing when you use a loop with range: range actually
creates a list containing the appropriate integers specified by the arguments, and then for iterates
over the list items.
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5.2.5 One Annoying Detail

One detail you need to be aware of when using Python lists concerns how Python stores a list in
memory. If I have an integer variable a = 5, and then I set b = a, then there is no ambiguity
about what what I mean when I set b = a: there is only one integer with a value of 5, and Python
sets the value of b to be 5 as well. This is also true for floating point numbers and strings, as there
is a single, unique representation of the item in the computer memory.

Lists are different, because lists can be altered and changed on a whim, which means that there
is a more complicated way to store them in the computer’s memory (since it is not a unique,
unchangable number or string). When I define a = [1,2,3] and then set b = a, there is some
ambiguity about what I am doing: did I mean to copy list a to a separate location in memory, or
do I just want b to refer to whatever a happens to be, even if I change it?

The designers of Python have decided to use the second option, also known as aliasing. When
you have a mutable object like a list and assign it to that variable, the variable points to a location
in the computer’s memory, saying that the list is stored there. When you assign another variable
to that same variable, Python simply tells the second variable to point to the same location as the
first variable. This is more memory efficient, as you do not need to copy a potentially long and
complex list over to a new location in memory. However this can have unintended consequences.
Try entering the following into Python:

a = [1, 2, 3]
b = a
b.append(4)
print a # will print a list with 4 items

This can be annoying if you did not mean to alter a, and wanted to make a copy in b. To avoid
this, we have two options:

• For a simple list, we can make a copy of a in b using the notation b = a[:] or b =
list(a). Either of these will simply return the enire list as a new list, which can then be
assigned to a new variable. However, this may not work in all circumstances, as this is what
is known as a “shallow copy:” if your list contains other lists, Python will still use aliases
for those items.

• If we want to create a full copy of another list, we need the deepcopy function, which will
make a “deep copy” with full copies of all items in the list, including any lists contained
in the list. This is not a normal part of Python, so we need to import it into Python. Type
import copy.deepcopy to import the deepcopy function. Then you can make a full
copy of your list using b = copy.deepcopy(a).

Do not worry about the details of import yet; we will talk about this in more detail in the next
class.

This is just to make you aware of things that can go wrong when changing lists. This is something
to worry about when you send a list to a function and then modify the list in the function. Python
simply makes an alias of the original list when it is sent to the function, so any modifications to the
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list will affect what is in the list in the environment from which the function was called. Be aware
of this, and make copies of a list if you do not intend for a function to modify a list!

5.3 Practice

Here are some problems to practice concepts related to functions and lists. In each case, it is a
good idea if you come up with several tests to check that you are doing things correctly.

• Write a function that calculates the average of three floating point numbers.

• Write a function that calculates the average of an arbitrary number of floating point numbers.
Pass the numbers to the function as a list.

• Write a function that takes a list and reverses the order of the items in a list. The function
should not modify the original list. Do this both using a for loop and indexing.

• Write a function that takes a list of numbers and a function that takes a single number as an
argument, returning another number. Have the function apply the function to every item in
the list, and return a list containing the results. Your function should not modify the original
list.

• Write a function to test if a list of integers are prime, returning a list of boolean values. Hint:
You should write a helper function isprime that tests if a number is prime, returning a
boolean value (you can adapt your code for determining if a number is prime from the last
lab if you like). Use your function above that applies a function to a list of values to help
you do this.
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BASIC PROGRAMMING WITH PYTHON 3

This lab focuses mainly on one crucial skill for programming that you will use over and over as you
write code for scientific purposes: debugging. No one writes perfect code the first time through,
and you will want to develop the ability to test and find bugs in your code. Debugging requires
more than anything else that you be persistent and systematic in looking at your code each step of
the way. I will highlight some useful techniques for debugging in the following, but you should
know that mostly you need to think carefully about what your code is doing. We will also talk a bit
more about importing other modules, which gives you flexibility to reuse your own code, as well
as external code packages written by others. I also briefly discuss simple ways to save data in a
text file and how to read text data into Python from an external file. You will need to perform some
basic text input for your homework/final project.

6.1 Types of Bugs

What types of bugs might you encounter when writing a program? There are three main types:

• Crash: The most basic type of bug is when your program crashes and does not run to
completion. You have probably encountered this problem already when working with the
Python interpreter: you get some sort of error message that describes the problem, and the
line where the problem occurred.

This is the easiest type of bug to fix, because (1) you know that there is a bug based on the
fact that your program crashed, and (2) Python gave you some information about where it
occurred in the program. Fixing crashes may still pose some difficulties, but compared to
the other two types of bugs, this is in general much easier to fix.

• Program Never Finishes: Next up is a bug that leads to a program that never runs to com-
pletion. This is a bit harder to figure out, because it may just be that your (correct) program
takes a long time to run, you just were not willing to wait long enough. This highlights an
important issue in programming: it is always a good idea to have some idea of how long your
program should take. Good ways to check this include (1) run your code on a very small
subset of your data, and then progressively increase the size to see how long it might take to
run on the full data, and (2) include a print statement every so often within your program to
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indicate progress through the code. I use (2) in almost every piece of code that I write: if I
am solving a complicated differential equation with multiple time steps, I print out time step
information, or if I am running something that does calculations for a large number of data
files, I print out the number that I am on every so often.

If you do in fact have a code that never stops running, you may have an infinite loop in your
code, or some other exit condition that is never met. These are easier to fix than the final
type of bug, as you usually can tell rather easily if you are in a situation when your code will
never finish, and thus take steps to fix the problem.

• Wrong Answer: The trickiest type of bug to fix, and the one you will no doubt spend most
of your time worrying about how to correct, is when your code runs to completion but gives
the wrong answer. These bugs can be notoriously difficult to find, as in many cases you
might not know the right answer to the problem and thus cannot determine that there is a
bug. Or you may know that there is a problem, but finding the culprit within a long and
complicated code can be exceedingly difficult. In either case, this is more often than not the
type of bug that will give you trouble.

The techniques I mention below are useful for finding all of these types of bugs, though you will
find that for the most part they are useful for the second and third types (crashes are relatively easy
to diagnose, particularly with an interpreted language like Python).

6.2 Print Statements

A classic technique for debugging is using print statements. While more sophisticated tools are
available, we will not use them in this lab, and instead focus on ways to use print statements in
debugging. The idea is to print out values in your code where you know what the answer should
be, and if they do not agree, take steps to correct the values. Most of the time when I am debugging
a piece of code, this is the strategy I use, and it is one I will try to employ when you ask me for
help on something.

Let’s look at a rather simple example. Let’s say that we didn’t know about the built-in method
in Python for adding two lists, and instead decided to write our own function to do this. We will
call this function appendList, and it should take two lists as inputs, and return another list as
output. Additionally, we would like for appendList to not change the inputs to the function (i.e.
it should have no side effects). Here is a first attempt at writing this as a function:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

outlist = list1
i = 0

while i < len(list2):
outlist.append(list2[i])
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return outlist

If you try to call appendList, you will notice that the program never finishes. You probably
can see my mistake, but if you cannot, how might we systematically figure out the problem? One
good way to check is by adding a print statement in the function to see what is going on when the
function is called. For instance, I might try something like this:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

outlist = list1
i = 0

print 'starting iteration over list2'

while i < len(list2):
print 'list index value:', i
outlist.append(list2[i])
print 'current value of outlist:', outlist

return outlist

Doing this, we immediately see that we forgot to increment i each time through the loop, leading
to the infinite loop. The function endlessly adds items onto the end of outlist. The print
statements helped us pinpoint this problem. While I can fix this easily with an increment, I might
realize that I could have avoided this in the first place with a for loop, so I could rewrite like this,
keeping some debugging print statements in place:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

outlist = list1

print 'starting iteration over list2'

for item in list2:
print 'item to be appended:', item
outlist.append(item)
print 'current value of outlist:', outlist

return outlist

Note that when I inserted the print statements for debugging, I tried to include additional infor-
mation about the meaning of the variables that are printed. This isn’t totally necessary, but it can
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serve as a helpful as a reminder to you as the additional words make it explicit what the variables
should be.

Doing this, we find that our code runs to completion (try it yourself, using two short lists), and
we can see that the items are correctly appended onto outlist. Print out the resulting list in
the interpreter to confirm that the function worked correctly. While it may seem that everything
is okay, there is still one more thing to check: this function is not supposed to modify the input
lists, but try printing out the first list that was passed to appendList. You should see that the
first input list has been modified, which was not supposed to happen. How could we go about
debugging this? I might add more print statements that tell me the values of list1 and list2
as I go through the loop:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

outlist = list1

print 'starting value of list1:', list1
print 'starting value of list2:', list2
print 'starting iteration over list2'

for item in list2:
print 'item to be appended:', item
outlist.append(item)
print 'current value of outlist:', outlist
print 'current value of list1:', list1
print 'current value of list2:', list2

return outlist

This should make it clear what is going on: because of how Python implements aliasing in lists, we
appended the items onto list1 when we append to outlist because the two variable names
point to the same location in the computer’s memory. The fix for this is to make a copy of list1
in outlist, rather than an alias. Here is the corrected code, with the print statements still in
place:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

outlist = list(list1) # outlist = list1[:] is also acceptable

print 'starting value of list1:', list1
print 'starting value of list2:', list2
print 'starting iteration over list2'
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for item in list2:
print 'item to be appended:', item
outlist.append(item)
print 'current value of outlist:', outlist
print 'current value of list1:', list1
print 'current value of list2:', list2

return outlist

You can verify that this version of the function does not modify the input, which is confirmed by
the print statements.

In general, using print statements to debug your code is a good strategy. As your programs get
more complicated, though, it may not be obvious how exactly one should use print statements.
Here is where being systematic and persistent pay off: a good strategy is to pick a point about
halfway through the program, and insert a print statement there to compare program values to
expected values. If all of the relevant variables have their expected values, then the bug is most
likely after this point of the code, while if there is a disagreement, then the bug is somewhere ahead
in the code. Repeat this bisection method until you are able to hone in on where the bug occurs.
Once you find and fix the bug, if you are still having trouble there is probably another bug in your
program, so start over again in the middle of the program. This is where persistence comes in, as
you need to repeatedly stick to a plan to look through the program in a systematic way.

6.3 Test Functions

A useful method for working out bugs that is related to print statements, but is slightly more
sophisticated, is the use of test functions. The idea is that if designed correctly, each separate
task in a program should be written as a function. We can exploit this modularity and make our
debugging and testing more robust by examining each function individually with a test function. A
test function is a separate piece of code that calls a function multiple times with particular values
(often chosen to test certain cases that may give a code trouble), comparing the results to the
expected values and printing out the results. Here is an example test function for appendList
above:

def test_appendList():
'tests appendList for several different cases, printing out results

→˓'

list1_vals = [[], [1], [1, 2]] # list1 values
list2_vals = [[1], [], [3, 4]] # list2 values
combined_vals = [[1], [1], [1, 2, 3, 4]] # expected results

# loop over test cases, printing out test results
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for list1, list2, combined_expected in zip(list1_vals, list2_vals,
→˓combined_vals):

# copy lists before calling to check for modification

list1_copy = list(list1)
list2_copy = list(list2)

combined_actual = appendList(list1, list2)

if (combined_actual == combined_expected and list1 == list1_
→˓copy and list2 == list2_copy):

result = 'PASSED'
else:

result = 'FAILED'

print 'Test:'
print 'list1: expected = ', list1_copy, ', actual = ', list1
print 'list2: expected = ', list2_copy, ', actual = ', list2
print 'combined: expected = ', combined_expected, ', actual =

→˓', combined_actual
print 'Result: ', result
print ''

This code runs three different test cases through the function appendList, and prints out the
results. I introduced a new piece of syntax in writing this, zip, which is a convenient function for
iterating over multiple lists at once. Basically, zip combines together a series of lists to let you
use the convenient syntax of for <item> in <list>, but doing so over multiple lists at the
same time without having to worry about indices. You can also do this using indices, but I find this
approach to produce code that is easier to understand.

There are a few things to notice about this test function:

• First, note that I set up the problem using three lists and a for loop to iterate over the test
cases and the expected results, rather than writing out the same code several times. I did this
for two reasons: first, I want to make sure that each test is run in exactly the same manner,
and I also want to maintain flexibility about the number of tests that can be run. To add an
additional test, all I have to do is add another set of items to list1_vals, list2_vals,
and combined_vals, and the code automatically does the additional tests. If it is difficult
to run additional tests, you are not likely to do them!

• Second, note that I was careful about checking whether or not the original lists were modified
by comparing the input lists to separate copies. As we saw above, it is possible to get the
correct output, but incorrectly modify the input, and thus we should test the inputs as well as
the output. If a function is not supposed to modify the input, then it is a good idea to build
this into the test function.
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• Finally, this test function could have be written independently of a working version of
appendList. This means that I could have even written the test function before I wrote
the actual function – once I have defined what the function appendList does, I can figure
out how to test it without even writing it. You don’t actually need to do this, but it is a good
idea to think about how to test a piece of code during the entire process. The sooner you start
doing rigorous testing of a piece of code, the better.

Writing test functions where you compare results with expected outputs for each piece of code is
in general a good idea. Start small with the lowest level functions, and then work up to the highest
level. This way, if you ever need to change a piece of the code, you can run all of the appropriate
tests again to verify that you have not broken anything. In some of your homework questions, I
will run a suite of test problems analogous to the test shown above to verify that your code does
everything correctly, and doing so yourself is also a good idea.

6.4 Assertions

One final piece of advice for writing bug-free code in the first place is to use assertions in your
code. Assertions are statements that cause your program to stop running if the conditions that they
test are not met, and can be a good way to help catch bugs. Typically, when I write a function,
the first few lines are assertions that check a few conditions that might trip up my code if the
inputs are not correct. Therefore, I know right away that something is wrong, and where it went
wrong, rather than having to deduce it from the final result and then work my way through the
code systematically to find the problem. While this cannot help me debug appendList if it is
not working correctly, if I was writing appendList as part of a larger project these could help
me figure out if there is a bug in any code that calls appendList.

For instance, let’s say that I am writing a piece of code where I need to combine two lists
into a third list without modifying either list. This can be easily done with our appendList
function. However, if one of the lists contains just a single number, and I somehow think
that appendList works like the append method for a list, I might try something like
appendList(someList,a), where a is a float.

As it stands now, if I try to run the code, I get an error message regarding that 'float' object
is not iterable. While I might be able to figure out that this is the problem from the error
message, I can use assertions to test this and make the failure more explicit. Basically, before doing
anything inside the function, I would like to be certain that both of my input arguments are lists. If
they are not, then instead of trying to do a set of operations that I know will fail, I can raise a very
specific error message that explains the problem in plain English. Here is the code with assertions:

def appendList(list1, list2):
'appends list2 to list1, returning the combined list. does not

→˓modify either input list'

assert type(list1) is list, "input argument list1 must be a list"
assert type(list2) is list, "input argument list2 must be a list"
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outlist = list(list1) # outlist = list1[:] is also acceptable

for item in list2:
outlist.append(item)

return outlist

With the added assertions, now if I try appendList(someList,a), I will get an
AssertionError, along with the message input argument list2 must be a
list (the optional string in an assert statement will be included in the error message). This
is much more helpful in figuring out how to correctly call appendList than the previous error
message. If I call the code correctly, both assert statements silently pass, and do not affect the
execution of the code.

To check the type of a variable, I used the protected keyword is along with the type function.
type(<object>) is <type> gives back a boolean value, and can be used to check the type
of a variable. This is often something that you would want to check. If something is a counting
index, assert that it is a nonnegative integer. If something needs to have a numeric value, then
assert it is a float or integer. If two lists must have the same length, add an assertion to check that
the lists have the same length. I try to check anything that may make my program go haywire
or execute incorrectly with an assertion, as they typically give more useful information than other
error messages.

Assertions can also be used as a handy trick to crash a program intentionally. If I am trying to debug
something, and in doing so change something so that I know that the remainder of the program will
not run correctly (or take a long time to run), I often short-circuit the program by adding assert
False, which always stops the program dead in its tracks. Otherwise, to prevent the remainder of
the code from running, I would have to comment it all out (which may take a long time to do and
then undo when the problem is fixed). I can save myself time and typing in such a case by adding
a simple assertion to the code.

6.5 Practice

Here are some problems to work on in lab today. Use print statements to help debug them as you
work. You should use assertions where appropriate, and also write a small test function for each
problem.

• Write a function isPalindrome to test if a list is a palindrome (i.e. the list is the same
backwards as it is forwards: [1,2,1] is a palindrome, [1,2,2,1] is a palindrome, but
[1,2,3,1] is not).

• One method for calculating the square root of a number 𝑠 is as follows: (1) take a guess
𝑥𝑛, (2) check if 𝑥2

𝑛 = 𝑠 within some allowed amount of tolerance (if so, we have a good
enough answer and we can exit), (3) if the guess isn’t good enough, make a new guess
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𝑥𝑛+1 = (𝑥𝑛 + 𝑠/𝑥𝑛)/2 and return to step 1. Write a function calcsqrt to implement this
method, taking 𝑠 as an input and returning the square root.

• Add appropriate assertions and write a test function for some of the functions from Lab 5.

6.6 Importing External Code

By now, you have a basic understanding of how to program in Python (or any other language, for
that matter – if you can program in Python, it is easy to learn to program a different language).
Many of the things I have highlighted are aimed and making better written, more usable computer
code, in particular how to use functions to accomplish this. But what if you are writing some code,
and would like to use a function that your wrote at some previous time? From what we have seen
so far, you can only do this by copying and pasting the function into your Python script. If we only
could use a single file for all of our coding, this would get out of hand very quickly, and if you
needed to make a change to the function, you would need to find it in every file and change it.

The solution to this problem is to use Python’s import capabilities. Basically, the idea is that
we can load functions and other code from a separate file using import, which are loaded into
what is known as a module. Let’s say we have a function add that we have defined in the file
“addition.py.” If we would like to use add in a separate piece of code, we can do the following:

import addition
print addition.add(1., 2.)

This code will import all functions in the “addition.py” file, and allow you to use them with the
name addition.<function>. The use of addition is what is known as a namespace,
which is just a fancy way of saying that Python groups functions together based the place from
which they were imported. Namespaces help you keep track of where different functions come
from. You can choose the namespace where external functions are imported with the following
syntax:

import addition as add
print add.add(1., 2.)

If you were going to use the add function many times, choosing a shorter namespace can help cut
down on typing.

If you have many functions in addition, but are only going to use add, you can also selectively
import functions from a module with the following syntax:

from addition import add
print add(1., 2.)

This puts add in the current environment, so it if you want to minimize the amount of typing,
this is the way to go. Finally, you can import all functions from a given module into the present
environment using:
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from addition import *
print add(1., 2.)

This is okay if there are only a couple of functions in the addition module, but if there were
many of them, it can be confusing to not group them all together in a separate namespace and this
is not considered good programming practice. This is particularly true if you import more than one
module using *, and it is not made explicit which functions belong to which modules.

Where does Python look for modules? First, it looks in the current working directory from which
python was called. If it finds a module in the present directory, it uses that module. If it does not
find one in the current directory, it searches all the paths specified on what is called the “Python
path,” and the last place it looks is the standard installation directory for python packages. Do not
worry about the last two places for right now; these are only needed if you want to create packages
that can be imported from a different directory than the one you are working in (it is fairly easy to
modify the Python path to find packages in other directories; I can show you how to do this if you
ask).

In addition to your own modules, there are many externally available packages that are useful
in many contexts. We will not cover these in this course, but I frequently use many of them, in
particular numpy which defines numerical arrays that are basically a more powerful version of a
list and useful for scientific computation, scipy which gives access to many standard methods for
scientific computing, and matplotlib which is a powerful plotting library. These free and open
source modules replace most of the MATLAB functionality using Python, and these are becoming
common tools in science. You are of course welcome to experiment with them on your own to see
if they will be useful in your research. Many of these tools are installed in the Python installation
in the Mac Lab, but they are also easy to download and install on your own computer.

6.7 Reading From and Writing To Files

Over our previous three classes, we have seen how we can use Python to carry out complicated
tasks on data that we enter ourselves. However, as discussed in the first class, we usually need
to perform calculations on data that we obtain from external sources. This means we need to get
the data into Python, and need a way to save results of calculations. Python has a number of
capabilities for reading and writing data. We will not cover all of them, but for your homework
and term project, you will need to use Python to perform calculations based on data input from a
text file, so here I cover the basics of text file input and output.

6.7.1 Reading From a File

Python has built-in capabilities for dealing with text files through what is known as a file object.
A file object is a fancy data type that represents a file on your system, and includes functions that
let your read and write from the file. To open a file object, use the following syntax:
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f = open('myfile.txt', 'r')

The basic command is the open function. open takes two arguments: the name of the file
('myfile.txt' in this case), and the mode under which that file will be opened ('r' in this
case, which indicates that the file should be opened in read-only mode). You can specify either an
absolute or a relative path for the name of the file, but you must give a string for the file name. You
have several options for the mode: 'r' indicates read-only mode, 'w' indicates write-only mode,
and 'rw' indicates read-write mode. You do not need to provide the second argument as 'r' is
the default, though I try to always put this into my codes as I want to be explicit about how a file
will be opened so that I do not accidentally open a file that I do not want to modify in write mode.

Note that if you want to read from a file, the file must exist before you try to open it. If it does
not exist, you will get an error message. You also need to be careful when opening a file in write
mode, as it will overwrite a file if it already exists.

Once you are finished with the file, you should close it using the close function of the file:

f.close()

This will close the file. The file will automatically close when the program finishes if you did not
explicitly close it, but it is a good idea to close files when you are done with them because they can
slow down your program if too many are open.

To read from a file that has been opened in read mode, use the read function of that particular
file:

f = open('myfile.txt', 'r')
a = f.read()
print a
f.close()

The entire contents of the text file will then be stored in the variable a as a string, and will be printed
to the screen. Note that everything read from a file is a string, so if you need to get numbers out of
a file you will need to convert to the appropriate type.

Reading the entire contents of a file into a single string is fine for short files, but if you have a large
data file it might be a bit tedious to handle the data in this way. More likely, you will have a file
where a certain number of items are written on each line. To read in a single line from a file, use
the readline function. So if you had a file with three lines, you might do the following:

f = open('myfile.txt', 'r')

for i in range(3):
a = f.readline()
print a

f.close()
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As before, this will print the file to the screen, but each line will be separated from the next one.
However, what if we don’t know how many lines our file has? Fortunately, Python makes it easy
by letting us loop over the file itself to implicitly read it one line at a time:

f = open('myfile.txt', 'r')

for line in f:
print line

f.close()

Note that you can implicitly perform the readline function each time through the loop in this
way. This is the way I recommend handling reading text from a multi-line file.

How do you deal with text once you read it in? A frequently used function for handling strings read
from a file is split, which takes a string and divides it into words, giving you a list of strings.
For example, if you have a text file with three numbers on each line separated by a space, you get
those numbers as follows:

f = open('myfile.txt', 'r')

for line in f:
stringlist = line.split() # stringlist is a list of three strings
numberlist = []
for string in stringlist:

numberlist.append(float(string))
# numberlist is now a list of numbers
# peform some analysis, etc.

f.close()

6.7.2 Writing To a File

Writing to a file is similar to reading from a file, you just need to open the file in write mode. Once
you have the file open in write mode, you can write data to the file using the write command.
As an example, imagine you have carried out a calculation on 100 different numbers, getting two
different results. You have the results stored in a list results, with each list entry being a list of
length two holding the two results. To write this to a text file, you might do the following:

f = open('calculation_results.txt', 'w')

for result in results:
f.write(str(result[0])+' '+str(result[1])+'\n')

f.close()

56 Chapter 6. Basic Programming with Python 3



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

Note that you can only write strings to a text file and that I had to explicitly convert them here
before I could write to file. You might also notice that I had to put in my own dividing characters
between the entries: there is a space between the two numbers, and a newline (i.e. a carriage
return) character to separate each line. You can also separate the entries with a tab character using
'\t'.

You can do more sophisticated things with python, including writing binary data and writing things
in a Python-specific format that lets you save and reload complex objects. We will not worry about
these things here, as for this class reading and writing simple text files is all that you will need
to worry about. However, if you use Python in your research, you will no doubt want to take
advantage of these capabilities.
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CHAPTER

SEVEN

MATLAB 1

MATLAB is short for MATrix LABoratory, and is a common high-level tool for numerical analysis
in science and engineering. A few things to know about MATLAB:

• Fundamental data type is matrix (double precision floating point numbers)

• Interactive and “interpreted” (there is a “compiler” that makes code run faster), runs .m files
and stores data using .mat files

• Many, many built-in functions (we will only scratch the surface in this class)

• Built in 2D and 3D graphics capabilities

• Additional toolboxes add further capabilities for extending MATLAB beyond its basic func-
tionality

MATLAB was originally a package for matrix math, designed to provide an interface to linear
algebra libraries written in Fortran, but has grown over the years into a software package useful for
a range of scientific applications. It is commonly used in academic, research, and industrial settings
(which is why geophysicsts should know how to use it). MATLAB currently uses a proprietary
version of the LAPACK linear algebra routines.

MATLAB is commercial software (we have a license for it on all of the computers in the Mac
Lab). For those that have strong feelings about proprietary software, there are a number of free
open source alternatives: GNU Octave, FreeMat, SciLab, R, a combination of Python packages,
etc. Some of these are meant to be MATLAB clones – GNU Octave and FreeMat are supposed
to run MATLAB code with the same syntax, while the others have a distinct syntax. I have used
GNU Octave extensively in my research in addition to MATLAB, as it is fairly easy to install
under various Linux distributions. I have found it mostly compatible with existing MATLAB
code, though I often have to make a few modifications and sometimes must replace functions that
do not exist in Octave (and some Octave code is not compatible with MATLAB). It also does not
run as fast. I use Python along with a number of additional packages in my research in place of
MATLAB, though that has been born out of the fact that I simply like programming in Python
better (rather than the fact that MATLAB is commercial).

Regardless of all that, MATLAB is a fixture in science and engineering, and you will need to be fa-
miliar with it in any career path you choose. You will no doubt encounter software for geophysical
research that has been written in MATLAB. In this course, we will be doing our lab exercises in
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the Mac Lab using MATLAB. The computers have been updated to the most recent release, though
most of what we cover should work on other versions of MATLAB. You are also free to use one
of the open source alternatives, as long as you use one that has the same syntax as MATLAB. If
you decide to use something other than version of MATLAB in the Mac Lab, all I ask is that you
be sure that MATLAB in the Lab can run all of your code, as I like to run your code myself – if I
have to substantially tweak your code to get it to work, I will take points off.

7.1 Everything is a Matrix

The main philosophy in MATLAB is that everything is a matrix (specifically, a matrix of floating
point numbers with double precision). This is very convenient for doing numerical analysis of data,
because as we have seen with Python, we very often need to represent arrays of data in scientific
settings. Even if you just want to consider a single floating point number in MATLAB, it is treated
as a 1x1 matrix.

MATLAB stores matrices using the 1-indexing convention (i.e. if a matrix A contains 3 elements,
then A(1) is the first element and A(3) is the last element), and does so using a convention known
as “column major order.” This refers to how the data is arranged in the computer’s memory: if we
want to create a 2x2 matrix, MATLAB sets aside enough memory to store 4 floating point numbers.
However, there are two different ways we could store the 4 matrix entries in memory: we can either
store the first row, then the second row, or we can store the first column, then the second column.
MATLAB uses the second convention. This is important to know when you read data from a file
into MATLAB, because numbers will be read into consecutive locations in memory from the file.
We will look at some examples of how to do this in the coming labs.

Everything also is done using double precision floating point numbers in MATLAB. There are no
separate types for integers or booleans, rather they are double precision numbers that are treated
in a special way. This is convenient in that you do not worry about how to peform operations on
different data types. However, the downside is that floating point numbers take up more memory
than integers, and much more memory than booleans (booleans require just one bit of storage,
while double precision numbers require 64!). If you are dealing with very large datasets that are
intentionally stored in a different format to save space, you can sometimes crash MATLAB just
loading the data into memory due to the huge increase in memory requirements when you convert
to floating point numbers.

7.2 Basic Programming Tools

MATLAB contains all of the basic programming tools that we have seen so far: loops, conditional
statements, functions, arrays, etc., so what we have studied so far will be useful in learning to
program in MATLAB. We can manipulate matrices in MATLAB using many of the same tools we
used in Python:
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• Basic operations: MATLAB has many built-in operations, such as +, -, *, /, ^ (exponenti-
ation). Additionally, many standard mathematical functions are included, such as exp, sin,
cos, mod, etc. One nice trick about MATLAB is that if you can usually apply an operation
to an entire matrix: for instance sin(a) will give you back a matrix with the sine of the
original matrix for each matrix entry. You may also perform basic matrix operations such as
addition, subtraction, and multiplication directly in MATLAB without having to loop over
every entry in the matrix. This is convenient, as it lets you skip many loops in your code.

• Loops: You can perform calculations using loops with MATLAB. Here is a simple example
that does the same thing as we have seen in Python:

for i=1:10
i

end

This will print out numbers 1 through 10, much like our simplest loop example in Python.
You may have noticed in Python that if you type an expression into the interpreter interac-
tively, Python prints out the result, but if you enter the same thing into a function or script,
Python does not print out the result. MATLAB has a different convention: MATLAB al-
ways prints out the results of each statement entered (you will see ans =, followed by each
number), regardless of whether it is done interactively or through a script (though results in
a function are not printed out). This is why we did not need to include a print statement in
this loop, simply entering i is sufficient to print out the result. Another way to print output
is to use the disp function, which has the advantage of working even within a function.
To suppress this output, put a semicolon at the end of each line. (This is one thing I find
annoying about MATLAB, and few things irritate me more than forgetting a semicolon on
some MATLAB code).

Indentation is not important in MATLAB; the end statement tells MATLAB when the loop
ends. You should still indent your loops the same way we did in Python when submitting
code (I will always do so in my examples), but it is not necessary for MATLAB to understand
what you are trying to do. The same goes for all other types of code blocks that are described
below.

To write the same thing as a while loop, we would enter

i = 1;
while i <= 10

i
i = i+1;

end

As you can see, I can suppress output for the initial assignment for i with a semicolon, as
well as when I increment i within the body of the loop. break and continue work in
the same way as in Python when dealing with loops.

• Conditionals: The syntax for conditional statements is similar to that of loops: end tells
MATLAB when the loop is finished.
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i = 5;
if i == 1

'i is one'
elseif i > 10

'i is greater than 10'
else

'i is less than 10'
end

This also shows how strings are defined in MATLAB. You must use single quotes to define
a string in MATLAB. To include a quote character in a string, precede it with another single
quote: 'Eric''s program'. MATLAB does not support integer data types, but instead
converts them to floating point numbers.

• Functions: You can define functions in MATLAB, however functions must be saved as
a separate file, whose name is the function name followed by .m. So to create a simple
function to add two numbers together add, I would create a file “add.m” that contains the
following:

function c = add(a, b)
% adds two numbers a and b together, returning the result

c = a + b;
end

Like Python, MATLAB allows for documentation to be embedded into a function, though
unlike Python it uses comments (denoted with %) to serve as the documentation rather than
a docstring. However, it serves the same purpose, and you can view the documentation for
any function (built-in or user defined) using the help function. Typing help add will
display the commented line in the MATLAB command window. Rather than using a return
statement like in Python, we define the variables that will be returned from a function in the
function definition and simply use those in the function body.

You can define other functions within a function file, and you can even define functions
within functions (though they can only be called from within that function). However, you
cannot define functions from the interpreter the way you can in Python. This is something I
find very annoying about MATLAB, because I often like to define short, one-time functions
from the command line when I am doing interactive work (and a big reason why I use Python
more frequently). Functions also do not benefit from MATLAB’s “compiler” and I find that
well-written functions in MATLAB can unfortunately run much more slowly than the same
commands entered into the interpreter.

MATLAB supports default arguments, though it is more cumbersome to do so than in
Python. To define default arguments, MATLAB has a variable nargin (short for num-
ber of arguments in) that represents the number of inputs given to a function. You can use
this value to specify default inputs. For instance, if we want to write a function exponent
that by default squares a number, we would create a file “exponent.m” that contains
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function expval = exponent(x, y)
% raises input x to the power y (default is 2)

if nargin == 1
y = 2;

end

expval = x^y;
end

Basically, you can use nargin to query if the function is called with fewer than the standard
number of parameters, and depending on the number of inputs you can assign default values.
However, this is less flexible than we saw in Python: you are only allowed to pick one case
for each value of nargin, so if you have more than one optional argument you must decide
in advance what defaults that corresponds to.

• Indexing Arrays: You can perform many of the same tricks in MATLAB as you can with
Python. We will cover this in more detail in the next lab, but the syntax is quite similar. If a
is a vector, a(1:2) returns a matrix containing only the first two elements of a, a(end)
returns the last element, and a(4:2:10) takes every second entry starting with 4 and end-
ing with 10 (inclusive). Note that this is slightly different from python, both in the order of
the numbers and in the differences between zero- and one-indexed arrays.

• Assertions: You can (and should) use assertions in your MATLAB functions just like in
Python. Use assert(<condition>)

These basic tools should get you up and running with MATLAB.

7.3 Importing External Data into MATLAB

So far, we have been developing programming skills. However, in order to analyze real data, we
need to be able to read the data into our programs. With Python, we mostly used raw_input to
do this, but eventually we will need to read data from files. There are several ways to do this in
MATLAB:

• load can be used if your file is a text file that only contains your data (i.e. no meta-
data is allowed, and it must be consistently formatted). MATLAB figures out how many
rows and columns are in the data, and creates a matrix from the data. This is the simplest
case, and I have provided two example files to use for this: type load <filename> to
store the matrix in the name of the file. To store the data in a different variable, use a =
load(<filename>), where you must put the filename in quotes so that MATLAB treats
is like a string.

The two provided files contain the same data (a 5 column x 20 row matrix), but stored
in different row/column ordering: one is ordered by column (MATLAB’s standard way of
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storing data), the other by row. Try reading both in to see how they are organized differently.
If you want to get the “correct” ordering for the row-ordered data, take the transpose of the
matrix once it is read in (you can do this in MATLAB using the apostrophe: if A is a matrix,
then A' is the transpose of that matrix).

• fscanf can be used to read more complex data. You need to first open the file using
fopen, then read the data with fscanf, and then close the file. Here is an example:

fid = fopen('columnorder.dat','r');
a = fscanf(fid, '%f', [5 20])';
fclose(fid);

First, we open the file, giving the file name and the 'r' indicates that we are only reading
from the file (not writing to the file). Once the file is open, we get what is called a file handle,
which is just a number that tells MATLAB what file we want to read from (this lets us have
more than one file open at a time).

Next, we use fscanf to read from the file specified by the handle fid. The '%f' means
that we are reading a floating point number, we could also use '%i' for an integer and
'%s' for a string (this will read a single character). The last entry tells us the shape of
the matrix we want to make: it will contain 5 rows and 20 columns, after which I need
to take the transpose to get the right matrix back. This is because the load function ac-
tually works backwards relative to how the numbers are ordered in the file (which is how
fscanf read the file). To read the row ordered data, open roworder.dat and enter a =
fscanf(fid,'%f',[20 5]);

Finally I close the file handle using fclose. As you can see, this is more time consuming
than load, but if you have data that is formatted in a complex way, this is how you can tell
MATLAB how to deal with it.

