
Separating Signal from Noise and from Other Signal

Using Nonlinear Thresholding and Scale-Time Windowing

of Continuous Wavelet Transforms

by Charles A. Langston and Seyed Mostafa Mousavi

Abstract A procedure for removing noise or signal from seismic time series using
the continuous wavelet transform (CWT) is developed through the common assumption
of noise stationarity for pre-event or postevent estimates of the noise. Noise and signal
are efficiently separated using nonlinear thresholding of the CWT avoiding computa-
tionally intensive block thresholding algorithms on the wavelet scale-time plane.
Efficiency is gained by estimating the characteristic statistics of pre-event noise using
empirical cumulative distribution functions and then using these characteristics to
threshold the entire time series using hard or soft nonlinear thresholding. In addition,
scale-time windowing of the CWT scalogram and inverse transforming into the time
domain allows unprecedented control in partitioning a seismogram into component
wave types that can subsequently be used to infer characteristics of Earth structure and
source excitation. Noise can be separated from signal and signals decomposed into dis-
crete wave groups. CWT techniques offer unique and intuitive alternatives to traditional
Fourier methods for analyzing noise and signal useful for structure and source studies,
event detection, and ambient-noise interferometry.

Introduction

The separation of noise from signal remains a funda-
mental problem in seismic analysis. Recently, we have inves-
tigated a number of different ways to determine noise and
signal using time–frequency representations (TFRs) of seis-
mic signals (Mousavi and Langston, 2016a, 2016b, 2017;
Mousavi et al., 2016). The basic idea behind all techniques
involves manipulation of 2D mapping in which the location
of a “signal” is discriminated from “noise” on a plane con-
sisting of complex amplitudes determined from the transform
of seismic data. A common transform is the short time-win-
dow Fourier transform (STFT), but other transforms such as
the continuous wavelet transform (CWT; Grossmann et al.,
1989; Starck et al., 2010) and the synchrosqueezed CWT
(SS-CWT; Daubechies and Maes, 1996; Daubechies et al.,
2011) may represent the time-series data in more compact
form. The STFT is the basis for the common spectrogram in
which short running time windows of the data are Fourier
transformed and then the amplitude or power spectra are
plotted as a function of time. The CWT may be implemented
with a choice of different wavelet functions with wavelet
coefficients at different scales being plotted against time.
The SS-CWT represents another processing step in which
the CWT is modified by assigning the energy of closely adja-
cent wavelet coefficients to ridges in the CWT time-scale
map. Both the CWT and the SS-CWT can be manipulated

to represent the seismic signal (and the noise) by a smaller
number of transform coefficients.

One theme that occurred within these studies was the
issue of algorithm speed versus fidelity of the denoised signal.
More operations on a data trace and its TFR increased the
number of processor cycles. Higher fidelity noise reduction
with extra processing steps, such as using the SS-CWT with
general cross-validation thresholding (Mousavi and Langston,
2017), significantly increased processing time that made
denoising large array datasets impractical. Another drawback
of these studies was the relative difficulty in obtaining an intui-
tive view of the signal and noise on the TFR plane. Gaining
insight into the signal and noise is routinely done by a seismic
analyst assuming various band-pass filters and observing their
effect on the data time series. Characteristics of the noise can
be quickly seen and appropriate filters for the task at hand can
be used to consistently process the data. Although adaptive
processing of the noise using wavelet methods somewhat
removes the analyst from the picture, there still remain a num-
ber of parameters to vary with judgments to make on the qual-
ity of the results. The analyst remains part of the process with
additional needs for translating complex mathematical rules
into acceptable data outcomes.

The purpose of this article is to present a relatively sim-
ple way to both visualize and manipulate seismic data using
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nonlinear thresholding of CWTs of the data. We use a
common assumption that both simplifies and speeds up the
processing while at the same time makes denoising much
more intuitive using the CWT. Many seismic signals have
distinct onsets in time for particular frequency or wavelet
scale bands. It is then a straightforward matter to choose a
pre-event time window to estimate the noise, assuming the
noise process is stationary, and then use the estimated noise
in subsequent thresholding. There is nothing new in this
assumption because this has been the basis of signal-to-noise
ratio (SNR) estimates using Fourier methods for countless
source and structure studies throughout the years. Using two
different nonlinear thresholding criteria from the noise esti-
mate allows efficient removal of the noise throughout the
time series or, if wanted, removal of the signal.

Furthermore, it becomes a simple step to directly manipu-
late the CWT by choosing portions of the CWT scale-time
plane to dissect phases from interesting seismic traces. The
fact that the CWT has an inverse transform to reconstruct the
time-domain signal allows for creative ways to analyze seis-
mic data. We will demonstrate the utility of these techniques
on local distance seismic data from the 2016 Incorporated
Research Institutions for Seismology (IRIS) wavefields seis-
mic experiment in northern Oklahoma (Sweet et al., 2018).
The waveform data come from a series of small explosions
detonated by the Air Force Research Laboratory (AFRL)
(C. Zeiler, personal comm., 2017) within 70 km of the instru-
ments of the experiment. The IRIS experiment is described in
detail by Sweet et al. (2018). We will be using example wave-
forms from only a small subset of the 247 three-component
nodal seismometers that were deployed to demonstrate CWT
techniques. A more thorough analysis of structure and array
techniques will be the subject of a future article.