• fread is for reading binary data. I have provided the column order data as a binary file
(saved with double precision format with a little endian byte ordering). To read this data, I
can do the following:

fid = fopen('columnorder_binary_double.dat','rb');
a = fread(fid, Inf, 'double');
fclose(fid);
a = reshape(a, [20 5]);

This will read the data into a single vector, which is then reformatted into a 5x20 matrix using
a = reshape(a,[20 5]). If you wanted to have MATLAB do the reshaping for you,
use a = fread(fid,[20 5],'double'), analogous to how fscanf works. If your
data was not double precision, or had a byte-ordering that is different from the conventions
on this computer, you will need to supply different commands (see the documentation for
more details). If you want to try a file with a different byte ordering and format, I have
included the same data with a big endian convention and a 32 bit integer format, which you
can read using fread(fid,[20 5],'int32','b')
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While binary data has the disadvantage of not being human readable, reading and writing
binary data is usually significantly faster than the equivalent text version of the data. If you
find yourself waiting frequently for large datasets to read or write, converting to binary can
often speed things up.

These are the basic ways to load data, though MATLAB has some additional fuctions to handle
text data with delimiters between each matrix entry (dlmread). See the documentation if you are
having trouble reading a data file in a particular format; there is a good chance there may already
be a built-in way to handle the data. Some of your homework will require reading data of various
formats, so spend some time when doing the exercises learning how these commands work.

7.4 Practice

Here are some problems to work on in lab today with MATLAB.

• Practice reading the different data types into MATLAB with the files I have provided.

• Rewrite your square root function from the previous lab as a MATLAB function. As a
reminder we can calculate the square root of a number 𝑠 is as follows: (1) take a guess
𝑥𝑛, (2) check if 𝑥2

𝑛 = 𝑠 within some allowed amount of tolerance (if so, we have a good
enough answer and we can exit), (3) if the guess isn’t good enough, make a new guess
𝑥𝑛+1 = (𝑥𝑛 + 𝑠/𝑥𝑛)/2 and return to step 1. Write a function calcsqrt to implement this
method, taking 𝑠 as an input and returning the square root. Make sure you put an appropriate
assertion statement into your code (think about what could cause your calculation to fail),
and use print statements to help debug it. Write a test function test_calcsqrt to test
your code. To confirm that your code works, you can use the built-in function sqrt (or use
exponentiation with a power of 0.5) in MATLAB to check your results.

• Rewrite your function to test if the entries of a matrix are prime, putting the respective values
in a matrix of the same shape. If the entry is prime, use a value of 1 to indicate true, otherwise
use a value of 0 (false). As before, it is a good idea to define a helper function to determine
if a single number is prime.
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One powerful capability in MATLAB is the way that you can manipulate and view matrices. This
includes doing matrix math (addition, multiplication, etc.), and how we can view the data that is in
a matrix. We have seen a taste of matrix manipulation in our experience with Python indexing for
lists and strings, and MATLAB has similar capabilities. This lab will focus on a number of things
in using matrix operations, including use of the colon (:) operator in MATLAB, which is one of
its most powerful, yet often tricky, elements.

This set of notes can only start to describe all the things you can do with MATLAB. I have included
a document “mtt.pdf” (“MATLAB Tips and Tricks”) that a group of MATLAB users on the internet
put together a number of years ago describing various techniques to manipulate matrices and arrays
in MATLAB in the fastest and most efficient way. Feel free to refer to it if you like for your
personal knowledge as you use MATLAB in your research, but you won’t need to know all of the
information contained therein for this class.

8.1 Matrix Math

MATLAB can perform complicated math on matrices with a succinct syntax (so that you do not
need to include for loops to iterate over an entire matrix to do the same calculation on all of its
elements. Doing math in this array fashion in MATLAB is generally more efficient than writing
your own for loops, though this difference is much less than it used to be due to MATLAB’s
“compiler.” However, the compiler does not work on MATLAB functions, so this remains an
important skill when dealing with complex data analysis tasks. This efficiency comes at a cost to
transparency: often, the syntax for such array operations can be rather opaque when compared to
an explicit loop, and it may be tricky to (a) figure out how to express some desired computation as
array math, and (b) decipher what someone else’s code is doing, particularly when that someone
else is you and you wrote your code 2 months ago and cannot remember how it works. This
highlights that you should always comment your code, and that commenting becomes especially
important the more fancy your MATLAB skills become. If you hand in a homework assignment
with complicated array operations that are not described with comments, you will lose points. We
will discuss tips for writing MATLAB code this way in the next few labs.

Examples of ways to do array operations include, but are not limited to:
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• Matrix math, such as addition, subtraction, multiplication/division by a constant, can be done
directly on matrices.

• MATLAB is designed to do linear algebra, so it is often most efficient to write your opera-
tions as a series of matrix operations. You can use matrix multiplication and exponentiation
on matrices, though the dimensions of the matrix must follow the rules for the corresponding
operation.

• If your operation is not true matrix multiplication, but rather array multiplication, division,
or exponentiation (i.e. perform the given operation element by element), use .*, ./, or .^
on two matrices with identical dimensions. For example, if A and B are each 2x2 matrices,
then the following loop calculations

for ii=1:2
for jj=1:2

C(ii,jj) = A(ii,jj)*B(ii,jj)
end

end

can be done concisely using C = A.*B. This is very handy, and I find myself using this
operation much more frequently than true matrix multiplication.

• Most built-in mathematical functions work on arrays without any need to do loops. Things
like taking an exponential (exp( )), logarithm (log( )), trigonometric functions of all
types (sin( ), cos( ), etc.)

8.2 Slicing, Viewing, and Broadcasting

The colon operator is very useful for looking at array slices (i.e. a particular range of a matrix) and
viewing those particular contents. You can use it to refer to an entire range of an index, a particular
range of an index, a particular spacing of an index (a nice and quick way to de-sample data). For
example:

• A(:,1) shows the first column of A

• A(1,:) shows the first row of A

• A(1:2,1) shows the first two elements of the first column of A

• A(2:5,1) shows elements 2 through 5 of the first column of A

• A(5:end,1) shows all elements beyond position 5 in the first column of A

• A(1:2:7,1) shows the odd elements through 7 of the first column of A

• A(2:2:end,2:2:end) shows only the even-numbered elements of A

As you can see, you can pull many tricks using the colon operator. Practice using it on a matrix to
get more comfortable with it. You can use such tricks to broadcast only a particular range of data
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to another function. Note that there are a few differences from Python: the step (when provided)
goes in the middle of the colons, and you use end to represent the last entry. Negative indices are
not allowed in MATLAB.

8.3 Evaluating a Matrix with a Matrix

Another powerful (and often opaque) trick is to use a matrix to evaluate a matrix. The matrix must
have all positive values within the limits of the matrix being evaluated, or be a logical matrix (see
the next section). For example, if A is a 5x5 matrix, and b = [1 2 5] then

• A(b,1) shows elements 1, 2, and 5 of the first column of A

• A(2,b) shows elements 1, 2, and 5 of the second row of A

• A(b,b) is a 3x3 matrix populated by the elements indexed by all possible pairs involving
1, 2, and 5

This is very handy trick for picking out certain pieces of a large dataset.

8.4 Logical Matrices

MATLAB also has a logical data type, which can have two values: 1 (true) and 0 (false). You
can also create matrices of logicals. These are useful if you would like to find certain values of a
matrix that satisfy particular conditions. Evaluating a matrix with a logical matrix requires that the
logical matrix have the same length as the corresponding dimensionIn the following, A and B are
vectors of the same length:

• A > 1 returns a logical vector, where entry k is 1 if A(k) > 1 and 0 if A(k) <= 1

• A > B returns a logical vector, where entry k is 1 if A(k) > B(k) and 0 if A(k) <=
B(k)

• A(A > 1) returns a vector containing only the entries of A that are greater than 1

The final type of expression above is extremely useful if you need to find data that exceeds a certain
threshhold. See the exercises for an example application.

8.5 Exercises

1. These problems use the datafile “newmadrid2015.txt” which is the earthquake catalog for
the New Madrid Seismic Zone for 2015. The catalog is in ASCII format. Each line consists
of four numbers: date (in decimal years), latitude, longitude, and magnitude. Read the data
into MATLAB, saving the data as a large matrix.
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2. Use the colon operator to display all four pieces of data for the first event.

3. Use the colon operator to display only the first 5 event dates in the command window. Then,
use the colon operator to display the final 5 event magnitudes.

4. Use the colon operator on the large matrix to view all four pieces of data for every 5th entry
(i.e. entries 5, 10, 15, ...).

5. Evaluate the large data matrix with another matrix to display all four pieces of information
for events 20, 38, 98, 119, and 160.

6. Using a logical matrix, display the date of all events with a magnitude above 3.0.

7. Using a logical matrix, display the date of all events with a latitude smaller than 36∘.

8. Using a logical matrix, display the date and magnitude of all events in the rectangular region
with latitudes between 35.5∘ and 36∘ and longitude between −90.5∘ and −90∘.

9. Using a logical matrix, display the date of all events in January. You will need to convert
decimal years into the appropriate format – try to do this using array math.
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MATLAB has built-in 2D and 3D graphics capabilities that can generate production quality figures.
Basic plotting is relatively straightforward, but MATLAB has more sophisticated features that
give the user control over most of the plot details. The appearance of a plot can be tweaked
manually using the MATLAB GUI, though the same things can be done at the command line level.
I personally like to write m-files to produce all of my graphics and specify the appearance using
the command line so that I have (a) precise control over the graph appearance (I’m probably a little
more fussy than most people about figure appearance) and (b) the ability to easily reproduce the
same graph format if I need to make any data changes. MATLAB has other tricks for reproducing
figures, but I find that knowing a bit about how MATLAB handles graphics internally helps me
make the figure look the way I want it to.

9.1 Basic 2D Plotting

MATLAB has many, many plot types. Probably more than 95% of my plotting is done using plot,
semilogx, semilogy, loglog, scatter, and hist (though you can make plot do what
the logarithmic scales and scatter do very easily, so those could all be considered the same), so
it is likely that you do not need to master very many of them.

Make some example plots using the above commands. To quickly generate data to plot, use
linspace to create x-axis data, and then evaluate the x-axis data using a built-in MATLAB
function.

For 2D plots, you can tell MATLAB precisely how you want it to plot symbols and lines by using
the following syntax:

• plot(x,y,'o') will plot a circle for every data point.

• You can also plot both lines and symbols using plot(x,y,'-o')

• You can control line styles by specifying plot(x,y,':') for dotted lines, for example.

• Color is specified by plot(x,y,'r') for a red line, with other colors available with a
shortcut including 'b' for blue, 'g' for green, and 'k' for black.
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• Look at the documentation to get information on all of the plot styles. You can also change
the style after the fact using the plot tools or a graphics handle (more on that later), which
gives you even more control over the plot style than the options available through the short-
hand notation.

To plot more than one curve on the same plot, you can either call the plot function with multiple
pairs of arguments, such as plot(x,y,x,y1), or you can use the hold command. Once you
call hold on, all successive plotting commands will plot to the same axes (rather than creating a
new one):

plot(x,y)
hold on
plot(x,y1)
hold off

Be sure to turn hold off when you are done issuing plotting commands for a given figure, or
your next plot will show up on the same axes.

Spend some time familiarizing yourself with various MATLAB plotting functions. Try your hand
at the following:

• Make a basic xy plot showing a single curve using plot. Do the same for semilogx,
semilogy, and loglog.

• Make a basic xy plot showing a single curve, where the line is dotted and the symbols are
upward pointing triangles.

• Make a basic xy plot showing four curves, where one has a solid line, one has a dotted line,
one has a dashed line, and one has a dot-dashed line

• Make a scatter plot using the scatter command (the rand function is convenient for
making datasets with a large scatter)

• Plot a histogram using hist. Again, the rand function is useful for generating data for
making a histogram. Note that hist creates both a histogram plot and the bin edges/counts.
Newer versions of MATLAB have replaced the hist function with separate functions for
creating a histogram plot (histogram) and the bins/counts (histcounts), so be aware
of this if you are using a more recent version.

9.2 Basic 3D Plotting

MATLAB can also plot data in 3D. Commonly used functions for doing this include plot3,
pcolor, contour, surf, and mesh. You can easily create data for pcolor, contour,
surf, and mesh using the peaks function. You can also calculate your own surface functions,
for which meshgrid is handy to create 2D arrays for the x and y coordinates of a grid.

Most 3D plots use a colorscale to denote values. To display a colorbar, type colorbar. You
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can change the colormap when calling the plotting command. There are many different colormaps
to choose from – the default parula colormap that has appeared in more recent versions of
MATLAB is generally a good choice. This is because the brightest color in the colorbar (yellow)
is at one extreme, and the darkest color (deep blue) is at the other. The intermediate values are a
shade of green, which interpolates nicely between the two colors. This choice has two advantages:
(1) black-and-white versions of plots on this scale accurately represent the values, as the yellow
will show up as white, while the dark blue will show up as black, and the values that are in between
will be gray, and (2) the most common form of colorblindness is being unable to distinguish red
and green, so this map is good in that it does not use both of them. The hot colormap is also a
fairly good choice, as it uses red to interpolate between the dark black and bright yellow/white at
the extremes, yielding the same benefits as parula.

Rainbow colormaps should be avoided, such as the old MATLAB default of jet. They may look
nice, but it is actually a poor way to represent your data. This is because the brightness of the plot
does not vary in a way that is associated with the values represented by the colors (the brightest
colors are the yellow and light blue, which are not at either end of the spectrum). This means that
a black and white print-out will be practically unusable. Additionally, the most common type of
colorblindness is an inability to distinguish green and red, so any colorbar that uses both green and
red will be hard for a colorblind person to read. Thus, rainbow colorbars are a bad choice for these
types of plots. (Note that many people do not recognize this problem, and continue to use rainbow
colormaps!)

For 3D plots, you can click and drag on the figure window to change the viewpoint, in case the
default viewpoint is one that obscures the important features of your graph.

• Make a 3D line plot using plot3. A good function to use for these plots is the following:

t = 0:pi/50:10*pi;
xt = sin(t);
yt = cos(t);

which will show an upward-going helix if you plot t on the vertical axis.

• Make some different 3D plots of the peaks function using pcolor, contour, surf, and
mesh with a color bar. Use colorbar hot to change the colorbar to something better
than the default. You can also try the 3D version of a contour plot with contour3.

9.3 Multiple Plots

What if you want to show several plots in the same figure? The subplot command automatically
sets the position of each set of axes depending on the number of plots and the desired arrangement.
The syntax is:

subplot(3,1,1);
plot(x,y);
subplot(3,1,2);
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plot(x,z);
subplot(3,1,3);
plot(x,f);

This produces a set of three plots on top of one another, like this:
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Similarly, subplot(1,3,1); ... will produce three plots side by side. You do not need to
call all instances of subplot, which lets you make complicated arrangements:

subplot(2,1,1);
plot(x,y);
subplot(2,3,4);
plot(x,z);
subplot(2,3,5);
plot(x,f);
subplot(2,3,6);
plot(x,g);

makes a large plot on top, and 3 plots side-by-side in the lower part of the figure:
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Try making the following figures with multiple plots:

• A 3x3 grid of plots.

• The arrangement below:
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9.4 Limits, Labels, Titles, and Legends

To change axis limits, use the command axis. axis takes one argument, which is a vector of
length 2, 4, or 6. If only 2 arguments are given, it sets the minimum and maximum 𝑥 limits to
those values. Adding additional pairs of numbers specify 𝑦 and 𝑧 limits. You can also use xlim,
ylim, and zlim, each of which takes a vector of length 2. There are additional options for the
axis command, see help axis.

To label an axis, use the xlabel, ylabel, or zlabel command, which takes a string as its
argument, and sets the appropriate axis label to this string. You can also specify details about the
label (font size, font name, etc.), which we discuss further when we talk about graphics handles.
Similarly, you can title your graph using the title function, which takes the same arguments as
the label commands.

To add a legend to a graph, use the legend command. legend takes one string per line that
appears on the plot, and labels that line in the legend using that string. You can also specify
additional parameters in the legend call; one that is particularly helpful is the 'location'
parameter, which tells MATLAB where to draw the legend. Usually it tries to find the place it
thinks is best (the default value for 'location' is 'best'), but you can specify 'north',
'south', 'east', 'west', and all combinations like 'northwest', which place the legend
in various places in the figure. Experiment with legend to understand how it works.

Exercise: Take one of your basic plots from above, and add an 𝑥 label, a 𝑦 label, a 𝑧 label (for one
of the 3D plots), and a title. Add a legend to the plot with the four curves with different line styles.

9.5 Graphics Handles and Customization

You can customize your plot using the MATLAB user interface using the plot tools. From an open
plot, click on the “plot tools” icon on the figure window, which will dock your figure window into
the user interface. The plot tools interface lets you choose all kinds of options (font size, font
name, tick locations, tick sizes, legend placement, whether to draw a grid or not, line thickness,
etc.). There are many, many options to choose from (more than I can list here), and you can
generate plots with a variety of styles.

Spend some time changing different parameters using the plot tools to understand how to customize
a plot. In particular, make the following changes to some of your previous plots:

• Change the line thickness

• Change the frequency of the axis tick marks

• Add secondary tick marks

• Add grid lines

• Change the font
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• Change the font size

• Change the marker edge and fill colors on your scatter plot

• Change the legend location

• Change the colorbar location on a 3D plot

In my opinion, the default MATLAB plots make it easy to make plots that are hard to read. The
biggest problem is that the default font size is always too small, nearly independent of the intended
destination of the plot (poster, journal article, presentation, web). I have no idea why they insist on
making 10 pt font the default, especially when they make the default figure size so big and make
it difficult to change the size of the figure. The plots in this document use the default values, and
I think they are difficult to read when resized for a document like this. In my opinion, you should
always increase the font size of a MATLAB plot, which you can see in some of my examples.

While the plot tools are great for getting a figure to look the right way, the downside to using them
is that you have to repeat yourself. As I have tried to emphasize thus far, automating things saves
you time and makes your results reproducible. To see why this would be useful, let’s say that you
have just spent 15 minutes making your plot look just “so” using the plot tools and you happily
head to your advisor’s office to show off your work. After discussing for a bit, you both decide
that while the plot looks very nice, it would really be best if you made a small change to the plot.
If you do not have a way to automate the tweaks to the figure, you will have to spend 15 minutes
producing the figure again.

There are several ways to help make your results more reproducible:

• MATLAB includes a .fig format for saving figures, which lets you open a saved figure
directly in MATLAB. This is useful if you just need to tweak the formatting of the plot, add
a legend, etc., but won’t let you directly change anything about the underlying data in the
plot. This is more akin to saving your work than actually automating production of your
figure, so while it is a good idea, I don’t recommend this approach.

• If you save your figure as a .fig file, one way you can help make your figure reproducible
is to use the “Generate code...” option under the “File” menu. This will create a MATLAB
m-file based on the .fig file to re-do all of the figure formatting. Once you have the m-file,
you can use that as a script to automatically generate plots with the same customizations.
This won’t necessarily help you automate generation of your original figure, but if you used
a MATLAB function or script to generate the original (unformatted) plot, you can combine
the original code and your tweaking code to automatically re-create your figure that you
worked hard to make in the first place.

As long as you don’t mind spending the time using the plot tools to customize the plot the
first time, this is a good practice to follow to avoid doing extra work every time you make
the same figure.

• You might have some tweaks you like to put in every figure, such as increasing the font size
by defauly. You would need to put those in using the plot tools every single time you save a
plot before creating the m-file, then running that code again. It’s a bunch of extra work, and
such customizations are tailor made for using a function.
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One way around this is to write a MATLAB function that you call when making your plots
that does this customization for you. This is easy to do once you have created an m-file based
on a .fig file, as an m-file can be easily turned into a function. Just have the lone argument
to the MATLAB function be the figure number (use gcf if you aren’t sure what the right
number is), and have the function return the same figure number. This will allow you to
repeadly apply common formatting commands without extra work.

• However, the best approach in the first place is to automate graphics customization when
writing your original code. This requires knowing some basics about MATLAB’s rather
opaque graphics handle system. It takes a bit of work to become familiar with them, but if
you want to be a real pro at producing nice plots with MATLAB, it is really the best method.

I use the graphics handles whenever I make a plot in MATLAB, as it allows me to fully con-
trol how my figure looks and do it reproducibly and in an automated fashion. I will always
include such commands in my versions of MATLAB code (both in-class and homework
solutions), so that you can see examples as to how it can be used. While you don’t need
to understand any of this at all to be a proficient user, if you are curious what my plotting
commands mean, knowing how graphics handles work will clarify what I am doing.

I have included a few documents that give useful tips on using graphics handles on the class
website. One is an article explaining some basics of MATLAB graphics handles (“Mat-
lab_Graphics.pdf”), and another is a MATLAB script (“graphics_handle.m”) that gives several
examples of customizations with comments explaining what I am doing. Read those more care-
fully to get an idea of what you can do with MATLAB.

The short version of graphics handles:

• Everything (figure, axes, line, markers, patches, text) has a handle, a unique number that
MATLAB uses to identify that object. This is the same concept as the integer that identifies
a file.

• Everything fits into a hierarchy of parents and children. All axes are children of some figure,
and all lines are children of some axes.

• Once you have the handle, you can see what properties that object has by typing get(h),
where h is the handle (integer number) referring to that object.

• To see only the value of a specific property, type get(h,'<property>').

• To set the value of a specific property, type set(h,'<property>',<value>). If you
don’t know what values the property can take, type set(h,'<property>') without
providing a new value for the property.

• If you don’t know the handle of the current figure, axes or object, you can get it using gcf
(figure; short for “get current figure”), gca (axes), or gco (object). This is always the most
recent figure, axes, or object that was modified from the command line.

Feel free to play around with handles of various objects and see what their properties are and how
you set them. If you don’t mind using the plot tools, feel free to skip over this – I was a proficient
MATLAB user for many years without knowing one bit about how to use graphics handles, though

78 Chapter 9. MATLAB 3



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

I learned more as I started to automate more and more of the work that I was doing. Regardless of
how you decide to do it, be sure that any plot that you create can be reproduced in some automatic
fashion (it will save you loads of time and effort).

9.6 Saving and Printing

Finally, how do you save your graphics in a format that can be used for another purpose? I men-
tioned previously that you can save a figure from the figure window, and that you can choose any
number of formats. If you want to save a file from the command line (to put it into a script so that
you can automate and reproduce things), the print function is very useful. The basic syntax is
print '<driver>' '<name>', where <driver> specifies the type of file that you would
like to save (or the type of printer that you desire to use for output). print can also be called
as print('<name>','<driver>') or print(<handle>,'<name>','<driver>')
to print a specific figure based on its handle. The most common formats will be -dpdf for PDF
output, -deps for black-and-white Encapsulated PostScript (EPS), -depsc for color EPS, and
-dpng for PNG files. Since PNG is a pixel-based format, you can give an optional -r<number>
to specify resolution in pixels per inch (the default is 150). Any of these are fine for your homework
– if you care about the technical differences between any of them, I am happy to explain.

So for example, to save the current figure as a PDF, you would type print '-dpdf'
'figure.pdf' or print('figure.pdf','-dpdf'). To save the current figure as a PNG
with a resolution of 100 ppi, you would type print '-dpng' '-r100' 'figure.png' or
print('figure.png','-dpng','-r100'). To save the figure with handle h as a color
EPS file, use print(h,'figure.eps','-depsc'). Try saving the figure that you have
made in this lab using this method.

Additionally, MATLAB has the saveas command, which works in a similar man-
ner as print. The syntax is slightly different: saveas('figure.pdf','pdf'),
saveas('figure.png','png','r100'), or saveas(h,'figure.eps','epsc'),
but you should be albe to achieve the same results as using print.

I have provided some examples of using the print and saveas commands in the same m-file
where I illustrate graphics handles.
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MATLAB is an interpreted language, in the sense that you can type a command and it executes
immediately. This is in contrast to a compiled language, which converts your entire code into a
format suitable for execution by your computer’s processer and then executes it. While MATLAB
has what is called a “Just In Time” compiler (JIT) known as the “accelerate” feature, the fact that
MATLAB is interpreted sometimes slows it down. However, this has become less true in recent
years, as the JIT compiler speeds up a lot of loops that MATLAB used to take a long time to
execute. If you want to see the difference that the JIT compiler makes, type feature accel
off into the command line (feature accel on turns it back on).

One way that MATLAB code can be sped up is by doing what is referred to as “vectorization,”
which essentially means that instead of using loops, we attempt to write computations as matrix or
array operations on an entire vector/matrix that have been optimized for speed by the programmers
that develop MATLAB. Figuring out ways to vectorize code is often more art than science; you
either need to learn some of the non-obvious tricks that people have figured out over the years, or
come up with them yourself. This lab looks at some ways that you can optimize MATLAB code.

My strategy for optimizing MATLAB code is really quite lazy. If there is a really obvious way to
vectorize something, I do so from the beginning. If there isn’t something obvious, I’ll just write
it as a loop and run it to see how long it takes. If it runs slowly, then I will think for a little bit
about vectorizing it (like 15 minutes maximum). If I can’t find an obvious way to vectorize it, I
will just write a Fortran program to do it. Even vectorized MATLAB code usually runs slower than
unoptimized C or Fortran code, and I can usually write looped Fortran code faster than I can think
about how to vectorize something since it is a direct translation of my existing code. However, if
you are not a good C or Fortran programmer, then you might find that it is handy to know more
vectorization tricks.

I have included a document that describes many techniques for vectorizing MATLAB code
(“mtt.pdf”, also referred to by the MATLAB 2 lab) with the materials for today. It is worth looking
through, and is a good source for tricks to optimize many common MATLAB operations. There
are also many other places where you can find info on MATLAB vectorization on the web that you
can find using your favorite search engine.

This lab may take you longer than the class period to complete, so feel free to spend more time on
it during the next class (the next class covers more miscellaneous topics that are not as essential
to using MATLAB as vectorization). The second homework will also focus on this skill, so this is
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definitely something to spend some time on as it will certainly help you write efficient MATLAB
code.

10.1 Defining Arrays

There are several tricks for defining arrays quickly. Besides the method of evaluating an entire
vector (i.e. x = 0:0.01:1; y = sin(x);), plus linspace, logspace, and other pre-
defined matrices like eye (identity matrix), and the reshape command to transform one matrix
shape into another. Additionally, there are a couple of other tricks:

• repmat (“repeat matrix”) – if you have an existing matrix that is repeated multiple times,
then repmat(A,size) concatenates multiple copies of A. Try it out and see how it works
(for instance, try giving it a scalar, and then [m n] for its size argument).

• “Tony’s trick” (named for the person who figured out how to do it and then spread the word
on MATLAB message boards). This trick makes a constant matrix by taking advantage of
the fact that you can evaluate a matrix with a logical matrix, and that MATLAB treats even
a scalar value as a matrix: A = b(ones(m,n)) creates an m x n matrix with the value of
b everywhere.

Basically, MATLAB is evaluating the scalar value at every location in the matrix where it
finds a 1, so it assigns 2 to every matrix element. Note that this gives the same result as
2*ones(m,n), but is faster because it avoids repeatedly doing multiplication.

• diag(A) makes a square matrix with the entries of a vector A on the diagonal. There are
additional functions to generate other kinds of sparse matrices that are useful for vectorized
matrix generation.

10.2 Shifting Arrays

We may want to shift array positions to calculate something. One can shift the elements of a
vector by one place using A([end 1:end-1]), or for 𝑘 places by using A([end-k+1:end
1:end-k]). This can also be done for a matrix along the first axis using A([size(A,1)
1:size(A,1)-1],:).

You can also do this using the circshift function, though this trick is faster. This trick will be
useful on the homework assignment, both in vector and matrix form.

10.3 Array Math

You can do array math using compact notation in MATLAB. Matrices and vectors can be added
and subtracted and multiplied by scalars. We have already mentioned the element-wise operators
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like .*, ./ and .^. There are additional tricks, but they are rather specialized so if you need to
do some complex array math like multiplying certain slices of a matrix by different numbers, there
may be a nice way to do it in a single line. See the file “mtt.pdf” for some examples.

It is also helpful to recall that MATLAB was originally designed as a linear algebra package, and
consequently it is very fast when doing matrix math. Thus, if there is a way to write a computation
as a linear algebra problem (i.e. matrix multiplication, solving a linear system, etc.), then that
will most likely give you the most efficient execution. As an example, we will re-cast the sum of a
Fourier series into a matrix multiplication problem to illustrate one way of “vectorizing” MATLAB
computations.

10.4 Timing Code

MATLAB has a convenient method for timing code. To time a section of code, place tic; before
the code, and toc; after the code. After running, you will see the elapsed time. However, note
that if you include other things like plots and graphics inside of the tic toc, the numbers may
not be meaningful because producing graphs can be much slower than the numerical computation.
Be sure that you are aware of what you are timing when comparing code!

10.5 Practice Problem

We will look at an example of vectorizing MATLAB code for summing a Fourier series to obtain
a “seismogram.” This example is taken from Stein and Wysession, Introduction to Seismology
and Earth Structure. The problem looks at pulses traveling on a string that are reflected at the
boundaries, illustrated below. A string of length 𝐿 = 1 is fixed at both ends, and waves travel with
a speed 𝑐 = 1. Because of the fixed ends, waves that reach the boundaries are reflected with the
opposite sign. We are interested in determining the signal measured at 𝑥 = 0.7 due to a source at
𝑥𝑠 = 0.2 (though your code should allow for an arbitrary specification of 𝑥 and 𝑥𝑠).

This problem can be solved through a normal mode summation. Each mode is given a weight
that depends on the source position 𝑥𝑠, receiver position 𝑥, and source duration 𝜏 , and the wave
amplitude is a function of time 𝑢(𝑡):

𝑢(𝑡) =
∞∑︁
𝑛=1

sin
(︁𝑛𝜋𝑥

𝐿

)︁
sin
(︁𝑛𝜋𝑥𝑠

𝐿

)︁
exp

(︃
−(𝜔𝑛𝜏)

2

4

)︃
cos (𝜔𝑛𝑡)

The frequencies are 𝜔𝑛 = 𝑛𝜔0 = 𝑛𝜋𝑐/𝐿. In practice, we will take the sum over a finite number of
modes over a finite number of time steps (the two should be ideally be linked, which you will learn
about in Signal Processing, though here we will allow for the number of modes and time resolution
to be specified independently).

1. First, write a MATLAB function that loops over all modes and all time points to calculate
𝑢(𝑡). Run the program using a total time of 𝑇 = 1.4, 𝑀 = 200 time points, 𝑁 = 200 modes,
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L = 1

xs = 0.2 x = 0.7

c = 1

(a)

xs = 0.2 x = 0.7

Direct Wave, t = 0.5

(b)

xs = 0.2 x = 0.7

First Reflected Wave, t = 0.9

(c)

xs = 0.2 x = 0.7

Second Reflected Wave, t = 1.1

(d)

Fig. 10.1: Schematic for seismogram creation through a sum of normal modes. (a) A pulse is sent
from the source point 𝑥𝑠 = 0.2, and we would like to calculate the waves detected at a receiver
at 𝑥 = 0.7. The string has a length 𝐿 = 1, and the signals travel at a speed 𝑐 = 1. The ends of
the string are fixed, so that a pulse arriving at the end is reflected with the opposite sign. (b)
Direct arrival of the wave propagating directly from 𝑥𝑠 to 𝑥. The signal should arrive at 𝑡 = 0.5.
(c) First reflected arrival, which reflects off the left boundary, and arrives at 𝑡 = 0.9. (d) Second
reflected arrive, where the direct arrival continues past 𝑥, reflects at the right boundary, and arrives
at 𝑡 = 1.1.
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and 𝜏 = 0.02. Time the execution using tic and toc as mentioned at the beginning of the
lab. Note that it is best coding practice to do this as a function, which will make this code
re-usable for different choices of the parameters. Think about what parameters you will need
to pass to this function to make it as general as possible.

2. Now we will try to figure out how to “vectorize” this sum by writing it as a matrix mul-
tiplication problem. First, it is helpful to notice that when we compute the sum, the first
three factors in the sum do not change as we change time points – they are only dependent
on 𝑥, 𝑥𝑠, and 𝜏 , which are constants. Therefore, we can imagine collecting this term into
a “time-independent” vector of length 𝑁 . Define a vector that represents the 𝑥, 𝑥𝑠, and 𝜏
factors in a MATLAB function (if you want to compare the time for executing each of these,
you will want to write a separate function), and set it to the appropriate values by using array
evaluation (i.e. without looping over 𝑛).

3. The remaining issue is to break down the time dependence. Note that for a single time point
𝑡0, we are summing cos(𝜔𝑛𝑡0) weighted by the time-independent vector over 𝑁 modes. This
can be written as the product of a length 𝑁 row vector representing the values of cos(𝜔𝑛𝑡0)
and the length 𝑁 column vector for the time-independent factors discussed above. Write
another MATLAB function, eliminating the loop over the different normal modes, so that
you are doing a loop over all time points and doing a matrix product during each execution
of the loop. Note: you will need to redefine your row vector representing cos(𝜔𝑛𝑡) every
time step to accommodate the changing value of 𝑡.

4. Now that we have vectorized the normal mode sum, it should be clear that instead of redefin-
ing cos(𝜔𝑛𝑡) at every time step, we can make this into an 𝑀 ×𝑁 “time-dependent” matrix,
where 𝑀 varies over all 𝑡 and 𝑁 varies over all 𝑛. This will reduce the summation problem
into a single instance of matrix multiplication, which MATLAB can carry out very quickly.

5. The one remaining issue: how do we define the 𝑀 ×𝑁 time-dependent matrix without
looping over the whole matrix? Putting our linear algebra thinking caps on again, we realize
that an 𝑀 ×𝑁 matrix is really just the product of a length 𝑀 column vector and a length
𝑁 row vector – the 𝜔𝑛𝑡 factor can be written as (𝑀 time points as a column vector) × (𝑁
modes as a row vector). MATLAB can then easily take cos() of a matrix.

6. Finally, implement a function to make a vectorized sum to calculate 𝑢(𝑡) for the same pa-
rameters mentioned above. Time the execution, and compare with the looped computation.
Your time series should look something like the plot below.

One important thing to note here: what we did here was to optimize how MATLAB computes this
sum, but all that we did was eliminate the loops to give us code that does the same computations in
a shorter time period. We still added up the contributions of 𝑁 modes for 𝑀 time points in the end,
so we didn’t save the computer any computations. While you should do this sort of optimization
as much as possible, a better (and more clever) way to optimize this problem is to recognize that
we are simply doing a Fourier transform of the source function, doing a simple multiplication, and
then doing an inverse Fourier transform. Why is this important? Because some smart people in the
60’s figured out that you can compute a Fourier transform on the computer faster than our matrix
multiplication (though mathematics titan K. F. Gauss apparently knew about this algorithm in the
early 1800’s). Thus, one can do this calculation faster than our method here using Discrete Fourier
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Fig. 10.2: Response calculated for a source at 𝑥𝑠 = 0.2 of duration 𝜏 = 0.02 at point 𝑥 = 0.7 for
𝑁 = 200 modes. The arrival times correspond to the expected values based on the diagram above.

Transforms. This is to serve as a reminder that while you can make your MATLAB code more
efficient by vectorizing certain computations, you stand to gain even more by coming up with a
way to do less computation in the first place.
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This lab covers odds and ends regarding MATLAB.

11.1 Floating Point Numbers

We have been dealing with floating point numbers in both Python and MATLAB. These are com-
puter approximations to real numbers, and most of the time they behave just like real numbers.
However, there are some cases when treating floating point numbers exactly like real numbers can
trip you up. This section talks a bit about the details of floating point numbers, and potential pitfalls
that you may encounter if you treat them exactly like real numbers.

To represent a floating point number, we use a specified number of bits to represent the number.
These bits are divided between the sign (1 bit), a fixed number of decimal places, and a fixed
number of bits for the exponent, akin to scientific notation. Because this is on a computer, floating
point numbers use base 2 instead of base 10. Thus we can think of a floating point number 𝑓 as
follows:

𝑓 =

(︃
1.+

𝑝−1∑︁
𝑛=1

bit𝑛2
−𝑛

)︃
× 2𝑚

To maximize precision, floating point numbers are normalized so that there are no leading zeros
(by recalibrating the exponent), represented here by the 2𝑚 here. Since in base-2 the leading digit
of a normalized number will always be a 1, we can drop this implicit bit to improve precision.

A “single precision” or 32-bit floating point number will be represented by the following: 1 sign bit,
8 exponent bits (wtih an implicit offset of 127 to represent negative exponents), and 24 mantissa
bits (including the implicit bit). For example, 𝜋 can be written as a single precision number as
follows. First, write 𝜋 to 32 digits in base-2:

𝜋 = 11.001001000011111101101010100010

First, we normalize by dividing by 21, and keep 24 digits in the mantissa:

𝜋 = 1.00100100001111110110101 ×21.
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The exponent is expressed as 1 + 127 = 128, or in binary 1000 0000. The sign bit is zero, and
we drop the implicit bit, leaving us with the following (using SEEEEEEEEMMMMMMMMMM-
MMMMMMMMMMMMM notation):

𝜋 = 010000000001001000011111101101.

Single precision numbers give you about 7 significant figures represented in base-10, and an expo-
nent range from -38 to 38. That is fine for many applications, but serious numerical work usually
requires more, which is why double precision (64-bit) is standard in MATLAB. Double precision
numbers give you about 16 significant figures, with exponents ranging from -308 to 308. One can
also use quad precision (128-bit) floating point numbers, which have an additional number of bits
dedicated to both the exponent and mantissa. The properties of floating point numbers in various
precision are summarized in following table.

Type Sign Exponent Mantissa Total bits Exponent bias Bits precision
Single 1 8 (±38) 23 32 127 242 710
Double 1 11 (±308) 52 64 1023 532 1610
Quad 1 15 (±4965) 112 128 16383 1132 3410

11.1.1 Problems with Finite Precision

The fact that numbers are represented by a finite number of bits has a few important implications
for arithmetic and other things that you need to do with numbers on a computer:

• Adding two numbers of very different magnitudes will often not yield the result you intended
if the smaller number does not register within the precision of the larger number. To see this
in MATLAB (which uses double precision, so we need to add something smaller by at least
10−16), enter the following:

a = 1.;
b = a + 1.e-17;
if a == b

disp('a and b are the same');
end

You can mitigate this problem by increasing the precision of both numbers, as after doing so
the smaller number will then register within the significant figures of the larger numbers.

• Subtracting numbers that are nearly the same will give a number that appears to be more
precise than it actually is. In MATLAB, try the following:

a = 1. + 1.e-15;
b = a - 1.;
disp(b);

This will display mostly meaningless digits, because these digits are smaller than the small-
est digit represented in 1. + 1.e-15. Increasing the precision does not alleviate this
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problem, as increasing the precision adds on meaningless digits to both numbers.

• Testing for equality between floating point numbers often not give you the expected results
because of rounding errors. When comparing floating point numbers a and b, it is best to
compare abs(a-b) < epsilon, where epsilon is a small number set by the precision
of the numbers. For an example of this, try the following in MATLAB:

a = 0;
delta = 0.01;
for i=1:100

a = a + delta;
end
if a == 1

disp('a is one!');
end

This will not print anything out, because there is round-off error adding in up 0.01 (which
cannot be exactly represented with a finite number of digits using double precision, despite
its simple base-10 representation) 100 times. You should always use some small tolerance
when comparing floating point numbers!

These are things to be aware of when doing math on computers. However, it is important to note
that while round-off error is always something to worry about, it is not unpredictable. That is, if we
do the same thing multiple times, we get the same result. For instance, when adding up a bunch of
small numbers we may not get exactly the sum we expect, but if we subtract those same numbers
off of the result, we will get the same number we started with:

a = 1.;
delta = 0.01;

for i=1:100
a = a + delta;

end

for i=1:100
a = a - delta;

end

if a == 1.
disp('a is one!');

end

This will in fact print out something. There may be round-off errors owing to the fact that 0.01
does not have an exact representation as a double precision floating point number, but adding and
subtracting the double precision representation of 0.01 does leave us with the same number we
started with.
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11.2 Saving Data to a File

We spent some time in the first MATLAB class covering how to get data into MATLAB. However,
you are also likely going to need to get data out of MATLAB, too. Here are your options when it
comes to writing data to file

Let’s say you are using MATLAB and have the results of a particularly long calculation that you
would like to write to disk for future use. There are a few ways that you can accomplish this,
depending on the intended use of the data.

• MATLAB native .mat files: MATLAB’s default method of saving data is in binary
.mat files through the save command. You can save more than one variable to the
same file – the default use of save is to save all workspace variables to the same
file (done by invoking save(<filename>). To save only one variable, you can call
save(<filename>,'<variable>'). MATLAB can also save .mat files as ASCII
files, with a number of options for formatting the output. Use the help command to see all
of the different possibilities. Note that this is saved in a MATLAB-specific format, so you
need to use MATLAB to read these files (use load(<filename>)).

• ASCII formatted files: There are two options for non-MATLAB-specific saving human-
readable files. fprintf is the equivalent of fscanf and can be used to write formatted
data to a text file. fprintf takes 3 arguments: a file id, formatting instructions, and the
data to be written. For example, if I have a vector A that is 10 elements in length that I would
like to write to file with each entry on its own line, I can use the following:

fid = fopen('outfile.dat','w');
for n = 1:10

fprintf(fid,'%f\n',A(n));
end
fclose(fid);

You probably recognize the fopen command from before; here it is important to include
the 'w' so that MATLAB will open the file in write mode. fprintf includes the file id,
the formatting (in this particular case, we print as a floating point number, followed by a
carriage return (\n), and the data to print. If you want to put a tab after printing a character,
use \t instead of \n, or you can add spaces as well. You can specify the number of digits
to write by using '%m.nf' for the formatting string, where m is the minimum number of
characters to print and n specifies the number of figures to include after the decimal point.
Thus, '%5.3f' will print a minimum of 5 total characters (it will be padded with blank
spaces at the left if need be), three of which are after the decimal point.

An alternative is to use dlmwrite, which writes character delimited formatted text to a
file. dlmread is another option for reading data into MATLAB that I did not mention the
first time around – it is used to read data that has a common character that separates every
data point. A comma is the default delimiter (as CSV files are a fairly common format), but
an alternative delimiter can be specified when invoking the command. An example use is
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dlmwrite(<filename>,A);. See the documentation to learn more about the specific
options.

• Binary files: To write to a file in binary format, use fwrite, which is the writing equivalent
of fread. To write the matrix A to disk as a binary file as a double precision float with a
little endian byte ordering, use

fid = fopen('outfile.dat','wb');
fwrite(fid,A,'double','l'); % you can specify other formats and

→˓byte-ordering values if necessary
fclose(fid);

The only thing to note here is the use of the 'wb' tag to specify that the file should be
opened in binary write mode. Everything else should be familiar from the use of fread.

If speed is a concern, writing binary files (using either save or fwrite, depending on the in-
tended use of the data) is much faster than writing formatted files, and will take up less disk space.
If you will be writing lots of data at full precision and the files do not need to be human readable,
consider using one of the binary options.

11.3 Additional MATLAB Data Types

11.3.1 Data Structures

Sometimes in geophysics we have more complex data than can be simply represented by vectors
or matrices. For instance, a seismogram often contains three components, each of which has the
same length. There are multiple ways we might handle this in a MATLAB code:

• Three separate vectors, one for each component

• One matrix, with three columns (one for each component)

Either method will work, but they both have their drawbacks. If each component is its own vec-
tor, then we can use descriptive names to describe each one (i.e. station1_N, station1_E,
station1_Z), which makes our code more understandable. However, this does not highlight
the fact that all of these vectors represent different aspects of the same measurement, since each
variable is separate. Further, if we want to write a function to process the components, we need to
pass all three vectors to the function as separate arguments. Using a matrix solves our problems,
but now it is less clear what each component is and our code is harder to understand.

We can get the best of both worlds by using a data structure, which is a single variable that holds
multiple data objects, each of which has their own name. One way we might create a data structure
for a seismogram is as follows:
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station1.N = [ <array> ];
station1.E = [ <array> ];
station1.Z = [ <array> ];

You would obviously create the appropriate vectors for assigning each component (by reading the
data from a file, for instance). This gives you a single data object station1 that makes it clear
that this is a single measurement and can be passed to functions in a simple fashion. You can also
add additional data to the structure, like the time (a vector), and even other attributes that might
not even be vectors, like station latitutde/longitude, sampling frequency, and the instrument type:

station1.t = [ <array> ];
station1.latitude = 36.;
station1.longitude = -90.;
station1.samplerate = 100.;
station1.type = 'broadband';

This is a handy trick for writing code that is clear and easy to understand, as you can wrap all
relevant data into a single structure. If you want to initiate an empty structure, use struct(), to
which you can then add entries as above. To initialize a structure with multiple entries at once, use
struct('<fieldname>',<fieldvalue>,... ). Because of how MATLAB stores the
field names internally, you need to explicitly use a string for the field name when initializing in this
manner.

11.3.2 Cell Arrays

MATLAB arrays work well for numeric data, and structures are handy for combining multiple
data types into a single object. But what if you have data that is a collection of a large number of
strings? A structure is not really useful for this, because we would need to store every string as its
own unique entry, which obscures the structure of the data. This is also cumbersome for accessing
the data, since you would need to use a string to access each entry, rather than a convenient numeric
index.

We might think that we can simply use an array of strings to represent the data in a convenient
way, using the same syntax for defining an array of numbers:

stringarray = ['abc' 'def'];
disp(stringarray(1));

However, this will simply print out a, which is not what we really wanted. This is because
a string is already represented within MATLAB as an array of characters. When we defined
stringarray, we were really just combining two arrays of characters, much in the way MAT-
LAB lets you concatenate vectors or matrices using vectorcat = [vector1 vector2].

To handle arrays of strings, MATLAB provides the cell array datatype. Cell arrays use curly braces
{} for defining and indexing the arrays, rather than the normal square brackets (for defining) and
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parentheses (for indexing) arrays. Cell arrays can hold any data type in each entry, including
strings, booleans, numbers, and even entire matrices, so you are not restricted to numeric values
like in a matrix.

Here is an example cell array holding the data from stringarray above:

stringarray = {'abc' 'def'};
disp(stringarray{1});

This will give us the desired result. As mentioned above, we can put any type of data in each entry
of a cell array, for example

mixedarray = {'abc' 123 [1 2]};
disp(mixedarray{1}); % displays 'abc'
disp(mixedarray{2}); % displays 123
disp(mixedarray{3}); % displays 1 2
disp(mixedarray{3}(1)); % displays 1

This allows us to combine different datatypes into a single array that can be indexed like a matrix.

11.4 Exercises

1. Practice saving data in various formats from your workspace. Check that you were success-
ful by reading the data back into MATLAB using the equivalent read commands from our
previous work with MATLAB.

2. Create a data structure representing an earthquake catalog (you can use the file “new-
madrid2015.txt” file from the second class on MATLAB as input data). Include separate
fields in the data structure for the date, latitude, longitude, and magnitude.

3. I have provided 1000 binary .mat files zipped together in the file “lab11files.tar.gz”, on the
course website. Use a cell array to read all of them into MATLAB. Hint: Use the shell to
write all the file names into a text file, then read that file into MATLAB using fscanf to
define your cell array, and then loop over the cell array and use the load command to read
each one into MATLAB.
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One tool that geophysicists use to process seismic data is Seismic Analysis Code (SAC). SAC is
installed on all of the computers in the Mac Lab, and can be obtained for no charge from IRIS
(Incorporated Research Institutions for Seismology, which is one of the main consortiums for
archiving and distributing seismic data) if you are affiliated with an IRIS institution. SAC has many
seismic processing functions, makes several kinds of plots, and can read and write ”.sac” data files
(more on this later). SAC has been around for a while, which means it has a few limitations based
on its age, but it is still used enough that geophysicists should be familiar with it.

SAC capabilities include many tools commonly used when processing seismic time series data:
arithmetic, Fourier transforms, integration/differentiation, spectral estimation, filtering, stacking,
decimation and interpolation, correlation, phase picking, instrument correction, vector component
rotation, envelope creation, frequency/wave number analysis, and plotting. While we will not be
covering all of these in this class, if you have a working knowledge of how to use SAC, you can
figure out how to use any of these tools without too much trouble.

There are many alternatives that replicate the functionality of SAC, so while you should know
how to use SAC, you may want to explore some of these other options if your research involves
processing seismic data. First, there is a MATLAB toolbox MatSeis that has many functions useful
for seismic data analysis. There are also are many individual MATLAB functions that people
have written to perform many of the operations in SAC. You can of course also write your own
MATLAB programs to process seismic data. As a Python fan, I like using the Python package
ObsPy to do many of the same things that SAC does (I believe that ObsPy is installed on the
computers in the Mac Lab). And for serious data processing, there are many C and Fortran codes
available to perform various tasks. Talk to other graduate students to find out how they process
data.

12.1 Running SAC

Unlike MATLAB, SAC does not have a nice GUI. You run SAC from the Unix shell by typing
sac, followed by a carriage return. The Terminal should now look something like this:

95



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

SEISMIC ANALYSIS CODE [11/11/2013 (Version 101.6a)]
Copyright 1995 Regents of the University of California

SAC>

We now have a command prompt within SAC to enter commands. To quit SAC, type either exit
or quit, followed by a carriage return. This will return you to the Terminal prompt.

We will be reading and writing files from within SAC. By default, SAC reads and writes files from
the current working directory. You will probably want to create a separate folder for all of your
SAC work in this class. One method is to create a directory SAC in the Documents folder, though
you are welcome to arrange things however you like.

12.2 SAC Basics

SAC is used to analyze time series data. Like MATLAB, SAC is interactive and command-driven
(either by entering commands directly in the terminal, or by executing commands saved in a script),
so you need to give it commands for it to do anything. SAC commands can be typed either as upper
case or lower case (commands are all converted to upper case before they are interpreted by SAC).
However, if you are giving SAC file names to read from or write to, SAC interprets the case of
those statements literally. There are also abbreviated names for many functions to save you time in
typing them. I will generally use all uppercase and give the full function name when introducing
a function, but lowercase when making subsequent references to it. I will mention the abbreviated
names as well, but will stick to using the full names in the notes.

SAC commands are fall into three different categories: (1) parameter-setting, which changes the
values of the parameters within SAC, (2) action-producing, which carry out actions based on these
parameter values, and (3) data-related, which determine the data in memory that these actions will
be performed on. Note that this means that commands that set parameters appear to do nothing
until you execute the corresponding action-producing command.

Additionally, there is the HELP command, which lets us read the documentation on any of these
commands. help without any additional arguments brings up a list of all commands. help
<command> brings up the documentation page for that particular command. To exit the docu-
mentation and return to the SAC command line, type q.

12.2.1 FUNCGEN

To put a basic time series into SAC, use the FUNCGEN command. This can be entered in all caps,
in all lowercase, or with the shorthand fg. If you simply type funcgen, followed by a carriage
return, SAC will create a default time series for you. There are additional options that can be
specified (we will get to those in a second), but this is a basic way to create data within SAC.
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After you type funcgen, it is not clear that anything has happened. To see the results of the
funcgen command, we need to be able to plot the data and look at it.

12.2.2 PLOT

To plot the current data that is in memory, we use the PLOT command, or p for short. Try this with
the function that you created using funcgen – the plot should show up in an external window,
and look something like this:

To change the limits on a plot, use the XLIM and YLIM commands. The syntax is xlim <min>
<max>, then issue the plot command (remember, SAC commands to set parameters do nothing
until you enter a corresponding action-producing command). Also note that this will affect all
future calls to plot, even if you generate new data in SAC. To turn off axis limits and return to
the default behavior, enter the command xlim off.
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12.2.3 Some Details

Now that we can create functions and plot data to visualize, here is a bit more about what is going
on. When we invoke funcgen with the default parameters, SAC creates an impulse function
(also known as a delta function) in memory. By default, time ranges from 0 to 99 with 100 data
points, and the impulse occurs at 𝑡 = 50. The function is one at the time of the impulse, and zero
otherwise.

When we plot the data, SAC creates a plot in an external window. The plots are relatively simple,
and reflect the legacy of SAC being originally used on Tektronix 401X graphics terminals:
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These 1980’s era terminals were state-of-the-art when SAC was developed at Lawrence Livermore
National Laboratory, and so some limitations of the graphics remain in the present version of SAC
– in particular, SAC will often desample a time series to plot it more quickly, which was a necessity
on the Tektronix system, but not a real concern on modern computers. However, we will see that
many of these limitations have seen improvements in the modern version of SAC.

12.2.4 FUNCGEN (again)

Now that we know how to view our results, we can play a bit more with the funcgen com-
mand. Look at help funcgen to see some of the additional options. In addition to the
default impulse function, we can also generate step, boxcar, triangle, sine, line,
quadratic, cubic, seismogram, random, and impstrin (multiple impulses). Some of
these have additional parameters; for example, for sine you specify two parameters (the fre-
quency and phase), for example:

SAC> funcgen sine 0.05 0
SAC> plot

will produce the following graph:
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Other parameters that you can specify when calling funcgen (regardless of the type of function
you are creating) include the number of points npts, the time resolution delta, and the begin-
ning time begin. The default values of these parameters are npts = 100, delta = 1, and
begin = 0. To call funcgen with additional parameters, use funcgen impulse npts
100 delta 1 begin 0. There are also default values for all of the functions that take param-
eters. Once you set a parameter to a different value, that becomes the default value for subsequent
calls to funcgen, unless you specify that parameter again.

Exercise: Try out some of the other functions available in SAC, in particular some of the functions
that require additional parameters like sine and random. Also produce functions over differing
time window using npts, delta, and begin. Make a plot of each function to verify that you
know how funcgen works.

12.3 READ, WRITE, and ”.sac” Files

One thing you may have noticed is that when you create a new function in memory, you lose all
ability to access the previous function. However, modern seismology often requires processing
multiple signals simultaneously. How can we do this in SAC?
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In order to get multiple signals into memory in SAC, we need to read data from a file using the
READ command (r in shorthand). SAC has its own data format, and is one of the many stan-
dard data formats that you will find for waveform data. Other formats include “ah” (Ad-Hoc, the
data format of the IRIS/PASSCAL program), “SEED” (Standard for the Exchange of Earthquake
Data, standard format of the IRIS Data Management Center), “SUDS” (Seismic Uniform Data
System, developed by the USGS), “SEG-Y” (the standard for seismic reflection data), and others
that continue to pop up from time to time. There are additional software packages for many of
these additional formats that fulfill many of the same functions as SAC.

SAC files all have a header that displays information about the data in the file. Once you read
in the data, you can access the header information using the LISTHDR command, which can be
abbreviated with lh. The header for a seismic data file will usually include such information as
time ranges, instrument details, and any seismic phase pick information that is present in the file.
We can also look at the header of files that we create within SAC – these typically only include
time information and the type of function, but are still useful if you don’t remember the details of
how you created the data that you currently have loaded in memory.

However, what if we don’t have our data in a file, but want to generate it within SAC? Then we
use the WRITE command (shortened to w). Once we have created our function, we call write
<filename>, and SAC writes the function to a .sac file with the specified name. Then we can
read the file back into memory using read <filename>. When you call write with the
filename of an existing file, it overwrites that file without a warning, so you need to be careful
when using write.

Exercise: Generate a function using funcgen, write it to disk using write, and then read it
back into SAC using read, verifying that you have succeeded by plotting the data.

Why go to the trouble of writing the signal to disk? Now that we can read and write data, we
can get multiple signals into SAC using the read command, followed by multiple filenames:
read file1.sac file2.sac file3.sac. This will load all three signals into memory,
allowing you to process and plot the signals. Alternatively, you can load files one at a time without
overwriting the data presently in memory using read more <filename> (you can call read
more with no files loaded in memory, so it is okay to call it without having already some files in
memory).

Exercise: Create three functions using funcgen: an impulse, a boxcar, and a triangle. Save each
one to disk, and then read all three into SAC. Plot the functions. Notice that when you use plot
with multiple functions in memory, it plots them one at a time, waiting for you to hit return to see
the next one.

12.4 Obtaining ”.sac” Files from Public Data Sources

While you can learn to use SAC with data generated within the program, it is far more interesting
to use real data from real earthquakes. One such source if data is the IRIS Data Management
Center, which has a nice web interface called “Wilber 3” for finding earthquakes and downloading
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waveforms. Go to the Wilber 3 website at http://ds.iris.edu/wilber3/find_event to take a look at
recent earthquake recordings that are available to download.

Click on an event from the map or the list (by default, it shows events for the past 30 days, but
there is a drop-down menu above the map that allows you to change what is displayed). From
there, it will go to a map showing the epicenter and the location of stations. By default, it shows
only broadband channels from the Global Seismic Network, but you can change the options at the
right of the map. Below the map, you can select the stations that you want to download using the
checkboxes at the left of the table. Click on “Request Data” to download the selected stations (you
will need to select the desired time windows and data format; choose “SAC binary (little endian)”
for use with SAC on the Mac Lab computers). You should receive an email link that allows you do
download the data.

Exercise: Once you have some real waveforms, try loading them into SAC and plotting them as
above. You may find that it is a pain to type in the full filename when reading the data, but SAC
recognizes the same wildcards as the shell, so you can use wildcards to reduce the amount of typing
that you do when loading multiple files into memory.

12.5 Plotting Multiple Functions

What if we want to plot several functions on the same graph? SAC has additional plotting com-
mands that handle multiple types of data. PLOT1 (p1 when shortened) plots multiple signals on
separate axes with a common time axis for all signals. If the three signals have different time
ranges, SAC extends the time axis to be large enough to show all signals. Each graph has its own
unique amplitude limits. However, if you would like to give each plot its own time axis, use the
relative command (as opposed to the default absolute). If you have three data files in mem-
ory and type plot1 relative into the command terminal, then it will give each plot a separate
time axis that corresponds to the limits of the data.

We can use PLOT2 (p2) to plot multiple signals on the same axes, and the time and amplitude
limits are chosen to be large enough to show all points. As with plot1, you can have the plot
show relative values instead of absolute values.

With multiple plots (particularly plot2), we may want to have our plots displayed in color. To do
this, we need to use the color command. color has several options. If we just want to change
the color of the lines in the plot, use the color <selectedcolor> command (see the help
color documentation to the available colors). This will make all future plot calls use this color
for the lines on the graph. If you want different colors for each successive line that you plot, then
use color on increment on, which cycles the colors for each line that is plotted.

Exercise: Use the seismograms that you just downloaded to make plots using plot1 and plot2.
First, read in all of the data files into SAC. Use the listhdr command to examine the header
variables, which includes information on the instrument type, event, and the recorded signal. Plot
the signals using both plot1 and plot2. You will note that it is difficult to distinguish the
traces on the overlay plot, so change your plot2 to be a color plot to help you distinguish the
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waveforms.

Notice that in your data files, we have three components per station, which required several data
files. This highlights one of the limitations of SAC – each file can only contain one trace, so
multiplexed data needs to be stored in multiple files. This is one of the downsides of the .sac
format, a particular problem given the amount of data available today. Fortunately, automating
things with a computer makes it easier to handle many files, so with appropriate care we can
handle this efficiently and reliably and continue to take advantage of the many functions available
in SAC.
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This lab focuses on additional material relating to graphics in SAC, and how to write SAC macros
(which are essentially scripts to carry out a series of SAC operations, allowing you to conduct more
complex computations using SAC).

13.1 Details about SAC Plots

13.1.1 Quick and Dirty Plots

Run SAC on your computer, and load one of the seismograms that you downloaded for the previous
class, and plot the function. Your plot should look something like this:
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Notice the box in the lower right hand corner– for my plot, it says “26” but depending on the length
of the signal that you plotted you will see a different number. This number signifies that SAC is
only plotting every 26th point in this graph.

Why does SAC do this? On the original Tektronix system, the data transfer rate is painfully slow, to
the point that displaying a plot of seismic data at a typical sampling frequency would take several
hours. Thus, by default SAC desamples long time signals before plotting them in order to reduce
the time needed to transfer the data to the display.

Unfortunately, this is not implemented very well. When SAC performs this operation, it simply
desamples the data, taking very few points. This is unlikely to give accurate information about
the amplitude of the signal (because the probability that the maximum value of a particular wiggle
is displayed is only 1/26), and means that the plots are not particularly useful for analysis (par-
ticularly for very long signals with many data points, which would require even more aggressive
desampling). A better way to do this would be to take the maximum value within every desam-
pling window and plot that value, making the signal amplitudes useful (referred to as decimation).
While it requires an additional processing step, the time required to do this extra processing step is
minimal compared to the data transfer time on the original Tektronix display.

Fortunately for us, since we have modern computers with modern displays, we do not have to
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worry about long times to display signals. To prevent this behavior in SAC, we need to turn off
the “quick and dirty plot” option (which is set to “on” by default. If you type qdp off into the
command line and then plot your data again, you will see a plot with no number in the corner:

This plot has information that accurately reflects the signal amplitude (and notice that the display
time was not noticeably different than before), though for us the amplitudes aren’t markedly dif-
ferent. If you are going to use SAC plots for any real scientific purpose, turn off the quick and dirty
plots!

13.1.2 Labeling Axes and Titles

To label axes in SAC, use the XLABEL or YLABEL command. The syntax is xlabel on
'<label>' for the 𝑥-axis (similar for the 𝑦-axis. For example, if I wanted my 𝑥-axis to be
labeled as ‘Time (s)’ I would type xlabel on 'Time (s)' into the terminal. As you may
remember, this will have no effect on the current plot until you issue the plot command again, so
you need to issue these commands before plotting for them to take effect.

To add a title, use the TITLE command. It is issued in the same way as the xlabel command,
so to title a plot, type title on 'Seismogram' to add the title ‘Seismogram’ to your plot.
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Again, you will not see any effect from the title command until you issue the plot command.

13.1.3 Changing the Plot Appearance

We have already discussed how to change the limits on a plot and how to make a color plot, but
there are additional customizations that are possible. To change the spatial size of a plot, use the
XVPORT and YVPORT commands. The syntax is xvport <min> <max>, where <min> and
<max> are numbers between zero and one that specify the minimum and maximum values of the
axes as a fraction of the entire plot window. The default values of xvport are 0.1 and 0.9, and the
default values of yvport are 0.15 and 0.9. To make a smaller plot, I would issue the commands
xvport 0.1 0.5 and yvport 0.15 0.55 and then the plot command.

To put multiple plots in the same figure, we use the xvport and yvport commands in conjunc-
tion with the BEGINFRAME command (shortened to begfr). When you enter the beginframe
command, SAC will add a new axes to the existing figure when subsequent plot commands are
issued, rather than making a new figure. Thus, once we enter the beginframe command, we
can add plots in specific locations by setting xvport and yvport and then giving the plot com-
mands. When the ENDFRAME command is issued, the default behavior resumes. An example to
make a plot with two axes is:

beginframe
xvport 0.1 0.9
yvport 0.15 0.475
funcgen impulse
title on 'Impulse'
xlabel on 'Time (s)'
plot
xvport 0.1 0.9
yvport 0.575 0.9
funcgen boxcar
title on 'Boxcar'
xlabel on 'Time (s)'
plot
endframe
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13.1.4 Saving Plots

So far, we have been making plots and displaying them on the screen. What if we want to save a
plot for use in another document?

The simplest way to save figures from SAC is to use SAVEIMG to directly output a figure win-
dow to a standard graphics format. This command is flexible and will let you save the currently
displayed figure window to PDF, PS, or PNG formats without doing any additional work. Once
you have a figure up and displayed, simply enter saveimg <filename>.<format>, where
<filename> is your desired name for the file and <format> denotes the extension of the
graphics format that you wish to use. Thus for example, to plot an impulse function and save as
PDF, you would do the following:

funcgen impulse
title on 'Impulse'
xlabel on 'Time (s)'
plot
saveimg impulse.pdf
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This has the advantage over the more complicated procedure described below in that the labels are
rendered as text rather than as lines. Because of this, I would generally advocate using saveimg
to produce plots.

However, if you are interested in more details about producing graphics in SAC, there is another
procedure that gives you a bit more control. SAC has its own graphics format, known as ”.sgf”
(SAC graphics format). This format is analogous to the MATLAB ”.fig” files as they only readable
by SAC, and is not useful if we want to include the figure in other documents like presentations,
posters, or papers. To save a plot in the ”.sgf” format, we need to follow a few steps.

SAC has two different output devices. A device is just a fancy name for the destination where the
graphics will be displayed. So far we have used the screen as our output device, but we have the
ability to tell SAC to send our plots to a different device. To use the screen as an output, we use
the XWINDOWS device (can be abbreviated x). You may have noticed so far that when we issue a
plot command, the plot window shows up in an application called “X11” which is the xwindows
application for a Mac.

The other available output device is SGF, or SAC Graphics Format. If we choose this output
device, plots will not be displayed on the screen, but instead will be written to file. To change the
output device, we use the BEGINDEVICES command (bd in shorthand). By default, the device is
set to xwindows, but by typing begindevices sgf, all future plots will be saved to file as an
”.sgf” file instead of being displayed on the screen. To switch the device back to the screen, type
begindevices xwindows.

When you use the sgf device, each plot command that you execute will save to a new sgf file.
The first plot after you start SAC will be saved to “f001.sgf” in your current working directory.
Subsequent commands will save as a file with the name “f002.sgf,” “f003.sgf,” etc. If any file
already exists (say from a previous SAC session), then it will be overwritten without a warning, so
if you want to save your sgf files, you will need to rename them after each SAC session.

To convert an sgf file into a graphics format that is useful outside of SAC, we use the sgftops
utility (note that I called sgftops a utility, as it is not an official command in the same sense
that plot and read are commands). This converts an sgf file to PostScript, which is a standard
graphics format that can be opened with Applications such as Preview on the Mac (when Preview
opens a PostScript file, it automatically converts it to PDF), Adobe Illustrator, or on the command
line using ghostscript. To convert a file, use the syntax sgftops f001.sgf sacplot.ps
which converts the sgf file “f001.sgf” to the file “sacplot.ps” which can then be viewed in another
application.

There are two additional options when using sgftops that you can include in the command.
The first specifies the line thickness in the resulting PostScript file (the default value is 1), and the
second allows you to specify the page layout or add an id that specifies some details about the plot.
To add an id, make the second option i, to change the page layout specify s, or si for both. The
s option is useful if you want your plot in portrait rather than the default landscape mode – this
option will prompt you to enter specific values for the 𝑥 and 𝑦 translations (relative to the lower
left corner of the page, assumed to be US Letter size in portrait orientation), rotation (measured
counterclockwise from horizontal), and scale. An example, to obtain a plot with thicker lines type
sgftops f001.sgf sacplot.ps 1.5 into the command line. To rotate and scale the plot
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into portrait mode, use sgftops f001.sgf sacplot.ps 1 s and then at the prompt, type
the following four numbers, each followed by a carriage return: 0.5 0.5 0 0.75. This will result in
a plot in portrait mode.

As you can see, this requires considerably more effort than using saveimg without a huge differ-
ence in the final outcome. Because of this, I do not use the SGF procedure much any more, and
simply use saveimg to save figures in SAC.

Exercises: Try out some of the plot commands described above. First, plot a seismogram with
the quick and dirty plot option off. Then, plot a seimsogram with labeled axes and a title, save
it as a PDF file. Compare with the results using an SGF file converted to PostScript. Finally,
use beginframe along with xvport and yvport to illustrate four of the different functions
created by funcgen in a 2x2 grid of plots.

13.2 SAC Macros

Like with MATLAB .m files, we can write scripts to carry out a series of commands, called
“macros” in SAC. SAC macros are text files containing a series of commands that can be called
either from within SAC or directly from the command Terminal.

For example, here is a series of commands. Enter them into a text file (using an editor of your
choice), and then launch SAC. You can name the file whatever you like, but I prefer to include
.macro at the end so that I know that the file is a SAC macro. From inside SAC, type macro
test.macro (using the name that you chose for your file) to execute the macro. For example,

# SAC macro to generate three functions, write to disk, and plot
funcgen impulse
write impulse.sac
funcgen boxcar
write boxcar.sac
funcgen triangle
write triangle.sac
read impulse.sac boxcar.sac triangle.sac
plot1

# and * serve as comment characters in SAC, so that line will not be executed. However, you
cannot put inline comments into SAC, so comments must be on their own line. Alternatively, you
can run the macro from the Terminal by typing sac test.macro directly from the command
line.

13.2.1 Input Arguments

While this type of macro is easier than typing a series of commands into the command line (where
you are likely to make a mistake if you are not careful), macros are more useful when they can take
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input arguments like a function in MATLAB or Python. SAC macros do not have an explicit way
to write functions, but you can pass an arbitrary number of arguments to any SAC macro, and the
parameters will be available using the variables $1, $2, etc. As a simple example, if we wanted to
write a macro to read three SAC files and plot them, change your macro to the following:

# SAC macro to read three files from disk and plot
read $1 $2 $3
plot1

If you type macro test.macro impulse.sac boxcar.sac triangle.sac into the
command line. You should get the same plot as before. If you call the macro without specifying
any arguments, you will get a prompt asking you to input the arguments.

What if you want to read an arbitrary number of SAC files? You can make the macro more flexible
by specifying keywords, which can take an arbitrary number of arguments. Change your macro to
the following:

# SAC macro to read an aribtary number of files from disk and plot
# files to read are set using the "files" keyword
$keys files
read $files
plot1

By typing macro test.macro files impulse.sac boxcar.sac into the command
line, you can run this macro, and you can change the number of input files to whatever you like
without changing the macro. If you do not give any values for files, SAC will prompt you to
enter the values (Note: I have found that this does not always work on SAC installed in the Mac
Lab, so you may end up getting an error if you do not provide the input arguments).

You can also specify default parameters. If you want your macro to plot impulse.sac, boxcar.sac,
and triangle.sac by default, then change the macro to:

# SAC macro to read files from disk and plot
# files to be read are set using the "files" keyword
# if no files provided, default files are impulse.sac boxcar.sac

→˓triangle.sac
$keys files
$default files impulse.sac boxcar.sac triangle.sac
read $files
plot1

Now you can run your macro with any number of arguments, or with no arguments to plot those
three functions by default. (Note that I have also found that setting default parameter values does
not always work correctly in the Mac Lab for some reason, so you may sometimes get an error
when doing this in the Mac Lab.)
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13.2.2 Variables

One of the valuable aspects of any programming language is the ability to assign values to vari-
ables. This can be done in SAC using what is known as a “blackboard” variable. You can set a
blackboard variable using the SETBB command, followed by the variable name and the value. For
example, setbb xmin 40will define a variable xminwith the value 40. To access the variable,
use %xmin.

You can also calculate other parameters from variables, which you can do using the EVALUATE
command. Let’s say that we want a macro that will plot an arbitrary number of functions from an
arbitrary starting time for 100 seconds. We will have keywords for the entries for xmin and files,
or

# SAC macro to read files from disk and plot with a time range of 100 s
# files to be read are set using the "files" keyword
# if no files provided, default files are impulse.sac boxcar.sac

→˓triangle.sac
# also must provide argument xmin to set start time on plot
$keys xmin files
$default xmin 0
$default files impulse.sac boxcar.sac triangle.sac
setbb range 100
evaluate to xmax $xmin+%range
read $files
xlim $xmin %xmax
plot1

Run this by typing macro testmacro.txt xmin 25 files impulse.sac
boxcar.sac triangle.sac to plot the three functions from 25 to 125. The first line
defines that input arguments for xmin and files should be provided, then it determines xmax
by adding 100 to xmin. Then, the macro reads data from the files, sets the 𝑥 limits, and plots the
signals.

Sometimes, you might want to use an input argument or a blackboard variable to represent a part
of a file name. A common example might be if you are reading data froma a seismic network,
and the file names are identical with the exception of one piece representing the station name
or the component in question. To use a variable within another string, you need to append the
variable name with the same character that is used to access its value. So for example, let’s say
you have two stations, S1 and S2, with components N, E, and Z, and the filename convention from
the network operator is stationS1N.sac, stationS1E.sac, stationS2Z.sac, etc. The following macro
would correctly read the file specified by the stat and comp inputs:

# SAC macro to read a station component from disk and plot
# must input the station name and component when calling
$keys stat comp
read station$stat$$comp$.sac
plot
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This can be called using macro test.macro stat S1 comp N. Similarly, if comp was
stored as a blackboard variable instead of a keyword, the equivalent read command would be
read station$stat$%comp%.sac. This is very handy when complicated, but predictable,
filenames are used that only differ in a couple of arguments.

13.2.3 If statements

Macros can use if statements, with a syntax very similar to that of MATLAB. Let’s say that in the
above macro, you only want to change the 𝑥 limits if xmin is greater than zero. In that case, we
could use an if statement:

# SAC macro to read files from disk and plot with a time range of 100 s
# files to be read are set using the "files" keyword
# if no files provided, default files are impulse.sac boxcar.sac

→˓triangle.sac
# can also provide argument xmin to set start time on plot (default 0),

→˓ only works if positive
$keys xmin files
$default xmin 0
$default files impulse.sac boxcar.sac triangle.sac
setbb range 100
if $xmin gt 0

evaluate to xmax $xmin+%range
xlim $xmin %xmax

else
xlim 0 %range

endif
read $files
plot1

This will set the limits differently if xmin is negative (gt stands for greater than). Other compar-
isons available inlcude lt (less than), le (less than or equal to), ge (greater than or equal to), ne
(not equal), and eq (equal). The else (or elseif) is optional.

13.2.4 Loops

There are several ways to execute a loop in SAC. The first option is to loop over numeric values
(like in MATLAB or using range in Python). Let’s say you have a series of 10 .sac files, with
names “signalx.sac”, where x is a number from 0-9. To read all 10 files in using a loop, we can do
so as follows:

# SAC Macro to read in 10 files and plot
do i = 0, 9

read more signal$i$.sac
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enddo
plot1

This will read in all 10 files and plot them all on the same axes. Optionally, you can add an
increment using do i = 2,8,2 to increment by 2 each time. Another way to write this is to use
the syntax do i from 2 to 8 by 2.

If you want to loop over a specific set of items, the syntax is a bit different. If we wanted to read
all three components of a particular station and plot them, we might modify the above example to
be the following:

# SAC macro to read 3 components of a station from disk and plot
# must input the station name when calling
$keys stat
do comp list N E Z

read more station$stat$$comp$.sac
enddo
plot1

This version explicitly loops over all three components specified by whatever follows list.

If you want to get some files from the shell using a particular pattern, you can loop over files
matching a certain pattern, which is very useful for reading in files. In particular, if you wanted to
load the vertical component of any station in the current directory, you can do

# SAC macro to plot vertical components in the current directory
do file wild station*Z.sac

read more $file
enddo
plot1

You can also specify a directory other than the current one if you use do <variable> wild
dir <directory> expr.

Finally, you can do a standard while loop in SAC. The syntax is while <condition> ...
enddo, and break will work as we have seen previously in Python and MATLAB to exit loops.

13.3 Summary

While programming in SAC is a bit less refined than programming in Python or MATLAB, it still
lets you get the job done fairly well if your work requires processing .sac data files.

Exercise: Write a SAC macro that generates three sine functions with the same frequency and a
fixed phase difference between them. Plot all three functions on the same axes, using a different
color for each function. The frequency and the phase offset should be specified through command
line variables, as should the number of points and the time spacing used in generating the signal.
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Default values should be 100 time points, time spacing of 0.05 s, and a frequency of 1 Hz (there
should not be a default for the phase offset).
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In this lab on SAC, we will talk about Fourier transforms, plotting spectra, and filtering data, all
useful techniques when processing time signal data.

14.1 Discrete Fourier Transforms

When analyzing time signals in geophysics (and practically all other disiplines), it is often conve-
nient to look at functions in the frequency domain. To transform a signal ℎ(𝑡) from the time to
frequency domian, we take a Fourier Transform 𝐻(𝑓), defined as

𝐻(𝑓) =

∫︁ +∞

−∞
ℎ(𝑡) exp(−𝑖2𝜋𝑓𝑡)𝑑𝑡.

If we have 𝐻(𝑓), we can invert it to compute ℎ(𝑡) using

ℎ(𝑡) =

∫︁ +∞

−∞
𝐻(𝑓) exp(𝑖2𝜋𝑓𝑡)𝑑𝑓.

On a computer, we only have discrete samples from the time series, so we need to define a discrete
version of the transform. Noting that the discrete version of an integral is a sum, if we have a
vector ℎ𝑛 of length 𝑁 , representing the values of the function at the time points in question, then
the DFT is

𝐻𝑘 =
𝑁∑︁

𝑛=1

ℎ𝑛 exp
(︁
−𝑖2𝜋𝑘

𝑛

𝑁

)︁
where 𝑘 = 1, . . . , 𝑁 represents the various frequencies. Each entry in 𝐻𝑘 is a complex number,
so it has both a real and an imaginary part (or alternatively an amplitude and a phase). However,
this would suggest that we start with 𝑁 numbers and get out 2𝑁 numbers (since the transform
is 𝑁 complex numbers), but if the input data are real, then the transform coefficients 𝐻𝑘 are
symmetric about 𝑁/2 (known as the Nyquist point, corresponding to the Nyquist frequency or half
the sampling frequency of the data, which is the highest frequency signal that can be captured by a
discretely sampled time signal) and the imaginary parts are anti-symmetric about 𝑁/2. Thus, there
are really only 𝑁 meaningful numbers in the discrete transform if we started with real data.
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The inverse of the FFT to transform 𝐻𝑘 back to ℎ𝑛 is

ℎ𝑛 =
1

𝑁

𝑁∑︁
𝑘=1

𝐻𝑘 exp
(︁
𝑖2𝜋𝑘

𝑛

𝑁

)︁
Some definitions omit the leading factor of 1/𝑁 , so if you use a software package to do a transform
and its inverse and don’t get back the same value, you are probably missing this leading factor.
Note that the FFT definitions require that the data be uniformly spaced in time, and the algorithm
does not depend on what that spacing is. Therefore, to translate the coefficients 𝐹𝑘 into specific
frequencies, you may need to figure that out on your own using the time spacing of your data
(many, including SAC, do this for you).

Looking at the definition of the discrete Fourier transform, it looks like we need to do two nested
loops over 𝑁 terms each in order to calculate this. This means that the number of calculations that
you need to do will grow like 𝑁2, which can get rather large for long time series (this prevented
Fourier analysis from being very useful in scientific applications). However, some smart people
in the 60’s figured out that a naive implementation can be improved upon to instead grow like
𝑁 log𝑁 , which is much more efficient. This made discrete Fourier transforms much easier to cal-
culate, and implementations of this algorithm are usually referred to as Fast Fourier Transforms,
or FFT for short. FFT algorithms usually require that the signal have a length that is a power of 2
for computational efficiency, so if the signal in question is not already an appropriate length, it will
be padded with extra zeros to make it have a length that is a power of 2.

Because this algorithm is so widely used, most software packages come with FFTs already installed
(this includes MATLAB and SAC, and it is available as an add-on Python package). We will cover
FFTs and spectra in SAC in this lab, but you should be aware that many of these same tools are
available in MATLAB and Python as well.

14.2 Spectral Analysis

SAC has many functions for doing analysis of spectra. To take the Fourier transform of the signal
in memory, use the FFT command. fft takes two options. First, you can specify wmean or
womean to include or remove the constant DC offset from the transform, respectively. Second,
you can obtain two versions of the transform, either rlim to obtain real and imaginary parts of the
coefficients, or amph to obtain amplitude and phase information on the coefficients. The default
values are wmean and amph.

An inverse FFT can be taken with IFFT. ifft requires that the data in memory is in the frequency
domain, either by being the result of a previous fft or read from a file containing spectral data.
SAC automatically recognizes whether the FFT is stored in real/imaginary or amplitude/phase
format, so you do not need to specify anything about the format of the data.

When you take an FFT, the header information on time (beginning, time increment, and number of
points) is automatically changed to reflect the beginning frequency, the sampling frequency, and
number of points in the transform. An inverse FFT restores the header information to the time
domain.
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To plot the spectrum once you take an FFT, use the PLOTSP command (shortened to psp.
plotsp has two optional arguments. First, you can specify the type of spectral plot: asis plots
whatever form the data is already in (determined by the command issued when you took the FFT),
rlim plots the real part of the FFT followed by the imaginary part, amph plots the amplitude,
then the phase, and rl, im, am, ph plots only the real, imaginary, amplitude, or phase, respec-
tively. The default value is asis. Second, you can specify the plot style to be linear (linlin),
semi-log on the horizontal (loglin), semi-log on the vertical (linlog), or log-log (loglog).
The default is loglog. For example, you can plot the amplitude spectrum of a boxcar function
over one second on a log-log scale up to the Nyquist frequency of 500 Hz as follows:

funcgen boxcar npts 1000 delta 0.001
fft amph
plotsp am loglog

Exercise: Make a spectral plot for the triangle function over the same times and frequencies.

Another common spectral plot is a spectrogram, which plots the spectral content of a window of
particular length as a function of time. The SAC command to do this is SPECTROGRAM. There
are many options for spectrogram. The basic options include window, which determines the
length of the window (in seconds) used to calculate the spectrum (and therefore determines the
range of frequencies in the spectrogram), and slice which determines the spacing (in seconds)
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between successive windows. Other options include specifying the details of how the spectrum
is estimated, and plot appearance attributes. See help spectrogram or the SAC manual for
more details on these options.

An example spectrogram can be seen using the following commands:

funcgen seismogram
spectrogram

which will display the following plot:

One peculiar thing about spectrogram is that since it calculates the spectrogram, places it in mem-
ory (overwriting the original signal in the process), and plots it in on single command, you cannot
execute it more than once without reloading the data (otherwise it tries to calculate the spectro-
gram of a spectrogram). Therefore, if you want to change the spectrogram options, you will need
to reload the data into memory before executing the command again.

Exercise: Create a spectrogram for a seismogram that you have downloaded from the IRIS web-
site. Note that in many cases, the default parameters might not give a very interesting plot – if
necessary, change the window, slice, and ymax parameters to make a more useful plot. (Hint:
plot the spectrum of the signal first to determine the relevant frequency band, and then choose
window to be large enough to resolve those frequencies in the FFT – remember that the mini-
mum nonzero frequency resolved in a DFT is the sampling frequency divided by the number of
data points. Set ymax to make the vertical range of the plot reasonable for the frequencies in the
data. You will also want to increase slice so that the time windows are more reasonably spaced,
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though it is not necessary.)

14.3 Filtering

Many signal processing situations call for filtering data in different frequency bands. SAC has a
number of built-in filters, which you can apply using the BANDPASS, HIGHPASS, and LOWPASS
commands (shortened to bp, hp, and lp). SAC has four built-in filters, which can be selected
with the following options: Butterworth (butter), Bessel (bessel), and Chebychev type 1 and
type 2 filters (c1 and c2, respectively). The details of all of these filters is beyond the scope of
this class, but they have the following basic properties:

• Butterworth: Designed to have a uniform gain within the passband. The group/phase delay
is moderate. The transition from passband to stopband is reasonably sharp. In most cases,
this should be the first filter you try for filtering a signal. See the following figure for an
example of the gain as a function of frequency.

• Bessel: Designed to have a maximally flat group/phase delay, meant to preserve the shape
of signals in the passband. However, the consequences of this is that the amplitudes of the
filtered signal are not particularly accurate, and the fall-off from the passband to the stopband
is the most gradual of all of the filters.

• Chebychev Type 1: Designed to have a sharp transition from passband to stopband. The
tradeoff is that there are “ripples” in the passband (see below), and poor group/phase re-
sponse.

• Chebychev Type 2: Same as the Chebychev Type 1, but with the ripples in the stopband.

For additional details on these filters, Wikipedia has lots of good information. For more details on
their implementation in SAC, see the manual.

The Butterworth and Bessel filters are the simplest to implement. The arguments for the
bandpass command in SAC involve the number of poles, which describe how the filter transi-
tions from the passband to the stopband, and the frequency range (low to high) to keep in the signal.
For example, to implement a butterworth filter with 2 poles from 2 to 10 Hz, the SAC command
would be bandpass butter npoles 2 corner 2 10. highpass and lowpass work
in a similar fashion, but only take one input frequency. We can see how a bandpass filter affects a
sample seismogram as follows. First, generate the seismogram, plot it, and look at its spectrum:

funcgen seismogram
qdp off
plot
fft amph
beginwindow
plotsp am

The beginwindow command simply opens a new figure window, so I can look at these side by
side. Now filter the data and plot again:
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Fig. 14.1: Gain as a function of frequency for several linear filters. The Butterworth is flat in
the passband, but has a slower transition from one to the other than the Chebyshev filters. The
Bessel filter has the most gradual fall off in the gain, but the group delay is flat in the passband (not
shown), helping to maintain the shape of signals. The Chebychev filters are more complicated to
implement, and have ripples in either the passband (type 1) or the stopband (type 2).
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funcgen seismogram
bandpass butter npoles 2 corner 2 10
beginwindow
plot
fft amph
beginwindow
plotsp am

You should see that the lower and higher frequencies are reduced relative to the original seismo-
gram.

There are a few other things that you should know about the bandpass arguments. First, the
minimum corner frequency cannot be zero (you will cause SAC to crash if you do this), and you
should use lowpass to handle this situation. Also, while npoles can take any value from 1-10,
in practice people do not usually use npoles greater than 3 or 4. While you will get a faster
transition from passband to stopband using a higher value for npoles, this comes at the cost of a
significant effect on the group/phase delay in the passband.

To take the complement of a bandpass filter, which removes the frequencies between the two
frequencies specified using corner use the BANDREJ command. bandrej takes all the same
options as bandpass, so if you know how to use bandpass, bandrej is straightforward.

Exercise: Try out the bandpass, highpass, and lowpass commands with different values
on different signals. The highpass and lowpass functions take only a single frequency, but the other
filter details are the same. Also try using the Bessel filter, which takes the same arguments as the
Butterworth filter.
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The final two labs on SAC will cover how to do two common types of signal processing in SAC.
This lab focuses on stacking, a common method of reducing noise in signals. SAC provides many
handy tools for stacking seismic waveforms.

15.1 Stacking

Stacking involves adding signals together so that the signals constructively interfere, while the
noise adds incoherently, improving the signal to noise ratio. Seismologists often use stacking when
recorded waveforms are relatively weak so that the coherent signal adds, while the random noise
cancels out. Stacking can be done in a rather rudimentary fashion, or using a more sophisticated
set of commands in SAC known as the “signal stacking subprocess.”

What is a subprocess? A subprocess is like a module in Python – it adds some extended functional-
ity to SAC, but we have to tell SAC that we intend to use it. When you run a subprocess, you have
additional commands available that are not normally part of SAC, though you have a restricted set
of basic SAC commands, usually just commands that can be used to manipulate data. To learn
more about the commands available in a particular subprocess, consult the SAC manual.

15.2 Basic Stacking

To perform a basic stacking operation in SAC, we need the ADDF command. ADDF, short for “add
file,” is used to add together a signal in memory with a signal loaded from a file. The two signals
must have the same number of data points and the same sampling rate, or SAC will complain and
not let you add them together. If you aren’t sure whether or not your signals can be added, check
the header files.

addf works in a different manner depending on the number of files in memory and the number
of files listed in the addf command. If the number of files in memory matches the list of files
provided with addf, then the first file listed in the addf command will be added to the first file in
memory, the second file in addf will be added to the second file in memory, etc. So for instance,:
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read file1.sac file2.sac
addf file3.sac file4.sac

will add file1.sac and file3.sac and place it as the first signal in memory, and add
file2.sac and file4.sac and place it as the second signal in memory.

If the number of files in addf is less than the number of files in memory, then the last file provided
with addf will be added to all remaining files in memory that do not match a file in addf. Thus,
I can add a single file to many different files using:

read file1.sac file2.sac file3.sac
addf file4.sac

Exercise: Use the addf function to combine an impulse function with a boxcar function. Try
changing the number of points and time spacing on the functions to verify that you need two
signals with the same time sampling to use addf.

Once we have addf working, it is simple to stack many files: we simply need to repeatedly call
addf with all of the files that we wish to stack. This can be done most easily using a macro with
a do loop. So for instance, if I have a series of files that I want to stack, I could stack them as
follows:

read station1.sac
do file list station2.sac station3.sac station4.sac station5.sac

addf $file
enddo
plot

This will first read in the data for the first station, then loop over the remaining stations and stack
them on the signal already in memory. If I have a large number of files with complicated names
and did not want to type all of them in, I could use a wildcard loop to read them in:

# first generate a signal of all zeros using funcgen
funcgen line 0 0
do file wild station[1-5].sac

addf $file
enddo
plot

The first line is to initialize the signal in memory as all zeros before stacking the first file on top
of that; this is simply to avoid the awkward case of reading in the first file but then excluding it
from the loop. Note that this assumes that each station has time data that matches the default for
funcgen. If the default signal length and spacing differs from the signals to be stacked, you will
need to specify npts and delta to match your data when generating the initial string of zeros.
Also note that addf does not accept wildcards, so if you want to use a wildcard to stack a number
of files, you will need to use a do loop to accomplish this.
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Exercise: I have provided a series of 100 noisy signals (“stack.tar.gz”) to practice stacking, which
are available on the course website and in my public folder. Read in a few of them to verify that
they appear quite noisy – while you can see the strongest arrivals at around 8 seconds, the rest of
the signal is not particularly useful (see one example below). Write a SAC macro to stack them,
plotting the result (see the second plot below for the stacked version). Try only using a subset of
them to see how the signal improves as you add more data.

Fig. 15.1: A noisy time signal. There are 100 files like this, where noise has been added that
drowns out much of the signal.

Exercise: Write a SAC macro using addf to stack a given number of sine functions that have had
high amplitude noise added to them (the number of records to stack should be input to the macro
as an argument). Your macro should first use a do loop to generate the records using funcgen
sine and funcgen random, add them together using addf, and write to disk. Then, use a do
loop to read the files and stack them, divide by the number of records (use div <number> to
divide the signal in memory by a constant number), and plot the data.

Note: Random number generators do not produce truly random numbers. Instead, they produce a
deterministic sequence of numbers that follow the same distribution as a set of random numbers.
This means that calling fg random repeatedly will always produce the same sequence of num-
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Fig. 15.2: The stacked version signal, which combines 100 noisy waveforms. This signal a much
better signal to noise ratio, making the coda decay much clearer.
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bers, which is not what we really want here (note however that this gives us a way to reproduce
any calculation using random numbers, so this is in many ways a good thing). To produce a differ-
ent sequence of numbers each time, we need to provide a different “seed” to the random number
generator, which will ensure that the deterministic sequence starts at a different place. This can
be done in SAC by calling funcgen random 1 <seed>, where <seed> is an integer that
should be different each time through the loop.

15.3 Signal Stacking Subprocess

You can do more complicated things with stacking using the Stacking Subprocess. This gives you
more sophisticated tools for aligning signals with different origin times so that they will produce
coherent signals when stacked. We will not cover these time alignment tools in this class, but
once you know the basics of how to stack signals using the subprocess it is not difficult to figure
them out. To start a signal stacking subprocess, enter sss into SAC. Once you enter a subprocess,
you will not have access to the full extent of SAC commands, so see the manual to know what
commands are allowed.

Once you have started the stacking subprocess, you can stack waveforms in the same way as before,
the only difference is the commands that you will use. Useful commands include:

• First, to do a stack you are required to define the time window of interest by entering
timewindow <start> <end>, which defines the window to be used for the stack.
Only time values within this window will be read into memory, when you add additional
files to be stacked.

• To zero out the stack, enter zerostack to start with a clean signal.

• Once the time window is defined and the stack is zeroed, you can use addstack <file>
to add a file to be stacked. This is the equivalent of addf within the stacking subprocess, but
is different in that the original file in memory is not overwritten. This allows you to visually
inspect the signals before performing the stacking operation.

• Once you have added files to be stacked, you can plot them by entering plotstack. This
will show all of the files that have been added to the stack with their time axes aligned. If
you have chosen a particular velocity model to align wave arrivals, the time axis will account
for this correction, but since we are doing a simple stack here, it will plot all of the signals
over the same time range.

• When you have added all of the desired files, stack them by entering sumstack. To see all
of the signals, plus the stacked signal, you can enter plotstack to see the results.

• To write the stacked signal to disk, use writestack <filename>.

• Finally, you can exit the stacking subprocess by entering quitsub into SAC, which will
return to normal SAC functionality.

This does essentially the same thing as the simple procedure outlined above for stacking files.
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However, the additional tools for defining time windows, the simple way for zeroing out the data
in memory, and the ability to see the signals separately along with the stacked sum make the
subprocess a better way to carry out stacking operations.

Exercise: Modify the macro you wrote above to stack the noisy signals that I have provided to use
the signal stacking subprocess. Write your result to disk so that you can retrieve the stacked result
in the main part of SAC.
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This class focuses on using SAC to perform a common signal detection operation: cross correla-
tion. This is another technique to combat poor signal to noise ratios in time series data. The basic
idea is to take a known signal and find other times where similar signals occur in a noisy time
signal. To perform such signal detection, we will make use of the cross-correlation function in
SAC.

16.1 Cross-Correlation, Autocorrelation, and Convolution

Common techniques in signal processing frequently make use of cross-correlation, autocorrelation,
and convolution operations. These three operations are all related, and involve integrating the
product of two functions with a varying time lag. Given two functions 𝑓(𝑡) and 𝑔(𝑡), then the cross
correlation (𝑓 ⋆ 𝑔)(𝜏) of the two functions is defined to be

(𝑓 ⋆ 𝑔)(𝜏) =

∫︁ ∞

−∞
𝑓(𝑡)𝑔(𝑡+ 𝜏)𝑑𝑡 =

∫︁ ∞

−∞
𝑓(𝑡+ 𝜏)𝑔(𝑡)𝑑𝑡

This can be thought of as a moving inner product between the two signals, where 𝜏 indicates the
time lag between the two signals. If the cross correlation is large at a given time lag, that means
that the two signals are similar when they are offset by that value of the time lag – this is true if
the cross correlation is positive or negative, with negative indicating the signs are reversed. If the
cross correlation is small at a given time lag, then the signals are different at that given offset.

The autocorrelation is simply the cross-correlation of a signal with itself. The autocorrelation
function thus has its maximum at a time lag of zero, and is symmetric about 𝜏 = 0. The convolution
𝑓 * 𝑔 is also similar, but one of the functions is reversed in time. This is illustrated in the figure
below, along with a visual representation of how each function takes the values that it does.

16.2 Waveform Cross Correlations

SAC can also be used to perform auto- and cross-correlation analysis, which can be combined with
stacking as a useful technique for identifying events in a low signal to noise signal. Basically, when
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Fig. 16.1: Examples of convolution, cross correlation, and autocorrelation for basic functions. The
cross correlation measures the similarity between two signals, while the convolution is essentially
a time reversed cross correlation. Autocorrelation measures the similarity of a signal with itself,
so it always peaks at zero offset and is symmetric.

the two signals line up in a coherent way, the cross correlation is larger. This can be used to isolate
signals from noise, particularly if multiple stations and components are stacked to find situations
where several different signals find something similar. Correlations can be easily computed in the
frequency domain using Fast Fourier transforms – while a cross correlation in the time domain
requires 𝑁2 operations (where 𝑁 is the length of the signals), in the frequency domain this only
requires 𝑁 operations. However, we have to do the FFT in order to accomplish this, which requires
𝑁 log𝑁 calculations, so the overall dependence on the signal length is 𝑁 log𝑁 . Regardless, this
is an improvement over the time domain calculation, so using this trick cross-correlations can be
computed quickly even for long signals.

To calculate a cross correlation in SAC, we use CORRELATE. Correlate requires that at least two
signals be loaded into memory. We need to choose which of the signals to treat as the “master”
and this is designated by the order in memory. If we want the first signal to be the master then
we enter correlate master 1, while if we want the second signal to be the master we type
correlate master 2. SAC will then correlate the master signal with all signals in memory.
Thus if the master is 1, then the first signal in memory will be the autocorrelation of the first signal,
while the second signal in memory will be the cross correlation between the signals.

Exercise: Calculate the cross correlation of a boxcar and a triangle function. While the triangle
function is not quite the same as in the previous figure, you should see similar results. Also
calculate the autocorrelation of each function to verify that the peak is at a time lag of zero and it
is symmetric in time regardless of the input function.

Cross correlation can be used to take a known signal and find times when that signal reoccurs in
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another set of data. It frequently works even if there is a large amount of noise, particularly if many
waveforms are used and the results are stacked. The idea is to cross correlate the known signal with
a long time series and find times when the cross correlation is large (meaning that the two signals
are similar, and thus detect a similar occurrence to the previous event). While the cross correlation
may not be high for one particular signal, if we stack many signals we can further improve the
signal to noise ratio.

Exercise: I have included a series of 6 waveforms for you to try implementing this method
(they are all in the zipped tarball waveformcc.tar.gz). The first three are a set of wave-
forms for a small earthquake in Northern California (template1.sac, template2.sac,
and templateZ.sac for the two horizontal and vertical components). These are waveforms
recorded on a nearby seismometer. I have also included a recording of another small event that
occurred close by where I added noise that completely drowns out the signal (noisy1.sac,
noisy2.sac and noisyZ.sac). Your goal is to write a macro that uses the template wave-
forms to detect the earthquake in the noisy data.

Hint: Cross correlate each component of the template waveform with the corresponding compo-
nent of the noisy signal. Write the resulting cross correlations to disk, and then stack them. It is
helpful to remove the mean of the data before doing the correlation by using rmean as it makes the
cross correlation values more stable. Once the cross correlation function for all three components
are stacked, you should be able to clearly see the time at which the event occurred on the resulting
signal (the stacked cross correlation should show a large spike at the time of the event, see below).
Plot the data as needed to see what is going on.
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Note that this is only for three components; repeating this operation over many stations will further
improve the signal to noise and make the event detection even more clear. This is a frequently used
method to improve detection of seismic events: using previously detected catalog waveforms, this
method can quickly scan long time signals and detect the time of any additional events with similar
waveforms.

This lab illustrates how we can use simple features in SAC to perform more complicated signal
processing tasks. While we have not covered all aspects of SAC, hopefully you should have a
working knowledge of how to use it and can figure out how new commands work from the manual.
There will be one homework assignment using SAC, which will involve downloading waveforms,
rotating components, decimating/filtering, and plotting what is known as a record section.
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In Homework 1, we wrote a Python function to look at earthquake catalog data that was read from
a file. If we want to reuse that function on multiple earthquake catalogs that we might download
from the internet, we will need to have all of the catalogs in that same format. Unfortunately,
many public data sources provide their output in different formats. They all contain the same basic
information, but this information is usually organized differently each time, plus there may be
extra information that we do not need in our Python function. Therefore, we need a simple way
to reformat text files in order to make our code useful in a more general way. This can be done in
Python, but in fact the easiest tool to accomplish this task is another programming language known
as AWK.

We will spend two labs learning how to use AWK to process text files. The first lab will focus on
basic use for reformatting simple text files (the task described above). Lab 17 will focus on more
complicated text processing and pattern matching, which allows you to do more complex tasks to
reformat data that is not in simple columns. I find AWK to be very useful when using the Generic
Mapping Tools (which we will cover at the end of the semester), so having a basic understanding
of how to use AWK will be needed for those classes.

17.1 What is AWK?

AWK derives its name from the initials of its original designers (Aho, Weinberger, and Kernighan).
They initially developed AWK in 1977 at AT&T’s Bell Labs (the same place where Unix origi-
nated). Since then, several further versions of AWK have been developed – New AWK (nawk)
and GNU AWK (gawk) are the other versions of AWK that you are likely to come across. On
many operating systems, awk and nawk are one and the same, and gawk is an implementation
of nawk, so for the most part any AWK program will run equally well regardless of the spe-
cific implementation. On the Mac, I believe that the awk command is an implementation of New
AWK, but there is no nawk command. gawk is also available on the Mac Lab computers; its path
is /sw/bin/gawk if you wish to put it in an AWK script. I have written all of the following
examples to use the awk command, but they should also work using gawk.

AWK is a fairly simple, yet powerful command line tool for pattern matching and processing text
files. There are several other programs that you can use to so similar things when processing text,
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including SED, Perl, and Python. SED (Stream Editor) is more basic than AWK and does process
text, but it does not have the capability to save variables or do math that is available in AWK. Perl
and Python are full fledged programming languages with many more bells and whistles, as we
have seen when using Python in this class. Because of this, Perl and Python require a bit more
overhead in writing a program. I feel that AWK gives you the most “bang for your buck” for text
processing tasks, in that you can learn enough in a couple of hours to be quite competent, and
that it is relatively easy to write simple programs. Most of the AWK work that I do involves short
“one-liners” to reformat files, and I find that writing such programs are easier in AWK than in Perl
or Python.

17.2 Running an AWK Program

AWK programs can be run in two ways. First, you can run AWK directly from the command line.
Here is a simple example that prints every line in the input file:

% awk '{ print $0 }' inputfile.txt

We will see shortly what the specific program commands mean, but there are three parts to this.
First, we enter the awk command, followed by the AWK program (the part in single quotes, in
this case '{ print $0 }'), and finally the text file that you wish to process. Try entering this
command for a text file (or use the provided “newmadrid2015raw.txt” as the input file, which is
the original version of the file that I used to create “newmadrid2015.txt,” which we used in the
MATLAB classes, using AWK) – the output should just be the contents of the text file.

When calling AWK from the command line, we put the entire AWK program in single quotes so
that the shell will interpret the entire program as a single string (the shell has a complex set of
quoting rules, as we will see in the upcoming classes on shell scripts). Otherwise, the shell would
interpret any spaces in your program as the end of the program, and you would get an error.

Here, we give AWK a single input file, but you can specify as many input files as you like. AWK
will process one file after the next without stopping when you supply multiple input files. Addi-
tionally, AWK can take standard input from another Unix command through a pipe. By default,
AWK sends its output to standard ouput. If you want to save the output of AWK as a text file, use
output redirection (> and >>).

Alternatively, you can write an AWK program in a stand alone file (much like you would write a
Python program as a stand alone file). To do this, create a text file using your favorite editor called
awkscript.awk that contains the following lines:

#!/usr/bin/awk -f

# awk program prints out entire file

{ print $0 }
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The first line specifies the command that will be used to interpret the commands in the script, and
the second line is a comment (using the # character). The one line that is executed is simply is
the same command that we entered above. Here the -f option tells awk that the commands to be
executed are contained in a file. This option needs to be in place for AWK to correctly interpret
the script.

Change the permissions for awkscript.awk so that you can execute the file (type chmod 755
awkscript.awk into the terminal). Then enter the following to run your script on the input file
“inputfile.txt” as before:

% ./awkscript.awk inputfile.txt

All of this is not strictly necessary; you could just put { print $0 } in the file and then execute
the script from the shell using

% awk -f awkscript.awk inputfile.txt

though it is usually considered good programming practice to specify the command at the begin-
ning of the script so that either you or someone else reading your script are aware that it is an AWK
script.

17.3 AWK Program Structure

AWK programs have the following basic structure:

BEGIN { <begin commands> } <condition1> { <commands1> } <condition2> {
→˓<commands2> } ...

... END { <end commands> }

• First, AWK will execute all the commands in <begin commands>. This is often where
you will define variables that you will use later in your program. This command is optional.

• Then, after executing the begin commands, AWK reads through the input text files one
“record” at a time. By default, each record is a line in the file (it splits the file up using
newline characters \n), but you can change the behavior of AWK so that it divides a file into
records using whatever character you choose. We will see in the next lab how to change this
behavior.

• If the current record matches the specified condition <condition1>, then the program ex-
ecutes <commands1>. AWK then proceeds to do the same for all of the pairs of conditions
and commands that follow for the current record. Any conditions that are true will result in
the corresponding commands being executed. The conditions are optional – if you do not
provide a condition, then the corresponding commands will be executed for every record in
the file. Technically, you do not need these types of lines, but nearly all AWK programs have
at least one condition/execution block.
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• Once AWK has executed all conditions and commands for the first record in the text file,
it proceeds to the second record, starting at the first condition and testing for all conditions
and executing the appropriate commands for all conditions that are true. It continues in this
manner for all records in all input files.

• Finally, after going through all records in all input files, AWK executes all of the commands
in <end commands>. This is where you often do things relating to the total number of
lines in the file. As with BEGIN commands, this part is optional.

This may seem a bit abstract, but we will give a number of examples shortly to make this structure
a bit more concrete.

17.4 Fields

When AWK reads a record from an input file, it automatically parses the record into a number of
“fields” separated by spaces. For example, if a line of input text is

Eric Daub egdaub CERI

Then the first field would be “Eric,” the second field would be “Daub,” the third would be “egdaub,”
and the fourth field would be “CERI.” You can refer to these fields using the variables $1 for the
first field, $2 for the second field, etc. The entire line is represented by $0. By default, AWK uses
any number of consecutive spaces to separate fields, but this can be changed (we will see how this
is done later).

One thing to be careful about is the fact that the $1 syntax has a different meaning in shell scripts
(where it signifies command line inputs – this is similar to how SAC macros accept inputs). When
you invoke AWK in a shell script, you must be careful about how you use quotes. This is why
we generally use single quotes when using AWK in the command line, because it enforces literal
interpretation of $1, rather than substituting a command line input in its place. We will cover the
details underlying this next week when discussing shell scripts.

17.5 Examples

Here are a number of sample AWK programs to give you an idea of how AWK works. These
examples use the input file “newmadrid2015raw.txt” Try them out to see how they work, and make
changes to confirm your understanding. You cannot try too much code here!

First, here is the AWK program we showed earlier that prints every line in the file:

% awk '{ print $0 }' newmadrid2015raw.txt

Now that we know a bit about AWK syntax, we can explain why the program does what it does.
This program only contains a single condition and command, so it omits the optional BEGIN
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and END commands. Further, the program omits the optional condition, so that the sole provided
command in the braces is executed for every line in the file. This command is a print statement
that prints the entire record, so the program simply prints the file to standard output.

You can put multiple commands within the same set of braces if you separate them with a semi-
colon. The following prints the first two fields of each line in the file (in this case, the network
code and the event date) on separate lines:

% awk '{ print $1; print $2 }' newmadrid2015raw.txt

Alternatively, you could have put each print statement in a separate set of braces. Since neither one
of the set of commands have a condition associated with them, both are executed for all records:

% awk '{ print $1 } { print $2 }' newmadrid2015raw.txt

If you want to print more than one field on the same line, simply put all fields in the same print
statement:

% awk '{ print $1, $2 }' newmadrid2015raw.txt

Here is an example that contains a condition; this program prints the entire record of each earth-
quake that was detected from the New Madrid Network. Note that you do not need to include any
sort of if command in an AWK condition; this is implied by the program syntax.

% awk '$1 == "NM" { print $0 }' newmadrid2015raw.txt

If you provide only a single condition and no statments to be executed in curly braces, by default
AWK prints out the entire record. Therefore, the following AWK program is identical to the
previous one:

% awk '$1 == "NM"' newmadrid2015raw.txt

AWK stores all fields as strings, but can perform numerical comparisons using them. If AWK can
interpret the string as a number, then it will make a numerical comparison; if the string contains
non-numeric characters, then a string comparisons is made based on alphabetical order, with nu-
merical values coming before the alphabetical characters. Thus, to print the full record of each
event with a magnitude greater than or equal to 2.5, we can use

% awk '$7 >= 2.5 { print $0 }' newmadrid2015raw.txt

You can also combine conditionals using && (and) and || (or). The following prints the full record
of all events with a latitude between 35∘ and 35.5∘:

% awk '$4 >= 35. && $4 <= 35.5 { print $0 }' newmadrid2015raw.txt

As you can see, this allows you to very quickly reformat a file with a short piece of code if all you
are doing is simply collecting rows from a text file. To make a file similar to the one that we used
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previously in MATLAB (doing all of the reformatting except for the date/time), we simply need to
enter the following into the shell:

% awk '{print $2"T"$3, $4, $5, $7}' newmadrid2015raw.txt >
→˓newmadrid2015.txt

Concatenating strings is very easy in AWK; the code above combines the date (field 2) and time
(field 3) with a “T” when printing to file. More complex string operations are available, and are
described below.

17.6 Formatting AWK Scripts

For writing short AWK scripts on the command line, you can usually just write the entire command
out in the terminal on a single line. However, for longer scripts, both on the command line and
within a file, programs formatted in such a way can be hard to read and understand. Therefore,
it is a good idea to format your AWK scripts by putting statements on different lines in a logical
way. This includes putting each <condition> { <statements> } block on its own line,
and breaking up conditional and loop statements into separate lines to make them easier to read,
much like you would do so when writing a MATLAB script.

Within an AWK script saved as a file, putting these statements on separate lines is simple. However,
when writing an AWK program directly in the C shell, pressing return to create a new line will
cause the program to start running. In the C shell, you can break up commands into separate lines
by putting a backslash at the end of the line. This will cause the shell to wait until you have finished
entering all of your code before it begins executing the command. For example:

% awk '$1 == "NM" { print $4 } \
? $2 == "2015/01/01" { print $7 }' newmadrid2015raw.txt

Note that here each set of condition/statment blocks is on its own line. This is important because
if you try to break up one of these units, AWK will not understand that they are linked. If you
prefer spread your AWK program over several lines and not have to worry about maintaining the
integrity of grouped statements, you need to put a double backslash before the new line:

% awk '$1 == "NM" \\
? { print $4 } \
? $2 == "2015/01/01" \\
? { print $7 }' newmadrid2015raw.txt

Because of this, I only use double backslashes if I ever need to break up lines in the C shell as it is
robust and works in all cases.

(Note: the above statements about line breaking and line break characters apply only to the C shell,
the default shell in the Mac Lab. If you are using bash, then you do not need to place backslashes
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before carriage returns in command line AWK programs, and only need a single backslash to break
up statements like print and conditionals.)

17.7 Variables in AWK

You can define your own variables in AWK. As mentioned above, the only real trick with AWK
variables is that they are always stored as strings, though you can do math with them. There is
no special syntax needed to assign values to variables, do math with variables, or access values of
varibles. Here are a number of examples of AWK programs that use variables.

The following calculates the mean magnitude of all events in the catalog and then prints it at the
end. Note that we first initialize the variable in the BEGIN statement, add up the values found from
each line, and then print the final value:

% awk 'BEGIN {total = 0} { total = total + $7 } \\
? END { print "Average magntidue:", total/NR }' \\
? newmadrid2015raw.txt

You do not need to put spaces between variables and operators. There is also a simplified syntax
for a number of math operations: a++ increments a by one, a-- decrements a by one, a += 2
sets a equal to its previous value plus 2, a -= 2 sets a to its previous value minus 2.

There are also a number of built-in variables in AWK. One of the most common is NR which is
the number of records that AWK has processed since being initialized. This variable can also be
used to get the total number of lines if accessed in the END commands, which we used above to
calculate the average magnitude.

If you are dealing with more than one file, FNR will give you the number of records that have been
read from the current file. Another useful variable is NF, the number of fields in the current record.
This way, you can print out the last entry of each record, even if the number of fields varies.

% awk '{ print $NF }' newmadrid2015raw.txt

17.8 Arrays in AWK

You can also define arrays in AWK. One crucial difference between AWK and all of the other
languages that we have considered thus far is that array in AWK is what are known as an associative
array. Associative arrays differ from regular arrays in that the indices need not be a consecutive
set of integers. In MATLAB, if you type a(10) = 0, then MATLAB automatically creates an
array with size 10 and initializes all of the additional entries to zero. After doing this, you can
access a(1) without a problem. However, in AWK if you create an array using the syntax a[10]
= 0, then the array only contains a single entry, and NOT ten entries. The indices need not be
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integers; you can just as easily write a["ten"] = 0 and AWK will add a single element that
can be retrieved with that string.

(For those interested in the technical details, this type of an array is implemented using what is
known as a “hash table,” and its primary advantage over a standard array is that its elements can be
accessed with a time that is typically independent of the size of the array. This is not necessarily the
case for standard arrays; you can only achieve a constant look-up time for an array if all elements
of the array have the same size and the size of the array is constant. However, since AWK stores
everything as a string, and the length of each array entry thus cannot be guaranteed to have the
same length, we cannot be assured that this will work in this case. The fast look-up times for a
hash table are achieved by trading time for space and distributing the array storage over a large
number of “buckets” that each contain a small number of elements, ideally either one or zero, so
that looking up an array element involves simply finding the necessary bucket that hopefully only
contains the desired item.)

Because array indices are not necessarily consecutive, this makes it difficult to iterate over an entire
array. To iterate over all indices of an array, we use the syntax for (<index> in <array>),
followed by the statements to execute. <index> can be any variable name you choose. Here is
an array example that stores all of the earthquake longitudes in an array, and then iterates over the
array to print each value:

% awk '{ longs[NR] = $3 } END { for (l in longs) print l, longs[l] }'
→˓newmadrid2015raw.txt

l will take all previously used index values that have been assigned to longs and then print out
the value stored in the array for that index. One thing to note is that an associative array does not
preserve the same order in which the indices were added – you will iterate over all of the elements
that have been added to your array using for (<index> in <array>), but not in the same
order in which they were added. This is a quirk of how associative arrays work, related to the
technical details of how they are implemented.

17.9 Other Programming Structures

Within the various command blocks, you can execute conditionals and loops and other flow control
statements. The syntax for these are as follows:

• if statements have the syntax if (<condition>) <statement> with an optional
else <statement> if desired. Example:

% awk '$2 == "2015/01/01" { if ($4 > 36) print $4, "north"; else
→˓print $4, "south" }' newmadrid2015raw.txt

You can also use curly braces to indicate where the statements end for the if clause rather
than a semicolon.
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Because of the way AWK programs are executed where a conditional is implied in every
group of commands, if statements are much less common than in other programming lan-
guages. I find that they are mostly useful if you need to use the else clause, or if you need
to check some condition in the BEGIN or END blocks in the program.

• while loops have the syntax while (<condition>) <statements>}, for exam-
ple, to print only the first three fields in each record, you can use a while loop:

% awk '{ i = 1; while (i <= 3) { print $i; i++ } }'
→˓newmadrid2015raw.txt

Note that you need to group all statements to be executed in the while loop in curly braces.
Without that, AWK assumes that only the print statement is in the while loop, and since
i is never incremented you have an infinite loop. Also note that you can use $i to refer to
field i; as i varies through the loop, it prints the appropriate value each time through the
loop.

• for loops have the syntax for (<initialization>; <condition>;
<increment>) <statements>

% awk 'BEGIN { for ( i = 1; i < 4; i++) a[i] = 0 } \\
? $1 == "NM" { a[1]++ } $4 > 36 { a[2]++ } \\
? $6 > 6 { a[3]++ } END { print a[1], a[2], a[3] }'

→˓newmadrid2015raw.txt

This program determines the number of events detected by the New Madrid network, the
number of events north of 36∘ north latitude, and the number that are deeper than 6 km, and
prints all three values to the terminal.

• do-while loops are similar to while loops, with the key difference that the condition
is tested after each execution of the loop, guaranteeing that they execute at least once. This
differs from while loops, which test the condition before executing the statements and are not
guaranteed to execute. The syntax is do <statements> while (<condition>).
In practice, do-while loops are only occasionally needed, as a normal while loop usually
suffices.

• break exits from the innermost for, while, or do-while loop and continues execution
with the statements that follow for the current record.

• continue stops executing the current for, while, or do-while loop and proceeds with
the next execution of the loop.

• next stops executing the current record and proceeds to the next record in the file. Any
subsequent conditions are not processed for that particular line.

• nextfile stops executing the current file and proceeds to the next file. Any subsequent
records in the current file are not processed.

• exit stops the program from running altogether.
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17.10 String Operations

When doing basic text formatting, we often encounter a situation where we need to further
break a field up. Returning to our Earthquake Catalog example, dates are often presented as
“month/day/year” or “year/month/day” in catalogs. However, you may want to separate those
numbers out for another task. This is most easily done using various string operations in AWK.
The ones that I use most commonly include:

• index(<input>,<target>) finds the location of the target string in the input string.
Useful if you are looking for a specific string but are not certain where it occurs.

• split(<input>,<array>,<separator>) takes the input string and breaks it up
into pieces, using the separator to divide the string. Useful for things like dates that have
a specific character dividing numeric values that you would like to extract. The resulting
strings are stored in the array variable given to the program, which you can access using
numeric indices starting with 1. The separator can be omitted if you would like to use
whitespace as the separator.

• substr(<input>,<start>,<length>) returns the substring of the given length,
starting at the given position. Useful if you are looking for unknown text but know the po-
sition of the string and its length. You can omit the length if you want to take all remaining
string characters.

For more information on string operations in AWK, look at the manual (it can be easily found with
a web search).

17.11 Exercises

These exercises all use the file “newmadrid2015raw.txt.”

• Write an AWK program that reprints each catalog entry preceded by the number of that entry
(i.e. 1. <event data> <new line> 2. <event data>, etc.)

• Write an AWK program that prints out the date and time of all events occurring in the box
bounded by 35∘ and 36∘ latitude and −91∘ and −90∘ longitude.

• Write an AWK program that finds the average depth of all earthquakes detected by the New
Madrid Network.

• Write an AWK program that determines the number of events that occurred in July.

• Reformat the catalog to work with your code from Homework 1. Do this 2 ways: (1) convert
the date and time to a string with a format “2015-01-01T00:00:00.0000”, and (2) convert the
date to a decimal year in AWK.
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This class cover additional aspects of AWK. The examples presented here build on the material
covered in the first AWK lab and cover more complex pattern matching and text processing. We
will then use what we have learned to use AWK to reformat a text file containing geophysical data.

18.1 Changing the Field and Record Separators

So far, we have only been using the default AWK behavior of separating records by the newline
character (\n) and separating fields by any amount of whitespace. However, what if you need to
use a different character to designate these differences? For instance, what if you have a table of
values separated by commas? Or what if you have a file with multiple lines that should be grouped
together, with a blank line to separate? AWK can process these files without any trouble if you tell
it how to do so:

• Field Separator: The field separator is denoted by the FS variable. We can change the field
separator by setting it in the BEGIN commands. For example, let’s say we have a file that
contains comma separated values like this:

0.1,20,1.4,7

We can read these values into AWK and print them to the screen with the following code:

% awk 'BEGIN { FS = "," } { print $1, $2, $3, $4 }' << END
? 0.1,20,1.4,7
? END

Here we have done a few things. First, we set the field separator to be a comma (note that
you need to put it in quotes when setting the value). Then AWK reads in every record and
divides it into fields using commas instead of spaces to separate the fields, printing out the
four fields that it finds.

We have also done one thing new here: we have used standard input to enter our data, rather
than reading from a file. This involves using the << operator, one that we only touched on
briefly when introducing the shell. The << operator is followed by some end designation
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(here it is END, but in practice this can be any set of characters) that tells the shell the
characters that you will enter to tell it that it has reached the end of the file. Once you type
the line containing the AWK code, the shell lets you enter input, line by line, until you enter
the set of characters that you specified in the first line. Here, we only enter one line, followed
by END, and AWK proceeds to process that input like it was input from a file. This technique
is useful for entering short input into AWK, particularly in a shell script, where saving it as
a separate file does not make much sense.

• Record Separator: The record separator is denoted by the RS variable. As with the field
separator, this is most frequently changed in the BEGIN portion of the program. For ex-
ample, let’s say we have a file of addresses, each separated by a blank line. We can have
AWK read each address as a record, and then separate the record into name, address, and
city/state/zip fields as follows:

% awk 'BEGIN { FS = "\n"; RS = "" } { print $1, $2, $3 }' << END
? Eric Daub
? 3890 Central Ave
? Memphis, TN 38152
?
? Barack Obama
? 1600 Pennsylvania Ave
? Washington, DC 20500
? END

This will print each address on a single line. However, this code assumes each address is
exactly three lines, which is not necessarily true. You can make this code more robust as
follows:

% awk 'BEGIN { FS = "\n"; RS = ""; ORS = "" } \
? { for (i = 1; i <= NF; i++) \
? { print $i; print " " } \
? print "\n" }' << END
? Eric Daub
? CERI
? 3890 Central Ave
? Memphis, TN 38152
?
? Barack Obama
? 1600 Pennsylvania Ave
? Washington, DC 20500
? END

Here we used a for loop to iterate over all fields in the current record. To prevent AWK
from printing each output field on a new line, I changed the output record separator variable
ORS (AWK puts this character after all print statements) to be the empty string, and then
explicitly printed spaces and new lines to format the output.

You do not necessarily need to specify the field and record separators in the BEGIN section of the
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program; in fact, in many cases you may need to change the separators as you proceed through the
program depending on whether or not certain conditions are met. Also, the field separator does not
have to be a single character; it can be a multi-character string or even a regular expression (see
below). However, the record separator must be a single character.

18.2 Regular Expressions

In the Unix terminal, we often can use wildcards and other special characters to reduce the amount
of typing and match particular files. We can also perform similar tricks in AWK, using what are
known as regular expressions.

Regular expressions are used as search patterns in AWK in the conditional portions of the program.
Regular expressions are enclosed in forward slashes, and are case-sensitive. For example, the
following program will print all lines in a file that contain the characters “the:”

% awk '/the/ { print $0 }' file.txt

If you simply place a pattern within forward slashes as the condition, AWK will execute the com-
mands in braces for any record that contains that pattern. If you want to match a pattern only within
a certain field, we use the tilde operator ~:

% awk '$1 ~ /the/ { print $0 }' file.txt

This will print all lines where the first field contains the characters “the,” including “there” and
“they,” but not “The.” If you would like to find all lines that do not contain “the,” use !~ (i.e. does
not match) in place of ~.

There are sophisticated rules for constructing search patterns. Here is the syntax for some of the
more common patterns:

• To require that the pattern appears at the beginning of the string, use ^ at the beginning of the
string. For example, /^the/ will onlymatch lines that begin with “the.” Lines containing
“the” in the middle of the string will not be matched.

• To require that the pattern appears at the end of the string, use $ at the end. For example,
/the$/ will only match lines whose final three characters are “the.”

• To match one of a number of characters, use square brackets. /[Tt]he/ will match either
“The” or “the” at any location in a string.

• To match any character except certain ones, precede the square bracket expression with ^.
Note that the caret has a different meaning inside of square brackets as it does outside of
square brackets. For example, /t[^h]e/ will match any character between “t” and “e”
except “the:” it will match any of “tee,” “tre,” “t1e,” “tHe,” and many more.

• Inside square brackets, you can match a range of characters with a dash. /[a-z]he/ will
match any lower case alphabetical character followed by “he.” It will not match any upper
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case or numeric characters followed by “he.” You can specify numbers and upper case using
[0-9] and [A-Z], or any alphanumeric character with [0-9a-zA-Z].

• The vertical bar designates a logical or. /(^The)|(^Start)/matches any line that starts
with “The” or “Start.” Note how we needed to use parentheses to group the expressions –
parentheses are used in general within regular expressions to group characters.

• A dot (period) represents any single arbitrary character. /.he/ will match any character
followed by “he.”

• An asterisk represents an arbitrary number of occurrences (zero or more) of the previous
character. /th*e/ will match “the,” “thhe,” “thhhhhhhhhhe,” and “te.” Note that this is
different from the star wildcard in the terminal.

• A plus represents one or more occurrences of the previous character. /th+e/ will match
“the,” “thhe,” and “thhhhhhhhhhe,” but not “te.”

• A question mark represents zero or one occurrence of the previous character. /th?e/ will
match “the” and “te,” but not “thhe.”

• A number in curly braces matches the previous character a specified number of times. You
can also specify a range using two numbers separated by a comma, or a minimum with a
single number and a comma. /th{2}e/ will only match “thhe,” /th{2,}e/ will match
“thhe” and any other combination with more than two “h” characters. /th{2,4}e/ will
match “thhe,” “thhhe,” and “thhhhe.”

• If you need to match any of the special characters outlined here, put a backslash before the
character.

Regular expressions are a bit complicated, but are very useful for dealing with complex data files.
Here are some exercises to practice with. You can either make up text files to test your programs
with, or enter your own test text using the example above using standard input.

• Write a regular expression that matches postal codes. A U.S. ZIP code consists of 5 digits
and an optional hyphen with 4 more digits.

• Write a regular expression that matches any number, including an optional decimal point
followed by more digits.

• Write a regular expression that finds e-mail addresses. Look for valid characters (letters,
numbers, dots, and underscores) followed by an “@”, then more valid characters with at
least one dot.

18.3 Formatting Output

We have been using the print function to print output. For more control over
output formatting, we can use the printf function. The syntax is printf
<format>,<item1>,<item2>,... where <format> specifies how to format the output,
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and the remaining arguments are the items to be printed. printf uses a syntax for formatting
that is very similar to MATLAB’s fprintf, so you may recognize some of this (both are derived
from the same command that is available in the shell). An example use of printf is as follows:

% awk '{ printf "%i\n", $1 }' << END
? 1
? 2
? 3
? END

This will print field 1 formatted as an integer, followed by a newline character. You can also use %f
for a floating point number, %e for a number in exponential notation, and %s for a string. %d can
be used interchangeably with %i as both produce integer results. You can also specify additional
information on the number of digits to print:

% awk '{ printf "%4.3f\n", $1 }' << END
? 1
? 2
? 3
? END

Here, the “4” tells AWK to print at least 4 digits (it will pad with spaces to the left if the width is
less than 4), and include 3 figures beyond the decimal point. The meaning of the second formatting
digit changes depending on the formatting specifier – for integers, it specifies the minimum number
of digits to print, while for strings it specifies the maximum number of characters to print. There
are many additional details regarding the use of printf to format output, which you can find in
the user manual. Spend some time formatting output differently. I find that the majority of my
work with AWK only needs simple print statements, and printf is only needed occasionally
(though it is absolutely necessary in those cases).

18.4 Exercise

Here is an example of how you would use AWK to process a text file in your research. I have
provided a google maps “KML” file that contains fault trace information for the Imperial Fault at
the California/Mexico Border, taken from the USGS fault data that is publicly available. KML files
contain information on how to draw markers, line segments, and other things on a map. However,
you may need to take that information and put it into a different format to plot in MATLAB or
GMT (one problem on HW5 involves doing this in GMT for a different fault, so it is probably a
good idea to save your work as a script for later use).

KML files use XML tags to describe how to plot information on a map. There are many different
tags to designate different types of information. Here we would like to extract all of the line
segments in the file, each of which represents coordinates used to draw fault traces on a map. Each
path to be drawn on the map has the following format:
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<LineString id="g39911"><altitudeMode>clampedToGround</altitudeMode>
→˓<coordinates>-120.200876555996,40.2943269812509,0

-120.200833555813,40.2943569808352,0
</coordinates></LineString>

This represents a line segment, going from the first coordinate listed to the second coordinate
listed. The coordinates are separated by newline characters, and each set of coordinates is in the
form (longitude, latitude, height). While this example has only two coordinates, other lines may
have many more segments. There are also additional markers in the file that we would not like to
extract; these markers contain coordinates but do not use the <LineString> tag.

Use AWK to extract longitude and latitude coordinates that are used to draw the line segments
representing each fault section in the provided KML file. You should print a line containing a >
character between each set of segments that make up a LineString (this output format is how GMT
reads 𝑥-𝑦 data segments, so we choose this format because we will eventually be plotting this data
in GMT). Separate each longitude and latitude pair with a space.

Hint: It is easiest to do this in stages. First, write AWK code that uses a regular expression to
identify any line that contains a set of coordinates. Set the field separator to be a comma, and
print out the latitude and longitude that you extract from each set of coordinates. You should try to
make this work for the general case, as you will be using this again in your homework. It is usually
easiest to build up the regular expression gradually by adding one piece at a time and printing out
all lines that match to be sure that it is working correctly.

However, not all of these coordinates are ones that you would like to keep. The ones that you want
to keep satisfy one of the following conditions: the coordinates are the first thing on the line, or
the tag <LineString (followed by some additional information) occurs somewhere else on the
line. Modify your regular expression (you may need to add a second matching pattern) so that only
these two lines are kept in the ouput.

After doing that, there will still be two problems. First, we have not put the > separator between
segments, and there is still text that precedes the coordinates for the first entry in each segment.
The > separator should be easy for you to fix. Removing the additional text requires additional
string functions.

To remove the text, I found two string functions to be useful: the
match(<string>,<regexp>) function, which gives the leftmost position in a string
that matches the given regular expression, and the substr(<string>,<index>) function
(covered in the previous lab), which returns the substring of <string> beginning at the position
given by <index>. Use these to correct the output. When all is done correctly, the tail end of
your output on the terminal should look something like this:

-115.543829900054 32.9199728287905
-115.543870909139 32.9197048434163
-115.54375391094 32.9194648530375
-115.543577910021 32.9192018633972
-115.54355891634 32.9189568754859
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-115.543631926001 32.9187188887966
-115.543614930613 32.9185388975864
-115.543487931054 32.918292906931
-115.543549942905 32.9179639250401
-115.5438819708 32.917499955812
-115.544415016053 32.916745004646
-115.544718052504 32.9159310516597
>
-115.543157660434 32.9275224330804
-115.543366676364 32.9273054482584
-115.543620695267 32.9270404666198
-115.543728702943 32.9269414746468
>
-115.537694060571 32.9399966852325
-115.537746051277 32.940417665069
-115.537799046526 32.9406706533491
-115.537915039282 32.9411296322393

This is a tricky problem, so do not worry if you do not get it right on the first try. Be methodical
and write your script incrementally.
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This is the first of three labs on Shell Scripting. Shell scripting lets us write scripts that carry out
tasks within the Unix terminal. Much like MATLAB .m files and SAC macros, we can do things
like define variables and control flow using if statements and loops, which gives us more powerful
tools to have the computer manipulate files and data. Without shell scripts, if you needed to process
1000 data files with a single program, you would need to type in the same command 1000 times,
which would take you a long time and is likely to result in a mistake. A shell script lets you do the
same thing with a loop, eliminating typing errors and greatly speeding up the process.

In this document, I will introduce a number of commands, and give simple examples of many of
them. You should type each of the simple examples into a shell script file on your computer, run
them to ensure that everything is working, and then tweak some things to ensure that you know
how the different commands work, particularly for shell variables and quoting strings. This is your
chance to experiment with how the commands are used. In the next two labs we will write more
complicated scripts that use the commands from today.

19.1 Shell Scripts

To create a shell script, use your favorite text editor to open a new file called example.csh (feel
free to change the name if you like). You can use any shell that you like, and it is common to use
the shell that the script is written for as the file extension. Many people tend to write their shell
scripts in either the C Shell or the Bourne Shell, because many of the interactive bells and whistles
that have been added in the other shells are not commonly used when shell scripting (the tcsh
and bash shells are supersets of the csh and sh commands, respectively). Thus, they use the
least common denominator to make things as compatible as possible with older systems in case
they need to run their script on another computer. However, I will note that on the Mac, running
csh just runs tcsh, and running sh just runs bash, so in many cases the two are identical. I
will try and point out some of the differences between the different shells as we go along, but the
text that I type will in general be for the C shell. It is a good idea to be familiar with the syntax for
both shells in case you are on a computer with only one of the shells, or you get a shell script from
someone else.

Once you have your file open in a text editor, type the following in as the first line:
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#!/bin/csh

This is usually the first line of a shell script, and if it is present it must be the first line of the file
and have no leading spaces. This line tells the computer when it is executing your shell script that
it should interpret all of the commands using the C shell. It is also telling the person reading the
code that the script is intended to be interpreted by the C shell, so that they know what syntax to
use when modifying. Remember that there are slight differences between the different shells, so
it is important to use the syntax that corresponds with this shell. If you want your shell script to
execute without running the default startup file, then the first line should be #!/bin/csh -f.

This line to specify the command meant to interpret the commands is generally present in all other
types of scripting languages, such as Perl and Python. When a script is executed in the terminal, the
shell reads this first line, and then calls the program corresponding to that line with the remaining
lines in the script as input. This line is not strictly necessary, but if we do not include it we must
specify the program when executing the script. For our shell script, we would need to type csh
example.csh into the terminal without this first line.

After this line, you will enter the commands that you wish the shell to carry out when you run this
script. Any of the commands we have learned so far can be put in a shell script, so to start with put
some valid Unix commands into this file (things like ls and cat that print things out to the screen
are good things to put in here while you learn how shell scripts work). You can include comments
using # to designate a comment.

19.2 Executing a Shell Script

Once you have entered some commands, save your file and return to the terminal. There are several
ways to execute your script. First, as mentioned above you can type csh example.csh, which
invokes csh with your file as its input. This works whether or not you include the shell command
as the first line of the file. However, if you do not want to type csh before every script that we
run, we can avoid this. First, you need to give yourself execute permissions on your file (if you do
not have execute permissions, use chmod to do so). Then you can enter ./example.csh into
the terminal, which should execute your script. (Note: if you give the file the .csh extension, the
shell can usually figure out what to use to execute your shell script if no command is specified in
the script or the command line. However, it is generally good programming practice to specify the
command in the first line of any script.)

19.3 Why ./example.csh?

Why do we need to enter the period prior to giving the name of the script? If you try to execute
your shell script without it, it will not work (you will see a “Command not found” error message).
This has to do with how Unix systems look for commands.

154 Chapter 19. Shell Scripting 1



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

Whenever you type a command into Unix, it looks for a command that matches the command
that you entered in certain places and in a certain order. It decides the places and the order using
what is known as an environment variable called PATH. An environment variable is a pre-defined
variable that provides information on the shell that you are working with. Example environment
variables include information like your login name (USER) and the location your home directory
(HOME). These are very useful for making shell scripts that work for different users on different
systems, in case the specific configuration of a computer is different from the one where you wrote
the script.

One very important environment variable is PATH. PATH is a string of directories where your
shells looks for commands that match the one that you typed into the terminal. When you type
in a command, the shell starts looking through the directories in PATH until it finds a command
that matches the one you entered. It begins in the first directory, and if it does not find a command
matching the one you typed, it goes to the next one, continuing all the way through the list of
directories. If it gets to the end of all the directories in PATH without finding one, it gives an error
message “Command not found.” Note that this applies to any command entered: standard shell
commands like ls and cd are programs too that must be located before they are executed, and
they are located in directories in your path.

You can look at your path using the env command, which will list all of the environment variables
(there are lots). We are interested in PATH, which may require that you scroll up a bit. You can
also access PATH by entering echo $PATH into the terminal. echo is a useful command in
shell scripting, as it can be used to print things to the screen (including variables, which can help
you debug your script). In either case, you will see a long list of directories, each separated by a
colon (for example, the start of PATH might be /usr/local/bin:/usr/bin:/bin:...).
These are the directories where the shell searches for commands, and the order in which they are
searched.

If you ever want to find out if a command is located in one of the directories on your path, use the
which command. which prints out the full path to a command that is entered, and is a convenient
way to figure out (1) if a command is in your path, and (2) if a command is located in more than
one directory on your path, the one that will be executed.

Note that PATH does not contain your current directory, hence you got an error when it looked for
this command. To tell the shell to treat example.csh as an executable, we use the “dot” notation
./example.csh to tell the shell that the executable we want to execute is in the current direc-
tory. This is generally true for other types of executables and scripts, such as the AWK scripts we
have looked at last week.

There is one way to avoid typing ./example.csh every time: we can add . to our path (in Unix
. refers to the current directory), so that the shell will know to look in the current directory. This
is generally frowned upon by system administrators, as someone could put malicious programs
in one of our directories that gets executed because of this (making it a security risk). I do not
put “dot” in my path for this reason, and I don’t really mind typing two extra characters. You
can add additional directories to your path by typing set PATH = ${PATH}:<directory>
(you will learn what this is doing shortly; basically you are appending a colon and a directory name
to the existing string stored in PATH). This will only take effect in the present terminal; to make
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the effect take place in future sessions you will need to add this line to your startup file.

19.4 Variables

As we have seen countless times, variables are a powerful tool for programming as they can save
typing and make programs more flexible and robust. Variables in the shell must start with a letter,
and they are defined using set <name> = <value>, for instance set x = 1 sets x to be
the string 1. To access the value of the variable at another time, use $x. Thus, we might write a
shell script to copy a file to a new directory as follows:

#!/bin/csh

# shell script to copy a file to a new location

set file = myfile.txt

echo "Copying $file to home directory"
cp $file $HOME

This script is rather simple, but illustrates how variables are used in the shell. First, note that by
using a variable, we only have to change the initial place where file was set in our script (I hope
the usefulness of this is clear from our previous programming experience). Then, both the echo
statement and the copy command use the correct filename. Note that I also used the environment
variable HOME to designate the target directory for the copy command. By using HOME instead
of the path to my home directory, this means that this script will work on any Unix machine,
regardless of how the home directories are set up.

set is used to set the value of a variable in the current instance of the shell. However, if your
shell script calls some other shell script, you will not have access to that variable within that shell
script. To make a variable visible to other instances of the shell, you need to add it to the list of
environment variables, as environment variables are passed on when a shell creates another shell.
To set an environment variable, type setenv <name> <variable>. Try this, and then type
env to verify that the variable has been added to the list of environment variables.

If you are using bash, the syntax for defining variables is different. Regular variables are just set
normally in the shell (x=1), while environment variables are set using export: export x=1.
Note that you cannot have spaces for setting variables in bash like you can using the C shell.

19.5 Quoting Rules in Shell Scripts

Note that in the previous example, I was able to print out the value of file in my print statement.
This is because I used double quotes to designate the string to be printed out. What if I wanted
to literally print out “$file” in that echo statement? Or what if you want to set a variable equal to
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some special character? We have already seen that one way to include spaces and other special
characters in commands is to use the backslash \ immediately before the character. You can also
put quotes, either single or double, around the entire string to have the shell interpret the entire
string as a single argument in the event that your variable name include spaces.

The shell has complex rules for using quotes to denote commands and variable names. In particular,
The shell treats single and double quotes in a different manner when interpreting the contents with
respect to variable names. If you include a variable value $x inside double quotes, then the shell
will replace the variable with its contents within that string. This was illustrated above. A further
example:

#!/bin/csh
set x = 1
echo "number$x"

will print number1 to the terminal. If you would like to include further text immediately after the
variable, use braces to enclose the variable name, like ${x}:

#!/bin/csh
set x = 1
echo "number${x}2"

to print number12 to the terminal. However, if you want the literal characters ${x} to appear
for the echo command, then we use single quotes:

#!/bin/csh
set x = 1
echo 'number${x}2'

which will print number${x}2 to the terminal. This quoting works the same for setting variables
(to set a variable to the string $x, put it in single quotes).

Including quotes within a string is a bit trickier. One way to do this is to use the backslash to
precede a quote to put it into the string. You can also put single quotes within a double quote
string, and vice versa. However, neither of these work if you need to put quotes around a variable
name to get the shell to substitute that variable. In this particular case, the way to put quotes inside
of a quoted string is to concatenate several strings that use quotes appropriately: for example,
echo "'"'$x'"'" concatenates three strings together: the first is ' (the result of "'", or
using a single quote within a double quote string), the second is $x, which uses single quotes to
avoid expanding the shell variable within, and the final string is again ' (the result of "'"). The
result is that the shell will print '$x' to the terminal.

One other quoting trick: if we want to include the output of a Unix command in a string, surround
the command with backwards quotes (`). For instance, echo "The current directory
is `pwd`" will print “The current directory is ” followed by whatever the output of the pwd
command is.

Practice using quotes to get the following to print out in the terminal using echo. Precede the
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command with the commands set x = 1 and set y = 2 so that you will have some variables
to work with. I will refer to the values stored in the variables x and y in italics, while I will refer to
the actual letters x and y in regular script. Other text in italics should print what that text refers to
on the screen.

• The final score is y to x

• Shell scripts print variables using $x and $y

• x can’t be less than y

• Don’t forget quotes when printing “$x” and “$y”

• “I won’t make mistakes when using x and $y”

• The current path is the current path

• My home directory is your home directory

• The file ‘example.csh’ contains the echo command number of times echo appears in exam-
ple.csh times

Using quotes properly in a shell script can be tricky, but it is very useful as it lets you control string
output. Since much of automating tasks involves reading and saving things from files, being able
to specify file names from variables is essential (otherwise you would need to rewrite your shell
script every time you wanted to change the target files). Thus, using these quoting rules to correctly
construct strings with appropriate file names is a necessary skill for shell scripting.

19.6 Input Arguments

Other uses of variables in shell scripts allow you to make shell scripts into functions. This lets you
use one shell script to perform a task that might have different input values. When you call a shell
script, you can give it any number of input arguments as follows:

$ ./example.csh <var1> <var2> ...

Within the shell script, you can access these variables using $1, $2, etc. As a simple example, the
following shell script takes three options, with the first option specifying a search string, and the
second two options specifying files in which to search for that string using grep

#!/bin/csh
grep $1 $2 $3

These variables behave exactly like regular variable set with the set command. However, note
that these have a different meaning than in AWK, so you need to be particularly careful if you need
to write an AWK program within a shell script (you need to use single quotes around anything that
you plan to pass to AWK).
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19.7 Math with Shell Variables

In the C shell (not in bash – the syntax for doing arithmetic in bash is totally different, and won’t
be covered here) you can do math with variables if you begin the line with @. For example, the
following script should print out 1, then 2:

#!/bin/csh
set x = 1
echo $x
@ x = $x + 1
echo $x

Note that you must have a space between $x and the addition sign, and the one and the addition
sign as otherwise the shell thinks you want to access the variable $x+1. You can also increment
a variable by one using @ x++ and decrement a variable by one using @ x--. In these cases, no
spaces are necessary.

There are also comparison operators for variables, which do string comparisons. == tests for
equality between two strings, != tests if two strings are different, ~ compares a string to a string
pattern on the right (i.e. can contain wildcards), and !~ tests if a string does not match a string
pattern. Also it is important to note that all arithmetic is integer arithmetic, meaning that you
cannot do math with a decimal value (you will get an error), and division always returns an integer
value (i.e. 3/2=1 in a shell script). Valid arithmetic operators include +, -, *, /, ++, --, and %
(modulo or remainder). We will see how to do non-integer arithmetic a bit later (it requires more
complicated commands than integer math).

19.8 Array Variables

In addition to scalar variables, you can define arrays in a shell script. As with scalar variables,
all array variables are stored as strings, but you can do integer arithmetic with them. Arrays are
defined and you can access the elements as follows:

#!/bin/csh
set x = (1 2 3)
echo $x
echo $x[1]
@ x[1] = $x[1] + 1
echo $x

Indices in the shell begin at one, just like the indices for arrays in MATLAB. However, unlike
MATLAB you cannot do array math (you need to iterate over all of the indices of an array to
change everything) or floating point arithmetic, only integer arithmetic.

Other special ways that you can access array variables: $x[*] returns a list of all elements of the
array $x, while if you give a range of numbers $x[2-4] it will return a slice of the array. $#x
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returns the number of elements in the list. You can also use an array to define another array, for
instance set y = ($x[1-5]) will make y equal to the array containing the first five elements
of x. The parentheses are important here, as it tells the shell that you want y to be an array. Other
useful tricks regarding variables and arrays in the C shell include $?x, which tells you if a variable
is defined (it returns 1 if it is, zero if it is not).

One other useful application of arrays in the C shell is that using path, rather than PATH, gives
you the path as an array of strings instead of as one long string with colons separating the entries.
This can be much more useful within a shell script when compared to the standard version with
the entries separated by colons.

19.9 Floating Point Math

I rarely need to do floating point math in the shell, but if I ever do, it can be done with quoting. It is
a bit awkward, but possible, so if you ever need to do some basic math in a shell script, you can do
so. It uses the Unix Basic Calculator command bc. bc can be run interactively, or run commands
supplied in a file or from standard input. The standard input version is most useful in shell scripts.
For instance, to add two decimal numbers and store as a variable,

#!/bin/csh
set a = 1.4
set b = 2.2
set c = `echo "$a + $b" | bc`
echo $c

As you can see, it is a bit awkward as you need to use backwards quotes to get the standard output
of bc into the command to set the value of the variable c. bc is useful for a number of other
things, such as making less than and greater than type comparisons, which we will see in the next
class when we cover conditionals and loops in shell scripts.

19.10 Summary

We have introduced a number of commands and concepts useful for writing shell scripts in the
C shell (and Tenex C shell by extension). While these types of commands are generally used in
writing shell scripts, they are equally valid in interactive terminal sessions. This means you can
define variables in any terminal sessions, and you can also do so in startup files to have variables
available for your use when using the shell interactively.

• echo

• env and environment variables

• set
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• setenv

• PATH and path

• Variables, input arguments, and arrays

• @ (for variable arithmetic)

• Quoting (double, single, and backwards versions)

• bc
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CHAPTER

TWENTY

SHELL SCRIPTING 2

This lab continues covering shell scripts, looking at conditionals, loops, and other useful tools.

20.1 Conditionals

You can include if statements in shell scripts to control the flow of your script. For simple one-
line if statements, the syntax is if (<boolean>) <command> all on a single line. This will
execute <command> if <boolean> is true. For a simple example:

#!/bin/csh
# simple if statement example
set a = 1
if ($a == 1) echo "a is one"

More complex if statements use the syntax below:

#!/bin/csh
# complex if statement
set a = 1
set b = 2
if ( $a == 2 ) then

echo "a is two"
else if ( $b == 2 ) then

echo "b is two"
else

echo "neither variable is two"
endif

The syntax here differs from bash shell scripts, which end if statements with fi rather than end
if. Besides the string comparisons that I mention above, there are a number of file booleans that
you can use:

• -e <file> – test if <file> exists
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• -d <directory> – test if <directory> exists and is a directory

• -f <file> – test if <file> exists and is a regular file

• -r <file> – test if <file> exists and has read permissions

• -w <file> – test if <file> exists and has write permissions

• -x <file> – test if <file> exists and has execute permissions

• -z <file> – test if <file> is empty

The above are useful for checking necessary conditions before performing some action that re-
quires the above. There is not a built in assertion in the shell, so I frequently check things using
conditionals instead if there are conditions that will trip up my shell script.

Other useful tools for comparisons inlcude != (not equal to), < (less than), > (greater than), <=
(less than or equal to), >= (greater than or equal to)‘‘&&‘‘ (logical and), || (logical or). Compar-
isons involving math can be done with bc. To test if the sum of variables x and y is less than some
value, you can do this with

if ( `echo "$x + $y < 3" | bc`) echo "x and y sum to less than three"

To do this, we use backwards quoting to put the output of the command echo "$x + $y <
3" | bc into the if statement. Note that we need double quotes here in order to substitute the
variable values into the string before we pipe it into the bc command. The resulting expression
evaluates to 1 if the statement is true, and 0 if the statement is false, two values that are compatible
with the if statement. The backwards quotes send the standard output of the bc command to the
if statement. Note that this can also be done if you do shell math and save the sum in some other
variable, so this is not strictly necessary, but it is a useful trick.

20.2 For and While Loops

You can also use loops in a shell script, both of the for and while flavors. while loops have
the following syntax:

#!/bin/csh
# while loop example
set a = 1
while ( $a != 10 )

echo $a
@ a++

end

You can use break or continue within a while loop to either terminate execution or con-
tinue to the next loop, respectively. bash uses a different syntax (while (<boolean>); do
<commands>; done).
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For loops use the following syntax to iterate over all elements of an array:

foreach <varname> (<array>)
<commands>

end

So to print out the same numbers as we saw with the above while loop, we could use the following
script:

#!/bin/csh
# for loop example
set x = (1 2 3 4 5 6 7 8 9)
foreach var ($x)

echo $var
end

bash again uses a different syntax for this; in bash the syntax is for <varname> in
<array>; do <commands>; done. If you put the for, do, and done on separate lines,
the semicolons are not necessary.

Loops are probably the most important construct in the shell for automating data analysis. They
allow you to perform analysis on many different files in a robust, reproducible way. For instance, if
you need to loop over all files matching a certain wildcard pattern, you can use backwards quoting
and a loop:

#!/bin/csh
# perform an action on all files ending in .txt
foreach file (`ls *.txt`)

echo "Processing $file"
myprogram $file > output_${file}.txt

end

The backward quoting stores the result of the ls command in an array that is then looped over,
with the value of file taking on all results from the ls command. This is a very handy way of
repeating actions on many files without having to do large amounts of typing. You can also create
an array of integers using the seq shell command with backwards quotes. seq 0 1 9 gives a
list of integers starting with 0, ending with 9, and incrementing by 1:

#!/bin/csh
# perform an action on 10 files with numerical identifiers
# each file is named filen.txt, where n is a number 0-9
foreach n (`seq 0 1 9`)

echo "Processing file $n"
myprogram file${n}.txt > output_${n}.txt

end

However, note that seq is not a standard UNIX program, so may not be available on all systems. If
it is not available, you can always use AWK to create the numbers, again using backwards quotes.
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20.3 Functions

Shell scripts in bash can define internal functions, which is not possible in the C Shell. However,
you can write external shell scripts that take input arguments ($1, $2, etc.) that can serve as
functions. More lightweight, single command tasks that are repeated can be shortened using aliases
(recall the syntax for setting an alias is alias <name> <commands>). I find aliases in the
shell particularly useful for writing GMT scripts that work for both GMT 4 and GMT 5, which we
will see starting next week when we cover GMT.

20.4 Standard Input Using <<

As mentioned in the AWK labs, the << operator to give standard input is a useful tool in shell
scripts when short input to a command is necessary. Why is this a good idea? If we need to give
input to a command via standard input, we have a few options:

1. You could simply type out the entry into a separate file. This is fine in many cases, but it has
two drawbacks. First, the file exists separately from the shell script, so it is not clear that the
two files are related to each other, and you now have to keep track of multiple files and might
inadvertantly delete the input file. Second, and most importantly, what if the input changes
depending on some other conditions in the shell script? There is no way to tailor the input to
the specific task being done.

2. To get around this, a better approach would be to produce the input file within the shell
script. That way, you can use variables to modify the input accordingly if the input needs to
be adapted to the task. One way to do this is to use a print statement and output redirection:

#!/bin/csh
echo "1 2 3 4 \
5 6 7 8" > tmp.txt
cat tmp.txt

This should write the desired numbers to file, and print it to the terminal. If you needed to
change the input based on some variable value, you would replace the appropriate entry with
a variable.

While the second approach is more robust, it does have one downside in that it still produces an
extra file that is saved in the current directory. This leads to unneeded clutter unless you explicitly
clean up after yourself (which is nevertheless a good idea in shell scripts!).

It turns out that we can eliminate the file altogether by using the << operator. << tells the shell that
input text will follow, to be terminated by a user-defined keyword. This keyword can be anything
that you want (provided it does not appear in the text to be input to the command). A common
choice that is easily understood is END or EOF (End Of File). As an example, the following shell
script will do the same thing as above, without writing the data to a file (thus avoiding the need to
clean up after ourselves).
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#!/bin/csh
cat << END
1 2 3 4
5 6 7 8
END

Essentially, the << operator says that the following lines are input, until you run into the word that
follows (END in this case). You can put shell variables into this text, giving you flexibility to use
one script for multiple situations, and there are no additional files to keep track of or maintain.
Obviously, this is only practical for short snippets of text to be entered, as otherwise this would
make our shell script unreadable, but this is by far the best method for small files.

We will use this method below for calling SAC from a shell script, and in the upcoming classes
on GMT, so it is a good idea to become aquainted with this method of entering input to shell
commands.

20.5 Calling SAC From a Shell Script

I personally use the above tricks frequently when using SAC, and do most of the complex pro-
gramming, looping, and file manipulation in the shell rather than directly in SAC. I find that the
variable definitions and looping abilites of the shell are more powerful in the Shell than in SAC, so
I take advantage of it by writing shell scripts that call SAC for nearly all of my SAC work.

SAC can take commands from standard input. I use the above technique to give standard input to
embed short SAC macros into shell scripts, so that I only have one file to maintain and can use
shell variables to handle input and things like loops.

Here is an example. Imagine that I have downloaded a series of SAC files from the internet, and
want to low-pass filter them all using a user-specified corner frequency, save the files to disk, and
then plot them all. The following is how I would do this using a shell script:

#!/bin/csh

# Shell script to filter all SAC files in the current directory
→˓(corner frequency first input argument)

# data is written to file, then plotted
# script then cleans up afterwards

# loop over files

foreach file (`ls *.SAC`)
sac << END
read $file
lowpass butter npoles 2 corner $1
write $file:r_filt.SAC
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quit
END
end

# now read all files in at once and plot

set files = (`ls *_filt.SAC`)

sac << END
read $files
plot1
quit
END

# clean up

rm *_filt.SAC

Here, I used :r, which strips off the file suffix (so that I could add in the _filt part to the
filename before the .SAC suffix. One thing to be careful about here is that if you want to read
from standard input, you must have the input text flush to the left edge of the script (so that the
shell can find the END delimiter correctly), so I cannot indent my loops in this case. This is the one
exception I make to always indenting blocks of code. Note that the variable names are substituted
in the input. Note also that I need to put quit commands in each set of SAC commands, as
otherwise sac will continue running and the script will hang.

I find this approach to be much more powerful than doing everything directly in SAC. Feel free to
borrow on these ideas when using SAC.

Exercise: Adapt this shell script to your macros for the 4th and 5th SAC labs, moving all of the
loops from the SAC macros to shell scripts.

20.6 Summary

This class covered a number of useful programming techniques in the shell, including:

• if statements

• Comparisons in the shell

• while loops

• foreach loops

• << to give input to a command

• Application of these to writing shell scripts that call SAC macros.
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In this lab, we will apply the shell scripting commands from the previous lab to create more com-
plex scripts involving several commands. Since getting used to the syntax in Unix commands is
not always straightforward, feel free to refer back to to the lab handouts for the Unix and Shell
script labs to revisit the commands, or use the man pages.

1. Write a shell script that uses the various env variables to print the following to the terminal:
user and login names, the current directory, the user’s home directory, the current shell, and
the path. Example output:

$ ./listinfo.csh
User: egdaub (login: egdaub)
Current Directory: /gaia/home/egdaub/Documents
Home Directory: /gaia/home/egdaub
Current Shell: /bin/tcsh
Current Path: /usr/bin:/bin:/usr/sbin:...

2. Write a shell script that lists the name of the file and the size of the file for all files in the
current directory.

3. Write a shell script to check if you can execute a file. The script should take the file name
as an input argument. The script output should print the file name, followed by one of
the following three messages: has execute permissions if the user can execute,
does not have execute permissions if the user cannot execute, or does not
exist if the file does not exist.

4. Write a shell script that copies a file, adding the date to the end of the filename of the copied
file. The file should be given as a command line input, and the date should be formatted as
YYMMDD (i.e. January 10, 2016 is 160110). Append the date just before the file extension.
For example, for a file test.txt I would run the script as follows:

$ ls test*
test.txt
$ ./adddate.csh test.txt
$ ls test*
test.txt test161108.txt
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You will find the date command useful, and in particular its formatting capabilities (try
date +%y%m%d). You may also find the following string operations useful:

$ set file = file.txt
$ echo $file:r # prints file
$ echo $file:e # prints txt

If the input file does not exist, then print an error message to the terminal and do not change
any files.

5. Write a shell script to find all executables within the directories in your PATH that contain a
text pattern (which is specified as a command line input). Recall that you can get the PATH
formatted as strings separated by colons with $PATH, and as an array using $path.

6. Write a shell script to copy all files in the current directory that have been modified in the
past 𝑛 hours (𝑛 should be specified as a command line input) to a target directory specified
as a command line input. If the target directory does not exist, your script should create it.
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GENERIC MAPPING TOOLS 1

This is the first of several labs on the Generic Mapping Tools (GMT). GMT is a set of Unix
commands for drawing maps and plotting geophysical data on maps, though you can also use it to
make basic x-y plots. GMT is a common tool used by many geophysicists.

22.1 About GMT

GMT is a collection of open-source tools for manipulating geographic data and producing plots
and maps. The GMT tools were originally created by Paul Wessel and Walter Smith, though
now there are several more developers involved in maintaining and adding new features. GMT
features 25 different map projections, and tools to plot a variety of different types of data on them.
GMT follows the Unix philosophy (small programs that do one thing well; string together several
programs to do complex things), which makes it very powerful (you have control over every detail
of your plot) and difficult to learn (you have to specify every detail of your plot).

Additional mapping tools are available in addition to GMT. MATLAB has a mapping toolbox (I
have never used it, so have no idea how useful it is). I have used the Python Basemap and Cartopy
packages in my research and found that they produce results on par with GMT. Because of its
large usage, high quality output, and free and open source availability, GMT is a very useful tool
in geophysics research, which is why we cover it in this class.

GMT commands are typically combined in a shell script. While they can be used interactively from
the command line, they are quite complex to type out, making a shell script a convenient way to
use them. Additionally, because many maps are built up in a similar way, this means you can often
reuse scripts with some simple modifications for the particular map that you would like to make.
This is particularly the case if you use shell variables to form commands. Using shell variables
in your commands provides a number of advantages. First, GMT commands are often difficult to
understand, but using shell variables means that you can use descriptive variable names to remind
you of what everything is doing in a GMT command. Additionally, re-use is easier, as you can set
apart the variable definition and command execution so that you can focus on setting parameters
and not have to change the parameters, increasing the chances that you get correct code.

I have found that the best way to learn GMT is to get a hold of some example scripts and modify
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them to figure out what is going on (incidentally, this is how I learn how to use pretty much any
type of computing tool). For each lab on GMT, I will provide a shell script that makes a few
different maps. You should run them yourself to confirm that they work, and then change some of
the shell variables to understand how they work. GMT has extensive documentation (I find myself
reading the manual online on a frequent basis), though those pages are often incomprehensible
when there are many options to specify.

GMT is currently on version 5. This is the version installed in the Mac Lab, though some older
machines may still have GMT 4 as the latest version. Further complicating things is the fact that the
Mac Lab lets you use the GMT 4 method for denoting command names, even though it is calling
GMT 5. Having these two different versions makes things tricky because the GMT developers
decided to change the syntax for a number of commands in going from GMT 4 to GMT 5. The
shell scripts I provide can be used for GMT 4 or 5 (I do this by using shell variables and setting
them to appropriate values depending on whether GMT 5 is detected on the system), but it is not
necessary for you to do this in your homework – I just provide these to illustrate how you might
make your scripts work for multiple versions. I will introduce the differences between GMT 4 and
5 as we proceed.

22.2 A Basic Axis Frame

The provided shell script gmt1.csh will produce three plots: gmt1_1.pdf, gmt1_2.pdf,
and gmt1_3.pdf. Each one contains a number of comments explaining the GMT commands and
options. Read through the comments for the first set of commands in the script, which produces
the plot gmt1_1.pdf, shown below.
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This is just a basic axis frame – since GMT follows the Unix philosophy, making axis frames and
plotting data are two separate operations, and thus require separate programs. Here is the GMT 4
command that made this plot:

psbasemap -R0/100/0/10 -JX4i/3i \
-Ba10f5g5:"x":/a2f1g1:"y"::."GMT Plot":WSne -P > gmt1_1.ps

And in GMT 5, the command is

gmt psbasemap -R0/100/0/10 -JX4i/3i \
-Bxa10f5g5+l"x" -Bya2f1g1+l"y" -BWSne+t"GMT Plot" -P > gmt1_1.ps

Note that these are pretty incomprehensible by themselves. To make this easier to read, I define a
number of different shell variables containing the relevant information and give them descriptive
names. With the shell variables, this is actually

set code = "psbasemap -R${xmin}/${xmax}/${ymin}/${ymax} -JX${size} $
→˓{bvals} $portrait > $outfile"

eval "$code"

Note how this is easier to understand, and it allows you to define all the pieces you need without
looking at the command to figure out where everything goes.

One thing to note: when executing these GMT commands, I define shell variables to be strings
containing double quotes for any axis label so that when they are substituted into other commands,
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the quotes remain behind so that GMT can figure out what my axis labels are. However, you do
not need to include the quotes if your labels do not contain spaces – they are only strictly necessary
if you want to have spaces in your labels or title.

However, if you just try to put shell variables containing spaces inside of quotes into shell command
using variables, the shell trips up on them, mistaking the space for the start of a new flag. To avoid
this, I put the entire command into a separate shell variable, and then use the eval command
to evaluate the entire quoted shell variable. This ensures that the shell literally interprets exactly
what I want as an entire string forming a single command. This is not needed if there is no label
containing spaces, so if you are wondering why some of my plots use this method while others do
not, this is why.

The details of how to draw this plot are specified by all of the various command line options above.
We will go through these one at a time to explain them.

1. First is the psbasemap command. In GMT 4, you simply call psbasemap, while in
GMT 5 you need to put gmt before the command name. I am able to use psbasemap in
either case by defining an alias at the beginning of the script if GMT 4 is not detected on the
system. In the Mac Lab, we use GMT 5 but these aliases are already defined, so you can use
either version in your own scripts. This is the command to produce an axis frame, though it
does not plot any data (that is a separate commamnd).

2. -R0/100/0/10 R here stands for “region” and tells GMT the range of the plot. Note that
unlike MATLAB, GMT does not assume anything about our plot, including the fact that we
want our plot to show all of the data. We have to set it ourselves for every plot. Here, this
says that we want the 𝑥 range to go from 0 to 100, and the 𝑦 range to go from 0 to 10. R is
one of the required options for the psbasemap command. Note that when I use it, I set up
shell variables for the min and max for each axis so that I can set the limits in a way that is
easier to understand.

3. -JX4i/3i J specifies the projection (I do not have a mnemonic to remember the meaning
of J). In this case, X means that we are plotting an 𝑥-𝑦 plot, and that we will tell GMT the
plot size (you can alternatively give a lower case x which signifies that you want to specify
the scale per unit). Here we give 4i, which means the 𝑥-axis should be 4 inches long, and
3imeans the 𝑦-axis should be 3 inches long. J is also a required argument for psbasemap.
Note that I use a shell variable for this as well, so that I know what to change if I want to
alter the size of my plot later.

4. -B The B option (“boundaries”) is probably the most complex and confusing of all of the
GMT options. It tells GMT how to label the axes, how to draw grid lines, and how to title the
plot. The manual for B is nearly incomprehensible as far as I am concerned, but hopefully
you can figure out by trial and error by modifying the example here to see how it works.

This is one of the other places where GMT 4 and 5 differ. I account for this by putting all of
the B options in a shell variable that is set depending on the version that is detected.

There are several parts to the -B command in this example:

• a10f5g5:"x": the first part of the option prior to the slash specifies how to draw
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and label the 𝑥 axis. You can then give any of three letters a, f, and g, each followed
by a number, which describes the annotations (a), ticks (f), and grid lines (g). The
number following each of them determines how frequently each item is drawn. Finally,
:"x": says to label the axis as “x”. There are more options beyond these, which you
can try to decipher from the manual.

• a2f1g1:"y": does the same thing for the 𝑦 axis as was done above for the 𝑥 axis. If
you want both axes to be annotated in the same way, then you do not need to provide
the forward slash and the second set of annotation commands. However, if you want
different labels for each axis, you need to give both options, even if the annotations are
the same.

• :."GMT Plot": This additional text gives the title. Note that the period prior to the
text signifies that this is the title and not an axis label.

• WSne These trailing letters determine how GMT will draw the axis frame. The letters
W, S, n, and e each stand for the west, south, north, and east borders, respectively. If a
letter is capitalized, that means to both draw and annotate the border. If it is lower case,
then that means to only draw the border. If that letter is not present, then GMT neither
draws nor annotates that border. Note that you must draw at least one border, so if you
call B with no letters, it will draw and annotate all four by default.

• For GMT 5, you must call -B a separate time for each axis to be annotated, plus once
more to set the display of the axis frame and title. If the first letter of the -B call is x,
then that is for the 𝑥-axis, if y is the first letter then you are annotating the 𝑦-axis, and
if there is no x or y then that call will set the frame. Labels and titles are preceeded by
+l or +t, respectively and must appear in the -B call starting with x or y for a label,
and without for the title. Hopefully the included examples make this more clear.

As you can see, B is very complex and can be difficult to understand. This is why I generally
set everything in B through shell variables so that I have a much clearer picture as to what is
going on. You should try experimenting with the options on this script until you get an idea
of how they work.

5. The final option is -P, which says to make the plot in portrait mode (default is landscape,
which will be rotated by 90 degrees from vertical). I generally use portrait mode for all
my maps, so there is a -P in all of my commands. However, to make it easier to toggle
portrait mode on/off, I define a shell variable portrait that is included with every call.
To enable portrait mode, I include set portrait = "-P" in the shell script, and set
portrait = "" to turn it off. This way, it is set in one place and you do not have to go
looking for -P flags to delete from every command.

6. The file is then output to gmt1_1.ps, a postscript file. Because most GMT commands
write output to a file more than once, it is a good idea to use a variable for this so that
you only have to set it once. PostScript is the default output format of GMT. You can use
Preview on the Mac to open PostScript files and convert to PDF and other formats. GMT also
provides a command ps2raster (GMT 4 and some versions of GMT 5) or psconvert
(later versions of GMT 5) to convert PostScript to other formats, which I use here. There are
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many options for psconvert: here I use -A0.1i which says to crop the image 0.1 inch
around the edge, and -Tf says to give PDF output. See the manual for other output format
options with psconvert. I also delete the postscript file when I am done with it, as the
PDF is easier to deal with for viewing.

You should tweak the commands within this script to see how it changes the final plot appearance.
Try changing one thing at a time, in all three of R, J, and B (using the shell variables that I defined).
When you have an idea of how this works, proceed to the next plot to see how to actually plot some
data.

22.3 A Basic Plot

The second portion of the shell script produces a plot that shows some actual data, and outputs the
file gmt1_2.pdf. This plot requires three separate commands to produce the following output:
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Here is the full set of commands for GMT 4:

psbasemap -R0/100/0/10 -Jx0.04i/0.3i \
-Ba10f5g5:"x":/a2f1g1:"y"::."Square Root Plot":WSne \
-X2i -Y3i -K -P > gmt1_2.ps

awk "BEGIN { for (x = 0; x<=100; x++) { print x, sqrt(x) } }" | \
psxy -R -J -W1p,blue -K -O -P >> gmt1_2.ps
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awk "BEGIN { for (x = 0; x<=100; x += 10) { print x, sqrt(x) } }" | \
psxy -R -J -Sc6p -Gblue -O -P >> gmt1_2.ps

For GMT 5, the commands are:

gmt psbasemap -R0/100/0/10 -Jx0.04i/0.3i \
-Bxa10f5g5+l"x" -Bya2f1g1+l"y" -BWSne+t"Square Root Plot" \
-X2i -Y3i -K -P > gmt1_2.ps

awk "BEGIN { for (x = 0; x<=100; x++) { print x, sqrt(x) } }" | \
gmt psxy -R -J -W1p,blue -K -O -P >> gmt1_2.ps

awk "BEGIN { for (x = 0; x<=100; x += 10) { print x, sqrt(x) } }" | \
gmt psxy -R -J -Sc6p -Gblue -O -P >> gmt1_2.ps

Using the variable names instead, here is the actual code in the shell script

set code = "psbasemap -R${xmin}/${xmax}/${ymin}/${ymax} -Jx${scale}
→˓$bvals -X$xshift -Y$yshift $firstplot $portrait > $outfile"

eval "$code"
awk "BEGIN { for (x = ${xmin}; x<=${xmax}; x++) { print x, sqrt(x) } }

→˓" | \
psxy -R -J -W${pen},$color $midplot $portrait >> $outfile

awk "BEGIN { for (x = ${xmin}; x<=${xmax}; x += 10) { print x, sqrt(x)
→˓} }" | \

psxy -R -J -S${symb}${symsize} -G$color $finalplot $portrait >>
→˓$outfile

psbasemap contains some of the familiar options from above, plus a few extras. In this case, R
is the same as before, as is B. The J option is slightly different than before, as I have used a lower
case x to tell GMT that I am making an 𝑥-𝑦 plot. When you use a lower case letter for the map
projection, you will specify a scale rather than an absolute size. Here I would like the plot to be the
same size as before. Since 𝑥 goes from 0 to 100, then if each 𝑥-unit is 1/25 of an inch (or 0.04i)
the total plot will be 4 inches wide. Similarly, 𝑦 goes from 0 to 10, so to make a 3 inch high plot,
each 𝑦-unit should be 3/10 inch.

I have also moved the plot from the lower left corner of the page using -X2i -Y3i, which tells
GMT to place the plot 2 inches to the right and three inches above the lower left corner. Once you
call -X and/or -Y, you do not need to call them again in subsequent plotting commands.

Finally, I intend to combine several plotting commands to make a complex plot. To do this, we add
the -K option on psbasemap (I think of this as standing for “Keep open”). This allows you to
call additional commands to add more things to the plot. I like to handle this using shell variables
– I include set firstplot = "-K" and then put $firstplot into the first command in
the sequence so that I have a descriptive reminder as to what that option is doing.

Next, we plot the actual data on the plot using the psxy command, which is for plotting 𝑥-𝑦“ data.
psxy can either read data from a text file, a binary file, or standard input. Here I provide the data
using standard input using AWK. First, I use AWK to print out 100 (𝑥, 𝑦) pairs consisting of 𝑥 and
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√
𝑥, and pipe that into psxy.

psxy has many of the same options as psbasemap, and fortunately we do not need to specify
them every time. If we just give -R -J, then GMT knows to use the same settings as we used
in psbasemap. We give four additional options on psxy: -W -K -O -P, two of which we
have seen before. -O (I think of it as meaning the file is already “Open”) tells GMT that we are
appending plot items onto an existing plot. As with the first plot, I define a shell variable for all the
intermediate plots $midplot that handles the -K -O for me. -W gives information on how to
draw the lines in the plot: -W1p,blue says that the lines should be 1 point (1/72 inch) wide and
blue. All of this is appended onto the existing file “gmt1_2.ps” using Unix output redirection. Also
note that in my AWK program, I used double quotes so that the 𝑥 limits are correctly substituted
into the program before execution.

Finally, I want to also plot symbols on the figure in addition to the lines. This requires calling
psxy a second time, as in the GMT Unix philosophy, plotting lines and plotting symbols are two
separate operations. I only want to put a marker for every 10th data point, so I modify my AWK
program to only print out every 10th point. You can also change the sampling rate of a dataset
using the sample1d GMT command if you were making a plot from a text file – see the manual
for more details.

I pipe my AWK results into psxy again. This time, I call two new options for psxy: -S and
-G. -Sc6p says to plot each data point as a symbol that is a circle with a diameter of 6 points
(6/72 in). -Gblue says to color the symbols blue. Note that we did not call the -W option here –
since we gave the -S option, -W refers to the outline of the symbol, rather than lines connecting
the points. The symbol outlines are drawn by default, so if you do not want the symbol outlines
drawn you need to call -W0 to make the line width zero. Here we want them drawn in the same
color as the markers, so we do not need to do anything for -W. As with the previous command,
we also call -R -J with no additional text needed, and -O -P to make a portrait layout and tell
GMT that we are appending to a previous plot. In the shell script, the -O option is handled by a
variable $finalplot so that it is easier to understand what is going on. Finally, we append to
gmt1_2.ps as before. I convert to PDF and delete the postscript file when I am done with it.

As you can see, because we need to specify every single detail about our plot, even a basic plot
requires a number of commands that can be difficult to understand if you are not GMT savvy. I
try to make things easier to understand using shell variables for as many details as I can manage.
Anything that is used more than once should always be defined in a shell variable so that it only has
to be changed in one place, and anything that is hard to understand is usually better being replaced
with a descriptive name that is set separately. Look through my use of variables to see how they
can make GMT scripts easier to understand.

22.4 Nonlinear Axes

The final example shows how to make nonlinear axes and put text annotations on a GMT plot. The
final plot produced by the shell script is the following:
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The GMT 4 commands to make this plot are as follows:

psbasemap -R0.1/100/0/10 -JX4il/3ip2 \
-Ba1g3p:"x":/a2g1:"y"::."Nonlinear Axes":WS -K -P > gmt1_3.ps

awk "BEGIN { for (x=0.1; x<=100; x = x*1.1) { print x, sqrt(x) } }" | \
psxy -R -J -W1p,red -K -O -P >> gmt1_3.ps

pstext << END -R -J -O -P >> gmt1_3.ps
1 8 12 0 0 CM @;red;Square Root
END

GMT 5 requires a different syntax for pstext:

gmt psbasemap -R0.1/100/0/10 -JX4il/3ip2 \
-Bxa1g3p+l"x" -Bya2g1+l"y" -BWS+t"Nonlinear Axes" -K -P > gmt1_3.ps

awk "BEGIN { for (x=0.1; x<=100; x = x*1.1) { print x, sqrt(x) } }" | \
gmt psxy -R -J -W1p,red -K -O -P >> gmt1_3.ps

gmt pstext << END -R -J -F+f+a+j -O -P >> gmt1_3.ps
1 8 12,0,red 0 CM Square Root
END

The actual commands in the shell script:

set code = "psbasemap -R${xmin}/${xmax}/${ymin}/${ymax} -JX$size
→˓$bvals $firstplot $portrait > $outfile"

eval "$code"
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awk "BEGIN {for (x=${xmin}; x<=${xmax}; x = x*1.1) {print x, sqrt(x) }
→˓}" | \

psxy -R -J -W${pen},$color $midplot $portrait >> $outfile
pstext << END -R -J $textopts $finalplot $portrait >> $outfile
$textinput
END

psbasemap uses some new options on -J and -B to create nonlinear axes. First, we tell GMT
to use a logarithmic 𝑥-axis and an exponential 𝑦-axis using -JX4il/3ip2. The X option, with a
width of 4 inches and a height of 3 inches should be familiar. Here the l appended on the 𝑥-axis
says to make the 𝑥-axis logarithmic, and the p2 appended on the 𝑦-axis says to make the 𝑦-axis
exponential with a base of 2.

The other differences are in the B options. We give -Ba1g3p:"x": or -Bxa1g3p+l"x" for
the 𝑥-axis. For a logarithmic axis, the annotation, tick, and gridline option can be 1, 2, or 3. To
annotate only every power of 10, we give 1 as the option. To annotate at 1, 2 and 5 within every
decade, we give 2 as the option. Finally, to annotate a every integer 1-9 per decade, we give 3.
This is why the annotations are at every power of 10 (we gave a1) and there are 9 grid lines for
each decade (we gave g3). Finally, the trailing p tells GMT to write the annotations in exponential
notation (if we replaced the p with l, the annotations would have been logarithmic and read -1, 0,
1, and 2).

The other options on psbasemap should be explained above. We then call psxy in the same way
as above, though because of the logarithmic 𝑥-axis, I have distributed the data points differently.

The final command calls pstext to place a text annotation on the plot. pstext can read from
a text file or from standard input; in our case we use standard input to give the 𝑥-coordinate, 𝑦-
coordinate, size, angle, font number, justification, and text. I wish to place my text at (1, 8), with
12 point font, no rotation, font number 0 (Helvetica), and center-middle justified (CM means center
horizontally, middle vertically). The @;red; tag is the syntax in GMT for changing the font color
(for other options, see the manual). This input is given to pstext along with familiar options -R
-J -O -P, and the output is appended to gmt1_3.ps to complete the plot.

GMT 5 requires different input for pstext. The standard way to give input is to give the x value,
y value, and the text string, but here I provide additional formatting information, which is indicated
by the -F switch. Since I give -F+f+a+j, this means that I am adding a font specifier (+f), and
angle (+a), and justification (+j) prior to the text itself. The font contains 3 comma-separated
entries: size, font number, and color, and the angle and justification are described above. Note that
I use shell variables to handle the differences between GMT 4 and 5, writing the input text and
-F switch to shell variables that hold the correct value depending on the version of GMT that is
being used. Note that this improves comprehension (both versions are fairly hard to understand in
my mind, so using variables gives more descriptive names for both versions) and makes the script
more flexible.
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22.5 Exercises

The best way to figure out how things work in GMT is to take an existing script and tweak it. Use
the provided shell script as a starting point. Here are some plots to try (feel free to make up your
own examples, too):

• Make a linear plot of 𝑥2 where 𝑥 goes from 0 to 10 with annotations at every integer in 𝑥
and annotations every 10th integer in 𝑦.

• Make the same plot as above, but change the axes that are drawn or annotated on the frame.

• Make the same plot as above, but change the frequency of annotations and either add or
remove grid lines.

• Make the same plot as above, but add markers or your choice (for the command details, look
at the manual) at every integer.

• Make a plot of exp(𝑥) with a logarithmic 𝑦-axis with 𝑥 going from 0 to 10. (AWK has a
built-in exp command.)

• Add a text annotation to the previous plot.
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TWENTYTHREE

GENERIC MAPPING TOOLS 2

Now that we have a basic idea of how GMT works, we can start actually making maps. As with
𝑥-𝑦 plots, there are many options to specify, particularly the map projections. This lab gives several
examples of how to plot different map projections, which we discuss before getting to the details
of how to plot these projections in GMT.

23.1 Map Projections

Because the earth is spherical, it is not possible to draw a perfect map projection onto a flat surface.
Different map projections are designed to preserve a particular quantity. Some of the most common
quantities include:

• Area

• Shape

• Distance

• Bearing

• Direction

These things can all be measured independently, and we can choose a map projection that preserves
at least one of these quantities. Because we may need different maps for different purposes, not all
maps will want to preserve the same quantities.

For instance, we may want to preserve areas in order to show some quantity per unit area. Equal
area projections tend to skew shapes far from certain regions. If we want to maintain shapes
(aka have a conformal map), then areas are not usually well-represented. Some maps are better for
navigational purposes in that they show bearings correctly, or we may need to get accurate distance
estimates. Thus, when considering which map projection to use, you need to consider the data that
will be represented on the map.

For instance, most of you have probably seen the Mercator projection. The Mercator projection
projects the earth’s surface onto a cylinder, and is conformal (it preserves small shapes and angles).
It also has the property that straight lines are lines of constant course, useful for nautical navigation:
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It is well known, partially because of its longtime use for navigation, partially because it is a nice
rectangular projection (i.e. nice for hanging on walls or putting on rectangular book pages), and
most recently, because it is the projection used in Google Maps and other online map applications.
However, it greatly exaggerates areas near the poles, and makes Greenland appear to be the same
size as Africa (when I was in Elementary School, I had a placemat showing a Mercator projection,
and was amazed to learn that the area “rankings” I had deduced from the placemat were wildly
inaccurate when I compared it to a globe).

There are 5 types of projections available in GMT. We will consider an example of each of them
(four in this lab, with the fifth type being the non-geographic 𝑥-𝑦 “projections” from the last lab).
You can get more information on the various map projections on the web (the GMT manual has
basic information on each projection, and Wikipedia also has good information on various projec-
tions). They break down into the following categories:

• Cylindrical Projections (project the earth’s surface onto a cylinder): Cassini, Cylindri-
cal Sterographic, Miller Cylindrical Projectioin, Mercator, Oblique Mercator, Cylindrical
Equidistant, Transverse Mercator, Universal Transverse Mercator, Cylindrical Equal-Area

• Conic Projections (project the earth’s surface onto a cone): Albers, Conic Equidistant, Lam-
bert, (American) Polyconic

• Azimuthal Projections (directions from central point are preserved): Lambert, Azimuthal
Equidistant, Gnomic, Orthographic, General Perspective, General Stereographic
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• Miscellaneous (other qualities, or compromise projections that do not preserve any particu-
lar quantity): Hammer, Sinusoidal, Eckert IV, Eckert VI, Robinson, Winkel Tripel, Van der
Grinten, Mollweide

• Non-Geographic Projections: Polar Coordinates, Cartesian (𝑥-𝑦) coordinates

23.2 A Simple Example

In GMT, we use pscoast to draw landforms on maps. pscoast takes many of the same options
as psbasemap, and in many cases it is not necessary to call psbasemap because all of the
necessary details are provided when calling pscoast. However, I tend to call both on most of
my maps, and specify -B when I call psbasemap rather than on pscoast (as I think of the grid
lines belonging more to the axis frame than to the map within). Here I will give examples of both,
and you should feel free to do whichever you prefer.

The provided shell script gmt2.csh should produce four maps. The first one, gmt2_1.pdf is
a simple example of a map of a Mercator projection of Oceania:
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This map requires only one GMT call, to pscoast. In GMT 4:

pscoast -R90/180/-50/20 -JM5i -Ba10g10:."Mercator": -W -P > gmt2_1.ps

and in GMT 5:

gmt pscoast -R90/180/-50/20 -JM5i -Bxa10g10 -Bya10g10 -B+t"Mercator" -
→˓W -P > gmt2_1.ps

As with the previous set of notes, I use shell variables extensively to make these commands more
tractable. The actual command in the shell script is

set code = "pscoast -R${xmin}/${xmax}/${ymin}/${ymax} -JM$size $bvals
→˓$continents $portrait > $outfile"

eval "$code"

Here I use the trick of setting the entire command to a variable in case we need to include a title
that includes spaces. The command options should all be familiar to you from the first GMT lab,
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though their exact usage is a bit different here. Let’s look at them one at a time:

• -R90/180/-50/20 are the -R options for this map: we give minimum and maximum
longitude and latitude values to determine the map region. Here I am going from 90∘ to 180∘

in longitude, and −50∘ to −20∘ in latitude. Unlike when doing an 𝑥-𝑦 plot, the region can
only take valid sets of geographical coordinates. Longitude must be in the range (−180, 180)
or (0, 360), and latitude must be in the range (−90, 90). Certain map projections like the
Mercator cannot include the full globe, as they are not defined at the poles. If you try to
extend the region of such a projection to a pole, you will get an error message.

• -JM5i are the -J options for this map, which sets the map projection. M stands for the
Mercator projection, and the fact that it is a capital letter means that we set the map width
of 5 inches (lower case means we would specify a length per degree longitude). Note that
the map projection determines the map height, so we only need to specify the width. Some
projections require additional information to define the projection that is independent of the
region, though the Mercator projection is not among these (the min/max lat/lon from the -R
option is all that is needed).

• -Ba10g10:."Mercator": (GMT 4) or -Bxa10g10 -Bya10g10
-B+t"Mercator" (GMT 5) sets the boundary annotation to every 10 degrees, and
the grid lines to every 10 degrees. The title of the plot is “Mercator”

• -W tells GMT to draw coastlines using the specified line properties (none specified sets it to
the defaults). You need to specify at least one additional option in pscoast regarding how
to draw or fill the continents; here I set how to draw them (we will see later how to fill land
and water areas).

• -P sets output to portrait mode, and > gmt2_1.ps redirects output to file. I then convert
to PDF using psconvert and delete the postscript file.

This example is quite simple, as the Mercator projection is fairly easy to understand.

23.3 A Non-Rectangular Projection

The second example is of a Lambert Conic projection, which would produce a non-rectangular
map if we specify the region using minimum and maximum longitudes and latitudes. However,
what if you want your map to be rectangular? We can still make the final map output rectangular
for this projection by changing the syntax for specifying -R. This produces a map gmt2_2.pdf
that looks like the following:
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Note that while the map is rectangular, the boundaries are not lines of constant latitude and longi-
tude. This effect can be produced in GMT as follows (GMT 4):

pscoast -R-90/20/-60/35r -JL-75/27.5/20/35/5i \
-Gpalegreen -Sblue -Cskyblue -Na -Ir -W -Di \
-K -P > gmt2_2.ps

psbasemap -R -J -Ba5g5:."Lambert Conic": -O -P >> gmt2_2.ps

and for GMT 5:

gmt pscoast -R-90/20/-60/35r -JL-75/27.5/20/35/5i \
-Gpalegreen -Sblue -Cskyblue -Na -Ir -W -Di \
-K -P > gmt2_2.ps

gmt psbasemap -R -J -Bxa5g5 -Bya5g5 -B+t"Lambert Conic" -O -P >> gmt2_
→˓2.ps

The commands using variables is the following:

pscoast -R${xmin}/${ymin}/${xmax}/${ymax}r -JL${clon}/${clat}/${minlat}
→˓/${maxlat}/$size \

-G$land -S$ocean -C$lake $natbounds $rivers $continents -D
→˓$resolution \

$firstplot $portrait > $outfile
set code = "psbasemap -R -J $bvals $finalplot $portrait >> $outfile"
eval "$code"
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I have split this into two commands, one pscoast specifying how to draw the map, and
psbasemap specifying how to draw the frame since the pscoast command is already fairly
complicated. This example introduces several new syntax items:

• -R-90/20/-60/35r In order to make a non-rectangular projection into a rectangular
map, you need to specify upper left and upper right coordinates, rather than minimum and
maximum values for each coordinate. The final lower case r tells GMT to interpret the
-R command as lower left/upper right coordinates. Thus, I am telling GMT to plot the
rectangular portion defined with the lower left coordinate at (−90∘, 20∘) and upper right
coordinate at (−60∘, 35∘).

• -JL-75/27.5/20/35/5i tells GMT to make a Lambert Conic projection centered at
(−75∘, 27.5∘), with minimum latitude of 20∘ and a maximum latitude of 35∘, and width of 5
inches. Note that this defines how the projection is constructed, but does not determine the
final area that will be shown on the map (that is what -R specifies). Note that the two are
independent of one another, though it is likely that the values will be related, as my central
point is at the center of the map and the latitude range matches the range in the region that I
have selected.

• The next three options tell GMT how to color the map. -Gpalegreen says to color all
land areas pale green, -Sblue says to color all water areas blue, and -Cskyblue says to
color all lakes and rivers sky blue. If -C is not specified, lakes and rivers have the same color
as water areas. You do not need to specify all three of these – you can make a map that only
colors land, or only colors water – but you must specify one of -G, -S, or -W.

• The three options following the coloring options tell GMT how to draw map boundaries, in-
cluding political borders (-Na), rivers (-Ir), and coastlines (-W). There are several options
for political borders (-N1 draws international borders, -N2 draws national borders within
the Americas, -N3 draws marine borders, and -Na draws all three). There are many options
for drawing rivers. -Ir draws all permanent rivers, and for more options, see the manual.
As we saw above, the -W option tells GMT how to draw coastlines, and I call -W with no
options to use the default line style to draw the coastlines.

• -Di specifies the map resolution. The following letter can be f (full), h (high), i (interme-
diate), l (low), or c (crude). The default is low, which is reasonable for maps at the scale of
the first example. This example depicts a smaller region, so I have increased the resolution
to intermediate.

The other options should be familiar to you. The output is sent to the file gmt2_2.ps. We then
add the axis frame and grid lines by calling psbasemap. These options should be familiar to you,
here we call -Ba5g5:."Lambert Conic": or -Bxa5g5 -Bya5g5 -B+t"Lambert
Conic" to annotate and draw grid lines every 5 degrees. We also give a title. The other op-
tions should be familiar, and note that we just give -R -J to use the same region and projection
as the pscoast command.

One important thing to recognize here was that we needed to put psbasemap after pscoast.
This is because successive GMT commands are plotted on top of any previous commands. Since
we colored the water and continents, if we drew the grid lines before coloring the land and water,
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the grid lines would not show up. This is important to keep in mind when you construct compli-
cated maps, as you need to build up the plot layer by layer with different commands.

23.4 Plotting Data on a Map

While making pretty maps is nice, in doing scientific research we would like to plot data on
maps. Here is a basic example using psxy to draw plate boundaries (included in the file
nuvel_plates.txt) on a global map gmt2_3.pdf in the included shell script:

Robinson with Plate Boundaries
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This plot uses the Robinson projection, a compromise projection designed to look “right” when
plotting the entire globe and avoid the area distortion in the Mercator projection. The commands
to make this map are as follows (GMT 4):

pscoast -Rd -JN5i -N1 -A10000 -Dc -Gcoral -Sblue \
-X1.5i -Y1.5i -K -P > gmt2_3.ps

psbasemap -R -J -Ba60g30/a30g15:."Robinson with Plate Boundaries": \
-K -O -P >> gmt2_3.ps

psxy nuvel_plates.txt -R -J -W1p,red -m">" -O -P >> gmt2_3.ps

For GMT 5:

gmt pscoast -Rd -JN5i -N1 -A10000 -Dc -Gcoral -Sblue \
-X1.5i -Y1.5i -K -P > gmt2_3.ps

gmt psbasemap -R -J -Bxa60g30 -Bya30g15 -B+t"Robinson with Plate
→˓Boundaries" \
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-K -O -P >> gmt2_3.ps
gmt psxy nuvel_plates.txt -R -J -W1p,red -O -P >> gmt2_3.ps

where the actual commands in the shell script are

pscoast -R$region -JN$size $natbounds $area -D$resolution -G$land -S
→˓$ocean \

-X$xshift -Y$yshift $firstplot $portrait > $outfile
set code = "psbasemap -R -J $bvals $midplot $portrait >> $outfile"
eval "$code"
psxy $infile -R -J -W${pen},$color $marker $finalplot $portrait >>

→˓$outfile

First, we draw the coastlines using pscoast. Here we give a couple of options that you are not
familiar with:

• -Rd is shorthand for a global domain: -Rd is equivalent to -R-180/180/-90/90. Also
available is -Rg, which is the same as -R0/360/-90/90.

• -JN5i means a 5 inch wide Robinson projection.

• -A10000 means to not draw any land areas with an area of less than 10000 km 2. This
option is useful on large global projections to avoid trying to draw tiny islands.

• The other options should be familiar. We color the continents and water, draw international
boundaries, translate the map (to prevent cutting off the title), choose portrait mode, and
intend to add more output in later commands.

Next, we draw the basemap frame to draw grids and label the axes. These commands should all
be familiar to you. Remember that we do this second so that the grid lines are not obscured by the
continents and oceans.

The third command uses psxy to draw lines on the map. The command reads data from file
(nuvel_plates.txt) and plots red lines of width 1 point on the map (-W1p,red). -R -J
should be familiar to you, as well as -O -P. The additional option for this command is -m">",
which tells psxy how to separate different line segments in the input file. If you look at the input
file, you will see it is a long list of longitude and latitude coordinates, with each segment separated
by a line that begins with >. The option -m">" tells GMT to use this to separate the different
segments.

The -m option has been deprecated in GMT 5, and the > character is the default for separating
line segments in a data file, so that argument is not necessary in GMT 5. To handle this, I set the
marker shell variable to be an empty string if GMT 5 is detected.

This is a relatively simple example of how to plot data on a map. We will explore this topic in much
greater detail in the next lab, showing how to plot additional types of data on map projections with
much more complexity.
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23.5 A More Complicated Map

The final example shows how to construct a map that is more difficult to make in GMT. This is
mostly because the default version of the projection does not make the exact map that I desire, but
there are sufficient tools that I can piece it together using several different commands (this is an
example of how “Unix makes difficult tasks possible”). This is pretty tricky, so do not worry if you
do not understand every detail. If you need to make this kind of map, you can use my script as a
“cookbook” example and change the necessary pieces.

One nice map projection for determining earthquake distances and back azimuths to a particular
seismic station is the azimuthal equidistant projection. This projection is centered on a particular
point, and all lines to that point are great circle paths (this is the “azimuthal” part) and all distances
from the central point are accurately represented (this is the “equidistant” part). For instance, here
is azimuthal equidistant projection centered on Memphis:
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If we plot an earthquake epicenter on this projection, we can easily determine the distance and
back azimuth. How do we make this map?

psbasemap -R0/360/-90/0 -JS0/-90/90/5i \
-Ba15:."Azimuthal Equidistant": -K -P > gmt2_4.ps

pscoast -Rg -JE-89.97/35.12/175/5i -Dc \
-Gdarkgray -K -O -P >> gmt2_4.ps

psbasemap -Rg -JE0/-90/175/5i -Bg15/g30 -O -P >> gmt2_4.ps

For GMT 5:

gmt psbasemap -R0/360/-90/0 -JS0/-90/90/5i \
-Bxa15 -B+t"Azimuthal Equidistant" -K -P > gmt2_4.ps

gmt pscoast -Rg -JE-89.97/35.12/175/5i -Dc \
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-Gdarkgray -K -O -P >> gmt2_4.ps
gmt psbasemap -Rg -JE0/-90/175/5i -Bxg15 -Byg30 -O -P >> gmt2_4.ps

The code containing variable names is

set code = "psbasemap -R0/360/-90/0 -JS0/-90/90/$size $bvals
→˓$firstplot $portrait > $outfile"

eval "$code"
pscoast -Rg -JE${clon}/${clat}/${dist}/$size -D$resolution \

-G$land $midplot $portrait >> $outfile
psbasemap -Rg -JE0/-90/${dist}/$size $bvals2 $finalplot $portrait >>

→˓$outfile

This is a bit tricky, because GMT’s azimuthal equidistant projection does not draw the frame or
grids as I want them to appear. However, we can piece together additional commands to draw the
frame and grid lines.

The first command draws the exterior basemap frame, and nothing else. Because this frame is
not available in the azimuthal equidistant projection, I am instead using a polar stereographic
projection centered at the South Pole (-JS0/-90/90/5i), but only plotting the frame. Here, the
first two numbers are the longitude and latitude of the center point (0,−90∘), the third number is
the horizon (chosen here to be 90∘ so that the map is for the entire southern hemisphere). The final
number is the map size (5 inches).

-R0/360/-90/0 says to plot the southern hemisphere centered at the south pole, which
gives the frame with the correct azimuth annotations that I desire (every 15 degrees,
specified by -Ba15:."Azimuthal Equidistant": or -Bxa15 -B+t"Azimuthal
Equidistant"), but without any grid lines (which I will add later). I choose portrait mode
(-P) and will add more plotting commands later so I add -K. Output is sent to gmt2_4.ps.

Once I have created the frame with psbasemap, I now plot the actual map. I use
pscoast to plot an azimuthal equidistant projection centered on Memphis. The option
-JE-89.97/35.12/175/5i says that I want my projection centered at (−89.97∘, 35.12∘) (the
geographic coordinates of Memphis), with a horizon of 175∘ (meaning that I only plot points up to
175∘ away, with a width of 5 inches. The depicted region is global (-Rg), and resolution is set to
be coarse (-Dc). Continents are colored dark gray (-Gdarkgray), I use portrait mode (-P), and
I append to an existing file, with the intention of continuing with further commands (-K -O).

A few comments about this projection: in GMT 4 it is known to have some bugs that can lead to
problems in depicting the continents. These have supposedly been solved in GMT 5. It also has
trouble coloring the map if the antipode (the point 180∘ away) is land. I had trouble getting this
map to plot in GMT 4 when I colored both the land and the water, though some of the problems
seem to be resolved in GMT 5, and I was able to successfully plot this map in both GMT versions.

The final psbasemap command is a trick to draw the desired gridlines on the plot. GMT is only
able to draw gridlines that are meridians or parallels on map projections. However, what I wanted
for this plot was a set of great circles radiating from the center of the map, and lines of constant
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distance from the map center. To do this, I used a trick where I plot the grid for the azimuthal
equidistant projection centered on the south pole. By choosing this particular map projection, the
“meridians” become the great circles, and the “parallels” become the distance contours. (Bob
Smalley deserves credit for this, I got this from his GMT notes.)

To draw these gridlines, I call psbasemap for a global domain (-Rg), with the projection defined
by -JE0/-90/175/5i. This is the same size and horizon as the pscoast command, but
because it is centered at the south pole (0,−90∘) it will draw the grid lines in the places that I
want. Note that -Bg15/g30 or -Bxg15 -Byg30 only tells it to draw the grid lines, and the 15∘

increment in longitude matches up with the annotation interval specified in the first psbasemap
command. The grid commands are appended onto the file.

As I said earlier, I do not expect you to totally understand what I did here. This should illustrate
how you can stick together different pieces of code to do something complex, and if you need to
make this map projection in the future you can use this code as a cookbook example starting point.

23.6 Exercises

As with the last lab, you should try changing different options as you go through the scripts. Here
are some ideas of things to try to change on some of the maps:

• Plot the same projection for a different region.

• Plot a different projection for the same region. Either use one of the other ones we covered
today, or learn the syntax for a new projection (see the manual for details).

• Change the grid and annotation spacing, or remove the grid entirely.

• Add or take away political boundaries and rivers.

• Change the fill colors or the coastline outline colors.

• Change the resolution (it is best to do this on a small map, as global maps at high resolution
create huge files).

• Plot symbols on the map using psxy and standard input.

• Add a text annotation to a map using pstext.
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CHAPTER

TWENTYFOUR

GENERIC MAPPING TOOLS 3

Geophysicists usually need to make maps in order to display geophysical data. The next two labs
will show you various ways that you can do this in GMT. Today we will examine how to display
point data on a map (i.e. we have data that has been collected for a certain number of discrete
locations), and the final GMT lab we will look at grid-registered data (i.e. data that has been
collected for every point gridded over an entire region).

24.1 Displaying Point Data

The simplest type of plot for a point data set is a collection of locations. An example of this might
be locations of seismic stations. Here is a plot of the CERI New Madrid Seismic Network, which
should be produced by the shell script gmt3.csh from the data files ceribroadband.txt,
ceristrongmotion.txt, and cerishortperiod.txt.
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The code to produce this plot is as follows (GMT 4):

set files = ( "ceribroadband.txt" "ceristrongmotion.txt"
→˓"cerishortperiod.txt")

set colors = ("black" "red" "blue")
set legendtext = ("Broadband" "Strong Motion" "Short Period")

pscoast -R-92/34.5/-88/37.5r -JB-90/36/34.5/37.5/5i -Ba1g1 \
-Dh -N2 -Ir -Cskyblue -W -K -P > gmt3_1.ps

foreach i ( 1 2 3 )
awk '$0 !~ /Station/ {print $4, $3}' $files[$i] | \

psxy -R -J -St6p -W$colors[$i] -K -O -P >> gmt3_1.ps
end
pslegend << END -R -J -Dx0.15i/3.5i/2i/0.95i/LB \

-F1p,black -Gwhite -O -P >> gmt3_1.ps
H 14 0 CERI NMSZ Network \\
S 0.25i t 6p - $colors[1] 0.5i $legendtext[1]
S 0.25i t 6p - $colors[2] 0.5i $legendtext[2]
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S 0.25i t 6p - $colors[3] 0.5i $legendtext[3]
END

and in GMT 5:

set files = ( "ceribroadband.txt" "ceristrongmotion.txt"
→˓"cerishortperiod.txt")

set colors = ("black" "red" "blue")
set legendtext = ("Broadband" "Strong Motion" "Short Period")

gmt pscoast -R-92/34.5/-88/37.5r -JB-90/36/34.5/37.5/5i -Bxa1g1 -
→˓Bya1g1 \

-Dh -N2 -Ir -Cskyblue -W -K -P > gmt3_1.ps
foreach i ( 1 2 3 )

awk '$0 !~ /Station/ {print $4, $3}' $files[$i] | \
gmt psxy -R -J -St6p -W$colors[$i] -K -O -P >> gmt3_1.ps

end
gmt pslegend << END -R -J -Dx0.15i/3.5i+w2i/0.95i+jLB \

-F+gwhite+p1p,black -O -P >> gmt3_1.ps
H 14 0 CERI NMSZ Network \\
S 0.25i t 6p - $colors[1] 0.5i $legendtext[1]
S 0.25i t 6p - $colors[2] 0.5i $legendtext[2]
S 0.25i t 6p - $colors[3] 0.5i $legendtext[3]
END

Using variables, these commands are written as:

set code = "pscoast -R${xmin}/${ymin}/${xmax}/${ymax}r -JB${clon}/$
→˓{clat}/${minlat}/${maxlat}/$size"

set code = "${code} $bvals -D$resolution $natbounds $rivers -C${lakes}
→˓$continents $firstplot $portrait > $outfile"

eval "$code"

foreach i ( 1 2 3 )
awk '$0 !~ /Station/ {print $4, $3}' $files[$i] | \

psxy -R -J -S${symb}${symsize} -W$colors[$i] $midplot $portrait >>
→˓$outfile

end

pslegend << END -R -J ${legscale} \
${legvals} $finalplot $portrait >> $outfile

H $headerfont 0 $header
S $legendoffset1 $symb $symsize - $colors[1] $legendoffset2

→˓$legendtext[1]
S $legendoffset1 $symb $symsize - $colors[2] $legendoffset2

→˓$legendtext[2]
S $legendoffset1 $symb $symsize - $colors[3] $legendoffset2

→˓$legendtext[3]

24.1. Displaying Point Data 199



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

END

Note that I broke up the command to create a variable holding the pscoast onto two lines to
make it more readable – you cannot put line breaks into variable definitions, so this is a better way
to handle long commands that need to be saved to a variable. Also note that I used a loop in calling
psxy to draw the stations on the map, using arrays to handle the parts of the variable that change
through the loop.

This plot involves several calls to GMT. I will describe them one at a time.

• The first call to pscoast draws the map outlines and gridlines. These should all be familiar
based on the last GMT lab. If not, refer back to the examples from the previous labs. We use
a new conic projection (the Albers Conic projection), which takes the same arguments as the
Lambert Conic projection that we used in the last lab.

• The next three calls read 𝑥-𝑦 data from text files containing station information for the CERI
New Madrid Seismic Zone Network. I use AWK to format the data to be used by psxy
(here just longitude and latitude coordinates for each station). The options for psxy were
discussed in the first GMT lab. Here we use triangles (-St6p) to plot stations (triangles are
often used on maps to represent seismic stations).

• The final command uses pslegend to draw a legend on the plot, giving the legend data
using standard input. pslegend takes several options. First are -R -J, which define the
region and map projection. After that, the -D option describes how to draw the legend on the
map. You can draw the legend either using map coordinates (degrees) or page measurement
units (inches, centimeters, etc.). Here I choose to use page units by prepending the x before
the measurements. The next four numbers give the 𝑥 and 𝑦 location (relative to the lower
left corner of the plot) and then the length and width of the legend box (GMT 5 requires you
prepend +w to designate the size of the box). Finally, the LB characters at the end describe the
reference point for the location measurements (LB means that the 𝑥 and 𝑦 location specified
in the call refer to the location of the lower left corner of the legend). GMT 5 requires that
you place a +j before these characters.

How to specify the style of the legend box is different between GMT 4 and GMT 5. For
GMT 4, -F1p,black says to draw a rectangular outline in black with a thickness of one
point (1/72 inch), and -Gwhite says to color the legend box white. GMT 5 requires this
information all go under the -F option with the format -F+gwhite+p1p,black.

The remaining options have been discussed previously.

After the command comes the legend text. Each line begins with a character describing the
meaning of the line, and then the details of how to draw that line. The first line begins with
H, which means that this line contains header text (the legend title). The text that follows (14
0 CERI NMSZ Network) means to write “CERI NMSZ Network” in font 0 (Helvetica)
with a size of 14 points.

The following three lines begin with S, meaning that they describe symbols to be draw in
the legend. the next 5 entries are 0.25i t 6p -$colors[1], which describe how to
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draw the symbol. This means: 0.25 inches from the left of the legend box (0.25i), draw a
triangle (t) with a size of 6 points (6p) with no fill (-) and a black outline ($color[1],
in this case black). After that comes another measurement unit and a text line: the text
will be displayed that distance from the left side of the legend box, so in this case the text
$legendtext[1] (“Broadband” in this case) is displayed 0.5 inches from the left side.
The other symbol lines are the same as the first one.

As you can see, legends are a bit tricky. If you have trouble getting the legend to display correctly,
you can always draw the symbols and text manually using psxy and pstext (a trick I use in
some of the examples below).

24.2 Displaying Point Data with Size and Color Data

Sometimes, we have point data that are not all uniform, and would like to display this information
using the size and color of the points. We can do this using GMT, as illustrated in the following
example, which produces the following plot of earthquake epicenters (gmt3_2.pdf):
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This file uses the earthquake catalog for Southern California for 1999 (1999.catalog), and is
produced with the following commands in GMT 4:

pscoast -R-122/-114/32/37 -JM5i -Dh -Gblanchedalmond -Sroyalblue1 \
-N1 -N2 -Ir -W -K -P > gmt3_2.ps

makecpt -Chot -I -T0/12/2 -Z -D > quake.cpt
awk '$0 == "" { next } $0 !~ /#|(year)/ { minus = match($8,/-/); \

print substr($8,minus)-$9/60, $7+substr($8,0,minus-1)/60, $12,
→˓$11*0.05 }' \

1999.catalog | psxy -R -J -Sc -Cquake.cpt -K -O -P >> gmt3_2.ps
psbasemap -R -J -Ba2g2/a1g1 -K -O -P >> gmt3_2.ps
psscale -Cquake.cpt -D2.5i/4.75i/5i/0.25ih -Al -B2:"Depth": -O -P >>

→˓gmt_2.ps

while in GMT 5, the commands are:
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gmt pscoast -R-122/-114/32/37 -JM5i -Dh -Gblanchedalmond -Sroyalblue1 \
-N1 -N2 -Ir -W -K -P > gmt3_2.ps

gmt makecpt -Chot -I -T0/12/2 -Z -D > quake.cpt
awk '$0 == "" { next } $0 !~ /#|(year)/ { minus = match($8,/-/); \

print substr($8,minus)-$9/60, $7+substr($8,0,minus-1)/60, $12,
→˓$11*0.05 }' \

1999.catalog | gmt psxy -R -J -Sc -Cquake.cpt -K -O -P >> gmt3_2.ps
gmt psbasemap -R -J -Bxa2g2 -Bya1g1 -K -O -P >> gmt3_2.ps
gmt psscale -Cquake.cpt -D2.5i/4.75i/5i/0.25i+h+jCT+m -Bx2+l"Depth": -

→˓O -P >> gmt_2.ps

Using the variable names defined in the shell script, the actual commands are:

pscoast -R${xmin}/${xmax}/${ymin}/${ymax} -JM$size -D$resolution -G
→˓$land -S$ocean \

$natbounds $rivers $continents $firstplot $portrait > $outfile
makecpt -C$cmap $cinv -T${cmin}/${cmax}/${cint} $cmapcontinuous

→˓$cmapoutliers > $cmapfile
awk '$0 == "" {next} $0 !~ /#|(year)/ {minus = match($8,/-/); \

print substr($8,minus)-$9/60, $7+substr($8,0,minus-1)/60, $12, $11*
→˓'"$symbscale"'}' \

$infile | psxy -R -J -S$symb -C$cmapfile $midplot $portrait >>
→˓$outfile

psbasemap -R -J $bvals $midplot $portrait >> $outfile
psscale -C$cmapfile $scalvals $bvalscmap $finalplot $portrait >>

→˓$outfile

This involves several new commands, plus some old ones used in a new way.

• pscoast does not involve anything new. See the previous lab notes if you do not understand
something.

• makecpt is a command to make a color palette to plot color data on a map. Here, we create
a color palette for plotting our earthquake based on their depth. GMT has several built-in
color scales (you can see the list by typing makecpt with no arguments into the command
line). I choose the “hot” scale by giving the -Chot option. However, we need to re-scale
the color scale to our data to use it in the plot, which is why we call makecpt. I give the
options I to invert the scale (I want shallow earthquakes to be yellow and deep to be black;
since depth is a positive quantity this is backwards), -Z to make the color scale continuous
(as opposed to discrete), and -D to set events that are off scale to be the maximum and
minimum colors in the colorscale.

The final option is -T0/12/2, which sets the minimum and maximum values in the color
scale range and the increment. The increment is unnecessary here because I chose a contin-
uous color scale, but if you want a discrete color scale this determines the number of colors.
You can also give -T a file containing all of the values in your data, and it will scale the
color palette to the maximum and minimum values in the dataset.
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The color palette is redirected to file as quake.cpt, which we will use in additional GMT
calls that follow.

• Next, we plot the data using psxy. Because we would like to set the color from the color
palette file, and we would like to scale the marker size by the event magnitude, I give 4
values to psxy (longitude, latitude, depth, and magnitude) using AWK to pull the data from
the file. This particular AWK program is a bit complicated because of the way the data is
formatted (there is no space between the latitude and longitude, so I need to use match and
substr to break the field into two parts). When you call psxy with four entries, then the
third defines the color and the fourth defines the size. Thus, my plot will show the epicenter
as a circle, where the size represents the event magnitude and the color represents depth.
Note also that I had to combine single and double quoting when writing my AWK program
so that $symbscale is correctly expanded to be fed into the AWK program, but the other
uses of $1, etc. are not owing to my use of quotes. If you are unsure as to why I have to do
this, review the notes for the first class on shell scripting.

The additional options on psxy are -R -J to use the preceding region and projection, -Sc
to draw the symbols as circles (note that I do not give a size so that GMT knows to use the
data columns to determine the size), -Cquake.cpt to use the color palette to color the
circles (note that I do not provide -G to fill the symbols, so GMT knows to use the data in
the input file to set the color), and -K -O -P for portrait mode and to append code to a
previous file, and to alert GMT that I will append more code to this plot.

• psbasemap should be familiar to you. I call it here so that the grid lines are overlaid on
the earthquake epicenters.

• psscale draws the colorbar on the figure. Options are: -Cquake.cpt says to use the
color palette from before, and the -D option tells GMT where to draw the colorbar. The
command is slightly different between GMT 4 and GMT 5. In both cases, the first two
numbers are the 𝑥 and 𝑦 distances from the lower left corner of the plot (relative to the center
top of the colorbar), then the next two are the width and height (GMT 5 requires the string
+w before them). So the colorbar is 2.5 inches to the right and 4.75 inches up from the
bottom left corner of the plot. GMT 5 requires that you specify the anchor point, which we
give using +jCT to ensure compatibility with GMT 4, where that location is the default.
The final h says to make a horizontal colorbar (default is vertical), and GMT 5 requires a +
before the h for it to be recognized properly.

-Al tells GMT to put the label on the opposite side of the colorbar in GMT 4. GMT 5 instead
appends a +m to the -D option. Default is to have both the labels and annotations on the bot-
tom side for a horizontal colorbar, and on the right for a vertical colorbar. -B2:"Depth"
or -Bx2+l"Depth" sets the annotation frequency and the label. The rest of the options
are ones you have seen before.

As this example shows, you can make very complicated plots using GMT, and have control over a
large number of details. Hopefully you get the idea of how all of this works so that you can modify
this code should you want to produce a map like this example.
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24.3 Earthquake Focal Mechanisms

Another common data type that seismologists often want to show on a map is an earthquake focal
mechanism. While the official GMT programs do not include a command to plot focal mecha-
nisms, others have developed a focal mechanism program (psmeca) that is now included with the
other GMT commands. psmeca can plot focal mechanisms in a variety of formats. Here, I show
you examples of two of them in the plot gmt3_3.pdf created by the shell script.
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These are the focal mechanisms of magnitude 5 and greater earthquakes starting with the 2011
𝑀 = 9 event off of Japan and continuing for 3 months after the event. Here is the code to produce
the plot, using the file japancmt2011.txt:

pscoast -R137/147/34/42 -JM5i -B2 -Gbisque -Sskyblue -Df -K -P > gmt3_
→˓3.ps

psmeca japancmt2011.txt -R -J -Sm0.15i -K -O -P >> gmt3_3.ps
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pslegend << END -R -J -Dx0.25i/3.75i/1.05i/1.05i/LB -F1p,black -Gwhite
→˓\

-K -O -P >> gmt3_3.ps
G 0.04i
S 0.25i c 1p - white 0.4i M = 9
G 0.11i
S 0.25i c 1p - white 0.4i M = 7
G 0.11i
S 0.25i c 1p - white 0.4i M = 5
END
psmeca << END -R -J -Sc0.15i -O -P >> gmt3_3.ps
138 41.3 0 180 90 0 90 90 0 4 29 138 41.3
138 40.8 0 180 90 0 90 90 0 4 26 138 40.8
138 40.3 0 180 90 0 90 90 0 4 23 138 40.3
END

And for GMT 5, the commands are:

gmt pscoast -R137/147/34/42 -JM5i -Bx2 -By2 -Gbisque -Sskyblue -Df -K -
→˓P > gmt3_3.ps

gmt psmeca japancmt2011.txt -R -J -Sm0.15i -K -O -P >> gmt3_3.ps
gmt pslegend << END -R -J -Dx0.25i/3.75i+w1.05i/1.05i+jLB -

→˓F+gwhite+p1p,black \
-K -O -P >> gmt3_3.ps

G 0.04i
S 0.25i c 1p - white 0.4i M = 9
G 0.11i
S 0.25i c 1p - white 0.4i M = 7
G 0.11i
S 0.25i c 1p - white 0.4i M = 5
END
gmt psmeca << END -R -J -Sc0.15i -O -P >> gmt3_3.ps
138 41.3 0 180 90 0 90 90 0 4 29 138 41.3
138 40.8 0 180 90 0 90 90 0 4 26 138 40.8
138 40.3 0 180 90 0 90 90 0 4 23 138 40.3
END

where I have used variables to make the original commands the following:

pscoast -R${xmin}/${xmax}/${ymin}/${ymax} -JM$size $bvals -G$land -S
→˓$ocean -D$resolution $firstplot $portrait > $outfile

psmeca $infile -R -J -Sm$m5size $midplot $portrait >> $outfile
pslegend << END -R -J $legscale $legvals $midplot $portrait >> $outfile
G $legendvoffsets[1]
S $legendhoffsets[1] $legendsymb $legendsymsize - $legendbackground

→˓$legendhoffsets[2] $legendlabels[1]
G $legendvoffsets[2]

206 Chapter 24. Generic Mapping Tools 3



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

S $legendhoffsets[1] $legendsymb $legendsymsize - $legendbackground
→˓$legendhoffsets[2] $legendlabels[2]

G $legendvoffsets[2]
S $legendhoffsets[1] $legendsymb $legendsymsize - $legendbackground

→˓$legendhoffsets[2] $legendlabels[3]
END
psmeca << END -R -J -Sc$m5size $finalplot $portrait >> $outfile
$legendmecx $legendmecy[1] $legenddep $legendmec $legendmantissa

→˓$legendexp[1] $legendmecx $legendmecy[1]
$legendmecx $legendmecy[2] $legenddep $legendmec $legendmantissa

→˓$legendexp[2] $legendmecx $legendmecy[2]
$legendmecx $legendmecy[3] $legenddep $legendmec $legendmantissa

→˓$legendexp[3] $legendmecx $legendmecy[3]
END

The commands do the following:

• pscoast should be familiar to you. There is nothing new here.

• psmeca reads focal mechanism information from the file japancmt2011.txt. The file
is already in the appropriate format, so I do not need to use AWK to reformat. In this case,
the format is

lon lat dep mrr mtt mpp mrt mrp mtp exp lon1 lat1 text

where the fields have the following meaning: event longitude, event latitude, event depth,
6 component trace-free moment tensor in Harvard CMT format, plus an exponent (assumes
seismic moment is in dyne-cm), then the latitude and longitude location for the symbol (I use
the same location as the event), and an optional text tag. If you give a location that differs
from the event location, the event location will be shown with a small dot that is connected
to the beach ball by a line. This is one of the standard formats that you can download from
the web (you will use this format to plot focal mechanisms in the homework).

The other options in psmeca should be familiar with the exception of -Sm0.15i. This
option tells psmeca the format for the focal mechanisms (the m specifies the format the I
just described), and the size (0.15i corresponds to the size of a 𝑀 = 5 event). If you want
all events to have the same-sized beach ball, use the -M option.

• Next, I use pslegend to make a legend, where I will illustrate how the size corresponds
to magnitude. Since psmeca is not an official GMT program, there is not an option within
pslegend to draw a focal mechanism. Therefore, I will just plot a legend with no sym-
bols, and draw my own symbols using psmeca. The syntax here is mostly identical to the
previous use in the first example. The only difference is my use of the G option in the legend
text. G 0.04i tells GMT to put a vertical gap of 0.04 inches into the legend, and I use this
to get my text lined up with the focal mechanisms that I am about to draw. the S lines give
the “symbols” that I wish to draw, but since I use a white pen on a white background, the
symbols do not show up and I can just add the desired text to the legend in the desired place.
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• Finally, I call psmeca again to place focal mechanisms on the legend. This time I use
the format where I specify the two nodal planes using strike, dip, and rake for each plane
(-Sc0.15i specifies this format), followed by the mantissa and exponent of the moment
in dyne-cm. Since these are only supposed to be representative of size, I draw pure strike-
slip mechanisms for each (strike of 180∘ and 90∘, dip and rake of zero in both cases). The
moments are chosen to give magnitudes 9, 7, and 5 for the three representative symbols. The
other entries (latitude, longitude, depth, and plot position) are the same for all formats. Other
options for psmeca should be familiar from the discussion above.

24.4 GPS Velocity Vectors with Errors

The final type of point data that we consider in this lab is GPS velocities. GMT has another
supplemental program psvelo for plotting velocity vectors and error ellipses. Using the file
pbo_velocities.txt, the shell script will produce the following plot:

−125˚

−125˚

−124˚

−124˚

−123˚

−123˚

−122˚

−122˚

47˚ 47˚

48˚ 48˚

49˚ 49˚

ALBHALBH

BLYNBLYNBLYN

KTBW

NEAHNEAH

P064

P399

P400P400

P401

P402P402

P403

P418

P419

P423

P424P424 P426

P430

P435P435P435 P436
P437

P438

P439

P440P440P440
P441

PABHPABHPABHPABH
PCOL

PUPUPUPUPUPUPUPUPUPU

SC02

SC03

SC04

SEATSEATSEAT

SEDRSEDRSEDR

TWHLTWHLTWHL

10 mm/yr

208 Chapter 24. Generic Mapping Tools 3



Course Notes for Data Analysis in Geophysics Documentation, Release 1.0

The GMT 4 code for this plot is:

pscoast -R-125/-122/47/49 -JT-123.5/48/5i -B1 -Df -Gblanchedalmond \
-Sskyblue -W -K -P > gmt3_4.ps

awk '/^ [0-9A-Z]{4}/ {print $9, $8, $21, $20, $24, $23, $26, $1 }' \
pbo_velocities.txt | psvelo -R -J -Se30i/0.95/10 \
-W -K -O -P >> gmt3_4.ps

pslegend << END -R -J -Dx0.25i/4.35i/1i/0.4i/LB -F1p,black -Gwhite \
-K -O -P >> gmt3_4.ps

G 0.05i
L 10 - LB 10 mm/yr
END
psvelo << END -R -J -Se30i/0.95/10 -W -O -P >> gmt3_4.ps
-124.475 48.825 0.00707 0.00707 0 0 0
END

and the GMT 5 code is:

gmt pscoast -R-125/-122/47/49 -JT-123.5/48/5i -Bx1 -Bx2 -Df -
→˓Gblanchedalmond \

-Sskyblue -W -K -P > gmt3_4.ps
awk '/^ [0-9A-Z]{4}/ {print $9, $8, $21, $20, $24, $23, $26, $1 }' \

pbo_velocities.txt | gmt psvelo -R -J -Se30i/0.95/10 \
-W -K -O -P >> gmt3_4.ps

gmt pslegend << END -R -J -Dx0.25i/4.35i+w1i/0.4i+jLB -F+gwhite+p1p,
→˓black \

-K -O -P >> gmt3_4.ps
G 0.05i
L 10 - LB 10 mm/yr
END
gmt psvelo << END -R -J -Se30i/0.95/10 -W -O -P >> gmt3_4.ps
-124.475 48.825 0.00707 0.00707 0 0 0
END

and finally, the version with variables is:

pscoast -R${xmin}/${xmax}/${ymin}/${ymax} -JT${clon}/${clat}/$size
→˓$bvals -D$resolution -G$land \

-S$ocean -W $firstplot $portrait > $outfile
awk '/^ [0-9A-Z]{4}/ {print $9, $8, $21, $20, $24, $23, $26, $1}' \

$infile | psvelo -R -J -Se${veloscale}/${err}/${velofontsize} \
-W $midplot $portrait >> $outfile

pslegend << END -R -J $legscale $legvals $midplot $portrait >> $outfile
G 0.05i
L $velofontsize - $legendjust $velolabel
END
psvelo << END -R -J -Se${veloscale}/${err}/${velofontsize} -W

→˓$finalplot $portrait >> $outfile
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$velolegendx $velolegendy $velolegendcomp $velolegendcomp 0 0 0
END

Here are the details of the commands:

• pscoast involves a new projection, the Transverse Mercator. Unlike the standard Merca-
tor, you need to provide a central longitude (and optionally a central latitude) to define the
projection. This is done by the command -JT-123.5/48/5i. Otherwise there is nothing
new.

• Next is our first call to psvelo The format for input to psvelo is

lon lat Nvel Evel Nerr Eerr NEcor text

The entries indicate the location of the station, the north velocity component, the east ve-
locity component, the north velocity error (1 sigma), the east velocity error (1 sigma), the
correlation between the north and east components, and the optional text representing the
station name.

There are other input formats that are possible (you select the format with the -S option).
Here we give -Se30i/0.95/10 as the format: the e selects the format detailed above,
30i gives the length scale for the vectors, 0.95 gives the desired error ellipse meaning
(95% confidence bounds in this case), and the final 10 is the size of the text label in points.

I use AWK to reformat the file and pipe the result into psvelo. All of the columns that
I need exist in the file, so the AWK program is straightforward other than the regular ex-
pression to find a pattern matching station names (line must start with a space followed by 4
alphanumeric characters) and just reprints the information in the correct order.

The other options in psvelo are common ones that we have seen previously.

• Next we create the legend box and text using pslegend. The arguments are the same as
above so I will not go into detail explaining them. We do use a new type of legend string,
L, which just prints a text string in the legend. The arguments are font size, font name (-
means use the default font), and LB describes the justification of the text to be left and bottom
aligned. The text is 10 mm/yr, which is the length of the reference velocity vector that I give
in the final command.

Note: it is possible to draw vectors using an S entry in pslegend. However, I always find
it tricky to get the length correct to correspond with the scale of the other arrows since you
have to specify the length of the vector in the pslegend command. By using psvelo to
draw the reference arrow, GMT can calculate the length of the vector for me, and I just have
to arrange it where I want it in the legend using the latitude and longitude values.

• Finally, we plot the reference velocity vector on the legend. I chose a reference velocity
of 10 mm/yr, and I want the vector to be oriented 45∘ from horizontal. Thus, since my
other velocities are in m/yr, I give the velocity components of (0.00707,0.00707) (or each
component has a length of 0.01/

√
2), which has a magnitude of 0.01. I do not provide label
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text, as I provided my own when I called pslegend. I do not need an error ellipse for this
vector, so I set the uncertainty and correlation to zero.

24.5 Exercises

If you understand how all of these examples work, you will have a nice base of GMT scripts to use
to create maps with data for yourself. There are also many, many examples that others have freely
shared on the web, so take advantage of them. To get comfortable changing these examples, come
up with your own tweaks, or try some of these.

• Change the projection.

• Change the annotations and grid lines.

• Change the color of the continents and oceans.

• Change the symbols that are plotted (for a list see the psxy manual page).

• Try a different built-in color scale (type makecpt to see them).

• Change the options on the color scale (limits, continuous vs. discrete, invert the color scale
etc.).

• Change the scale of the symbols (either the earthquake epicenter sizes, the focal mechanisms
sizes, or the velocity vector lengths), or make the focal mechanisms all the same size.

• Change the region for the GPS velocity plot (the data file contains stations throughtout the
US, so you will see velocity vectors for most parts of the US).
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CHAPTER
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GENERIC MAPPING TOOLS 4

This final GMT lab will look at plotting grid-based data on maps, which can be a bit more com-
plicated than plotting point-based data. With the increase in availability of densely sampled, high
quality geophysical datasets, knowledge of how to plot and display grid-based data in GMT is an
essential skill for any geophysicist.

25.1 ASCII Data

The first example uses a dataset containing ASCII data of the geometry of the Alaskan sub-
duction zone. You will need to either copy this file from my public folder into your working
directory, modify the shell script to include the full path to its location in my public folder
(/gaia/home/egdaub/Public/dataanalysis/alu_slab1.0_clip.xyz), or
download it from the USGS site. This is the first plot (gmt4_1.pdf) produced by the shell script
(gmt4.csh):
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Here are the commands (GMT 4):
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xyz2grd alu_slab1.0_clip.xyz -Galaskaslab.grd -R167/216/50/62 -I0.02
grd2cpt alaskaslab.grd -Chot -Z > alaskaslab.cpt
grdimage alaskaslab.grd -Calaskaslab.cpt -R -JM5i \

-Q -K -P > gmt4_1.ps
grdcontour alaskaslab.grd -C30 -J -R -Wdarkgray -A- -K -O -P \

>> gmt4_1.ps
pscoast -R -J -B10/4 -W -Di -Ir -N1 -K -O -P >> gmt4_1.ps
psscale -D1.5i/1.5i/2.5i/0.25ih -Al -Calaskaslab.cpt \

-B50:"Slab Depth (km)": -O -P >> gmt4_1.ps

and for GMT 5, this is:

gmt xyz2grd alu_slab1.0_clip.xyz -Galaskaslab.grd -R167/216/50/62 -I0.
→˓02

gmt grd2cpt alaskaslab.grd -Chot -Z > alaskaslab.cpt
gmt grdimage alaskaslab.grd -Calaskaslab.cpt -R -JM5i \

-Q -K -P > gmt4_1.ps
gmt grdcontour alaskaslab.grd -C30 -J -R -Wdarkgray -A- -K -O -P \

>> gmt4_1.ps
gmt pscoast -R -J -Bx10 -By4 -W -Di -Ir -N1 -K -O -P >> gmt4_1.ps
gmt psscale -D1.5i/1.5i+w2.5i/0.25i+h+jCT+m -Calaskaslab.cpt \

-Bx50+l"Slab Depth (km)" -O -P >> gmt4_1.ps

with the commands given in the shell script being:

xyz2grd $infile -G$gridfile -R${xmin}/${xmax}/${ymin}/${ymax} -I
→˓$gridspace

grd2cpt $gridfile -C$cmap $cmapcont > $cptfile
grdimage $gridfile -C$cptfile -R -JM$size \

$masknan $firstplot $portrait > $outfile
grdcontour $gridfile -C$contourint -J -R -W$contourcolor -A

→˓$contourlabel $midplot $portrait \
>> $outfile

pscoast -R -J $bvals -W -D$resolution $rivers $natbounds $midplot
→˓$portrait >> $outfile

set code = "psscale $scalvals -C$cptfile $bvalscbar $finalplot
→˓$portrait >> $outfile"

eval "$code"

This plot introduces several new commands, which I describe below.

• xyz2grd is a command that translates an ASCII file (or binary) containing grid-registered
data into a GMT grid file. It requires the arguments given in this command, namely a file
from which to read, a destination file to write the gridded data (-Galaskaslab.grd),
the -R flag to specify the extent of the data, and the -I flag, which specifies the sampling
interval of the grid (in this case, the file is sampled at 0.02 degrees). All of these arguments
are required.
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• grd2cpt then takes the grid file and sets up a color palette for plotting the data. This
works in a manner similar to makecpt that we saw in the previous lab, but uses the limits
of the grid file to determine the color scale (rather than the way I manually set the limits
in the example from the last lab). The command takes the grid file as an argument, -Chot
specifies the color scale, and -Zmakes the colorscale continuous. The resulting color palette
file is written to alaskaslab.cpt.

• Now I begin doing the actual map plotting. I would like the coastlines to act as an overlay
on the subduction geometry, so I use grdimage to display the color scaled image first.
grdimage takes several arguments, most of which should be familiar to you:

– First is the grid file, alaskaslab.grd

– -Calaskaslab.cpt defines the color palette used to display the data

– -R specifies the region, which is the same as the previous use of -R

– -JM5i sets the projection

– -Q is a new option. For this example, we have a grid file that is defined over a region
that is larger than the range of the actual data. To distinguish between data points and
non-data points, the non-data points have NaN as the entry. Each color palette has a set
color that it uses to display NaN values. Here, I do not want the NaN values to display
any color, because I would like to see the map coastlines that I will plot later. The -Q
option makes the NaN values transparent, and they will not show up in the final image.

– -K says that more commands are to follow, and -P sets portrait mode. Output is then
written to file.

• Next, we use grdcontour to draw contour intervals on the color image. The options for
grdcontour are as follows:

– First, we give the grid file, alaskaslab.grd

– -C30 defines the contour interval to be 30 km. Alternatively, if you have a discrete
color palette, you can call the -C option with the cpt file and the contour intervals will
be set by the color intervals in the color palette file.

– -J -R are the usual projection and region options

– -Wdarkgray sets the pen used to draw the contour lines

– -A- means that I do not want the contours labeled (I will put a colorbar on the plot
later to show the values)

– -K -O -P have their usual meanings, and output is appended to the file

• pscoast draws the coastlines. This command does not contain any new options.

• psscale draws the colorbar. I have not used any new options here, so if you are unsure of
this command, refer back to the notes for the previous class.
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As you can see, dealing with gridded data usually involves some additional commands to set
everything up before plotting the data.

25.2 Topographic Data

We might expect that there are certain types of data that are likely to be needed by all users of
GMT, such as topography and bathymetry data. These types of data are often added to plots in
addition to the data in question, as it makes plots look nice and makes them easier to interpret.
Because these datasets are also quite large as they are often defined for the entire globe, it makes
sense to have them available in one central location that is readable by GMT so that each user does
not have to obtain a duplicate copy.

There are a number of such datasets available in the Mac Lab. To see what is available, type
grdraster (gmt grdraster for GMT 5) into the command prompt. You will see something
like this (you may need to scroll up to see this):

# Data Description Unit Coverage
→˓Spacing Registration

-----------------------------------------------------------------------
→˓------------------

1 "ETOPO5 global topography" "m" -R0/359:55/-89:55/90 -I5m
→˓ GG

2 "US Elevations from USGS" "m" -R234/294/24/50 -I0.5m
→˓ PG

This will be followed by a number of other datasets. These are the sets available to you thanks to
your friendly system administrators, who went to the trouble of finding, downloading, and setting
them up for you. This tells us some of the details of each of these files. The first one is “ETOPO5
global topography” which gives the meters of elevation (negative values for bathymetry) over a
grid from 0∘ to 359.55∘ and −89.55∘ to 90∘ with a spacing of 5 minutes, and the GG means the
data is grid-registered with geographic coordinates (i.e. values are given for every grid point rather
than a pixel value, and the registration of the grid values in the file are in geographic, rather than
cartesian order, meaning longitude varies first).

To use these files, we use the grdraster command, followed by the file number, and then the
other options that are similar to xyz2cpt above and write the data to a grid file. We can then
display the data using the grdimage command as it was used above.

If you want to install GMT on your own computer, then you will need to install these databases
yourself, as they do not come with GMT. All of the data is freely available, so as long as
you can find the datasets online, download them, and configure the grid information file, you
should be able to use the following GMT commands on your own machine without any prob-
lems. However, it is even easier to just copy the files off of the Mac Lab computers and into
the appropriate directory in your GMT installation. In the Mac Lab, the GMT databases live
in /usr/local/GMT4.5.7/share/dbase/ (you will need to use a terminal to see them).
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That directory contains the databases, plus a grid information file grdraster.info that con-
tains information about them. You need to copy any datafiles that you want to use (note: some of
these files are very large, meaning you may need to bring a portable hard drive to copy them), plus
the grdraster.info file to the directory /<path_to_GMT>/share/dbase/ on your own
computer. (Note: I am not sure how these data files work on Windows.) You are of course free to
find your own gridded data to use with GMT in this way, and as more and more high resolution
geophysical data becomes available you will no doubt want to use some of it in GMT to produce
maps.

25.3 Topographic Shading

However, if we go ahead and display one of these topographic gridfiles using grdimage, we get
something like this:

While this looks nice, it is not clear what this is topographically, since we do not have a color scale.
This is because our brains are used to looking at topographic maps that are illuminated to help us
interpret the topography. However, as with most things where we implicitly fill in the details,
this means our brains can play tricks on us. Take the following two images of the same terrain,
illuminated differently:
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Can you tell what kind of terrain this is? It looks different on the left versus on the right, because
one of them is illuminated in a way that you are not used to. The left image is illuminated from the
top, while the right image is illuminated from the bottom, and usually these types of images are
illuminated from the north (or an angle close to that of north).

Unfortunately, by illuminating we lose some of the quantitative information on altitude (particu-
larly for grayscale images) even if the light and shadows help our brain interpret the image. Thus,
the best option is usually to combine both color and illumination. Here is the color version of the
image illuminated from the north, side by side with the non-illuminated version:
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As you can see, the shading helps your brain interpret the topography, and by keeping the color
scale, we can better determine which areas are high and which areas are low.

25.4 Making a Shaded Topographic Plot

How do we make shaded plots? Here is an example showing how it is done (the resulting file is
gmt4_2.pdf):
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And the code for this plot is as follows for GMT 4:

grdraster 11 -R-110/-104/35/39 -I0.5m -Gfctopo.grd
grd2cpt fctopo.grd -Cgray > fctopo.cpt
grdgradient fctopo.grd -A345 -Gfctopo.intns -Ne0.6
grdimage fctopo.grd -Ifctopo.intns -Cfctopo.cpt -R -JM5i \

-K -P > gmt4_2.ps
pscoast -R -J -B1 -Dh -Na -Ir -P -O >> gmt4_2.ps

In GMT 5, the same plot is produced using:

gmt grdraster 11 -R-110/-104/35/39 -I0.5m -Gfctopo.grd
gmt grd2cpt fctopo.grd -Cgray > fctopo.cpt
gmt grdgradient fctopo.grd -A345 -Gfctopo.intns -Ne0.6
gmt grdimage fctopo.grd -Ifctopo.intns -Cfctopo.cpt -R -JM5i \

-K -P > gmt4_2.ps
gmt pscoast -R -J -Bx1 -By1 -Dh -Na -Ir -P -O >> gmt4_2.ps

Using the variables defined in the shell script, the actual code is:
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grdraster $datasetno -R${xmin}/${xmax}/${ymin}/${ymax} -I$grdinterval -
→˓G$gridfile

grd2cpt $gridfile -C$cmap > $cptfile
grdgradient $gridfile -A$intnsdirection -G$intnsfile -N$intnsnorm
grdimage $gridfile -I$intnsfile -C$cptfile -R -JM$size \

$firstplot $portrait > $outfile
pscoast -R -J $bvals -D$resolution $natbounds $rivers $finalplot

→˓$portrait >> $outfile

These commands do the following:

• grdraster turns the data file into a grid file that GMT uses for plotting. The first argument
is 11, which is saying that I want to use file number 11 (ETOPO30s which is global land
topography sampled every 30 seconds – type grdraster with no arguments to see the
different files available). Following that, we have three required arguments: -R to define the
desired region, -I0.5m to determine the grid resolution, and -Gfctopo.grd to specify
the destination grid file name.

• grd2cpt sets the color palette to the range of values in the data. Its use is the same as
above (save for a few options that I chose not to use this time).

• grdgradient is used to calculate the gradient of a grid in a particular direction, and one
of its uses is to calculate the intensities for the topographic illumination. It takes a grid
file as its input, and the -A345 option selects the direction in which to take the gradient
(relative to degrees north, clockwise positive). Here I pick an angle 15∘ from north (345∘).
-Gfctopo.intns sets the output intensity file (really just a grid file, but I like to use
.intns to remind me that the file is normalized for adding illumination).

The final option is -Ne0.6, which tells GMT how to normalize the calculated gradient. If I
wanted the true gradient, then I would not call this option. For doing illumination, we need
the gradient to be in the range (−1, 1), as it determines how much to lighten or darken the
colors relative to their color value. The option -Ne0.6 says to normalize the gradient such
that the maximum value is ±0.6, and to have the intensities follow a cumulative Laplace
distribution. There are additional distributions and parameters that you can use when calling
grdgradient (I have found this option produces plots that look nice, but feel free to try
different distributions or parameters if you would like a different effect).

• grdimage plots the grid file. As before, we give it a color palette (-C), and region
and projection information (-R -JM5i). The intensity for illumination is specified by
-Ifctopo.intns. -K -P have their usual meaning.

• The final command is pscoast to draw the international and national borders, plus I color
the rivers blue. Output is appended to the file gmt4_2.ps.
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25.5 Merging Datasets

What if the last map had included an ocean area? The ETOPO30s dataset only covers continental
areas, but what if we wanted to show an oceanic area’s bathymetry? GMT contains tools to com-
bine and merge datasets, which allows you to show high resolution topography on land and lower
resolution bathymetry in the oceans on the same plot. While you can do this using transparency,
the best way to do this is to merge the two datasets. This allows you to produce plots showing both
topography and bathymetry (gmt4_3.pdf):
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The code to create this plot includes the following commands (GMT 4):

grdraster 11 -R-90/-45/-60/-30 -I0.5m -Gpattopo.grd
grdraster 10 -R -I2m -Gpatbath.grd
grdsample patbath.grd -I0.5m -Gpatbathinterp.grd
grdmath pattopo.grd patbathinterp.grd AND = pattopobath.grd
makecpt -Crelief -Z > pattopo.cpt
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grdgradient pattopobath.grd -A330 -Gpattopo.intns -Ne0.6
grdimage pattopobath.grd -Ipattopo.intns -Cpattopo.cpt -R \

-JM5i -K -P > gmt4_3.ps
pscoast -R -B15 -J -W -N1 -O -P >> gmt4_3.ps

For GMT 5, the commands are:

gmt grdraster 11 -R-90/-45/-60/-30 -I0.5m -Gpattopo.grd
gmt grdraster 10 -R -I2m -Gpatbath.grd
gmt grdsample patbath.grd -I0.5m -Gpatbathinterp.grd
gmt grdmath pattopo.grd patbathinterp.grd AND = pattopobath.grd
gmt makecpt -Crelief -Z > pattopo.cpt
gmt grdgradient pattopobath.grd -A330 -Gpattopo.intns -Ne0.6
gmt grdimage pattopobath.grd -Ipattopo.intns -Cpattopo.cpt -R \

-JM5i -K -P > gmt4_3.ps
gmt pscoast -R -Bx15 -By15 -J -W -N1 -O -P >> gmt4_3.ps

Within the shell script, this is called as:

grdraster $topofileno -R${xmin}/${xmax}/${ymin}/${ymax} -I
→˓$topogrdinterval -G$topofile

grdraster $bathfileno -R -I$bathgrdinterval -G$bathfile
grdsample $bathfile -I$topogrdinterval -G$bathfileinterp
grdmath $topofile $bathfileinterp AND = $mergedfile
makecpt -C$cmap $cmapcont > $cptfile
grdgradient $mergedfile -A$intnsdirection -G$intnsfile -N$intnsnorm
grdimage $mergedfile -I$intnsfile -C$cptfile -R \

-JM$size $firstplot $portrait > $outfile
pscoast -R $bvals -J -W $natbounds $finalplot $portrait >> $outfile

Here are the details on these commands:

• The first two commands call grdraster as above. The first call to grdraster uses the
same land-based ETOPO30s dataset that we used above, which is sampled at 30 second
intervals. The second call to grdraster uses dataset 10, which is a global 2 minute
sampling rate topography/bathymetry dataset (type grdraster for more information on
this dataset). We choose the same region for both, and sample both datasets at their full
resolution (to sample the data at a lower rate, you can change the sampling rate on the -I
option).

• The two grid files need to be merged, but first we must fix the fact that they are sampled at a
different rate. This is done using grdsample, which resamples a dataset to the desired grid
spacing. We choose to resample the bathymetry dataset to match the higher resolution of the
land topography dataset. The sampling interval is set by the flag -I0.5m to 30 seconds so
that the data sampling rate matches between the two datasets.

If the new sampling rate is chosen to be higher than the previous sampling rate, grdsample
interpolates. If the new sampling rate is more coarse than the existing data, it desamples the
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data (i.e. it simply takes every 𝑛th point, without applying an anti-aliasing filter, so take care
when desampling data that varies at a high rate).

• The next command merges the two datasets using the grdmath command. grdmath does
mathematical operations on datasets, using what is known as Reverse Polish Notation, or
RPN. RPN puts the operator after the operands, using what is known as a “stack” to hold
results. When using an unary operator, the operation is applied to the first item in the stack,
and leaves the result in the first position on the stack. When using a binary operatory, the
operation is applied to the first two items in the stack, and leaves the result in the first position
on the stack (if there were any items higher up in the stack, they are shifted down a position).
Array math is done element-by element (i.e. you cannot do matrix multiplication using
grdmath, only element-by-element array multiplication).

For example, if you have one grid file that you would like to take the additive inverse of (the
NEG operator), then you would enter the following:

grdmath a.grd NEG = b.grd

This would write the additive inverse of the data in a.grd to the grid file b.grd. To add
two grid files, use the ADD operator and put the two grid files on the stack:

grdmath a.grd b.grd ADD = c.grd

This will write the sum of the two grids to a third grid file. For our case, we need to use the
AND operator. AND is a binary operator, which keeps the result in the first grid file, unless
that file contains a NaN, in which case the operation keeps the result in the second grid file.
Because all of the oceanic areas are NaN entries in our ETOPO30s data, we can replace the
NaNs on the oceans with the bathymetry data from the second dataset. Thus, the resulting
command is:

grdmath pattopo.grd patbathinterp.grd AND = pattopobath.grd

The result is written to the file pattopobath.grd, which we then use to plot our data.

• makecpt creates the color palette for displaying the data. I set -Crelief to use the
“relief” color palette, and since it is already scaled for use with topography and bathymetry,
I use it as is without modifying the limits. My only change is to make it continuous using
-Z.

• grdgradient calculates the gradient and normalizes so that we can use the intensities to
illuminate our plot. The options are the same as above.

• Next, we use grdimage to plot the topographic data on our map. The command syntax is
discussed above, and does not use anything new.

• Finally, we draw the coastlines and boundaries. There is nothing new here, either.

The end result is a map showing both topography and bathymetry. You can also illuminate and
shade the bathymetry and topography from slightly different directions, then merge the two insten-
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sity datasets in a similar fashion as the grid merging example above. This will make the final file
look a little bit different, though I think the example above with a single illumination direction is
just fine and do not see the need to go to extra trouble.

25.6 Miscellaneous GMT

25.6.1 Setting GMT Defaults and Parameters

GMT lets you specify absolutely any detail that you wish for your plots. As you have seen, there
are many details that you specify with various command options. However, there are even more
details, such as default line styles, default font names and sizes, default tick mark lengths, and on
and on and on. There are several ways to set these parameters.

If you recall back to our labs on MATLAB, there were two commands to query and specify the
style of plots: get and set. get allowed you to see the value of a particular option, while set
allowed you to change a particular option. GMT has a similar syntax for querying and setting
parameter values, using the commands gmtget and gmtset. These work in much the same
way as the equivalent MATLAB commands. For a list of options, enter gmtdefaults into the
terminal, or see the manual page for gmt.conf.

Alternatively, you can save default GMT values a file called gmt.conf in your working directory,
home directory, or in the ~/.gmt/ directory that contains configuration options for GMT. If you
do not have a gmt.conf file in your current directory, you can create one by typing gmtset -D
into the terminal, or by setting a parameter value. The one in the current working directory always
takes precedence, so you may want to keep a set of defaults in your home directory, but override
the defaults in a working directory for a particular project.

25.6.2 Converting PostScript to Other Formats

Once you have created a nice GMT map, you may need to save it to a different format for use
in a paper or presentation. While the Preview application on the Mac is able to do this, you can
also convert formats on the command line using the psconvert command that is included with
GMT. We have in fact been using this to convert files to PDF in all of the shell scripts, so this isn’t
the first time we have come across this command, but here I provide a bit more detail of what it
does. psconvert uses Ghostscript to convert between file formats. An example usage to convert
a PostScript file to PDF would be:

psconvert -A0.1i -Tf gmt4_1.ps

The flag -A0.1i means to crop the file with a border of 0.1 inch (leaving the border size blank
crops it using a tight bounding box, I usually like to add a bit of a cushion and find 0.1 inches is a
good number), and -Tf sets the output format to PDF. For other output formats (there are several),
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see the manual. If you are converting to a raster format like PNG or TIFF, the -E option lets you
specify a resolution; -E300 will save as 300 dpi.

25.7 Exercises

If you understand how all of these examples work, you will have a nice base of GMT scripts to use
to create maps with data for yourself. There are also many, many examples that others have freely
shared on the web, so take advantage of them. To get comfortable changing these examples, come
up with your own tweaks, or try some of these.

• Change the projection.

• Change the annotations and grid lines.

• Change the color palette.

• Change the illumination direction.

• Try a different built-in dataset (type grdraster to get more information on them).

• Change the options on the color scale (continuous vs. discrete, invert the color scale etc.). If
you want to set the limits yourself, use makecpt with the -T option (see the previous lab).

• Change the grid resolution either using grdsample to resample the data or by using the
-I option when calling grdraster.

• Change the region for one of the topography plots.
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