The CWT and Nonlinear Thresholding

The Fourier transform is a staple in seismology because
of its relation to theory of linear systems and use in solving
theoretical problems in wave propagation. Fourier transfor-
mation of a time-domain signal into the frequency domain
allows integral operations in time, such as convolution or
correlation, to become simple algebraic operations in the
frequency domain. But because the Fourier basis functions
are infinitely long sinusoids for the Fourier transform, or
periodic sinusoids for the discrete Fourier transform, signal
information at particular times spreads over the entire fre-
quency band.

The CWT, on the other hand, is a transform with two
independent variables, scale a, and time lag τ, which produ-
ces a map of amplitude at scale versus time lag for the signal.
The Morlet–Grossmann definition (Grossmann et al., 1989;
Starck et al., 2010) for the CWT is

EQ-TARGET;temp:intralink-;df1;55;113W�a; τ� � 1���
a

p
Z �∞
−∞

f�t�ψ�
�
t − τ

a

�
dt; �1�

in which the asterisk represents the complex conjugate of the
function. The CWT is simply a correlation of the signal, f�t�,
with a scaled basis function ψ�t�. In general, the basis
function is complex and is termed the “mother wavelet.” The
wavelet coefficient W�a; τ� is also complex and can be rep-
resented in the Fourier domain as

EQ-TARGET;temp:intralink-;df2;313;661Ŵ�a;ω� � ���
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The CWT is a linear operation and has an exact inverse
transform given by the double integral
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in which C is found from a Parseval-like integral
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0
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that requires the basis function to have zero mean for this
integral to be bounded at ω � 0. We use Morlet’s wavelet
(Goupillaud et al., 1985) in which

EQ-TARGET;temp:intralink-;df5;313;462

Re�ψ�t�� � 1������
2π

p e−
t2
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Im�ψ�t�� � 1������
2π

p e−
t2
2 sin�2πϑ0t�: �5�

As can be seen (Fig. 1), Morlet’s wavelet is a heavily damped
sinusoid around t � 0, allowing the scale parameter to be
interpreted as Fourier period (inverse frequency) in the CWT
domain because we use ϑ0 � 1. Morlet’s wavelet is not
strictly admissible because it has a finite mean, but the mean
is negligible for ϑ0 > 0:8 and gives satisfactory results.
Other wavelets may be used, and the techniques outlined
here will work in a similar way. However, the strength of the
Morlet wavelet is that it is harmonic-like so that the CWT can
be interpreted by relating scale to Fourier period.

Figure 2 illustrates the use of the CWT. The vertical-
component data come from a 2000 lbs explosion recorded at
about 35 km distance from station 5014 within the IRIS
experiment. The raw time-series data are transformed into the
CWT domain to form a map of wavelet amplitude as a func-
tion of scale and time lag. The signal is seen both in the seis-
mogram and in the wavelet map (scalogram) between 65 and
110 s arrival time and 0.1–1 s scale. This TFR is an intuitive
way of viewing the characteristics of the signal that is seem-
ingly buried by the noise. The signal is evident at scales
shorter than 1 s and is seen above the horizontal bands of
lower frequency noise. Essentially, the map is a tool to view
the signal in regions where the noise has much less amplitude
than the signal. These areas of high SNR are of interest in
partitioning the signal from the noise.

Partitioning can be accomplished several ways. An esti-
mate of the noise power is made in a time window before the
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first arrival of the event (Fig. 2a) by summing the absolute
value of the amplitude of the coefficients at each scale over
time lag. This can then be used with several different criteria
to remove wavelet coefficients from the map.

“Hard thresholding” is the nonlinear process of keeping
wavelet coefficients if they are greater than a threshold cri-
terion β�a�; otherwise, they are set to zero (Donoho et al.,
1995). Mathematically, this is represented by

EQ-TARGET;temp:intralink-;df6;55;352

~W�a; τ� �
�
W�a; τ� if jW�a; τ�j ≥ β�a�
0 otherwise

: �6�

Alternatively, thresholding can be done in a somewhat less
severe manner by shrinking all coefficients that survive by
the inferred noise level. This is called soft thresholding
(Weaver et al., 1991) and is given by

EQ-TARGET;temp:intralink-;df7;55;257

~W�a;τ��
�
sign�W�a;τ���jW�a;τ�j−β�a�� if jW�a;τ�j≥β�a�
0 otherwise

;

�7�

in which

EQ-TARGET;temp:intralink-;df8;55;183sign�W�a; τ�� � W�a; τ�
jW�a; τ�j : �8�

Soft thresholding minimizes outliers in the noise better than
hard thresholding because all surviving coefficients are
reduced. Noise outliers just above the threshold amplitude
will have an effective SNR close to unity and will experience
greater reduction compared to high SNR coefficients.

The threshold function β�a�, is deter-
mined based on the statistics of the absolute
value of the noise estimate and is deter-
mined for each wavelet scale a. Mousavi
and Langston (2016a) describe a denoising
method that breaks up a wavelet plane into
separate blocks and attempts to determine
which blocks are noise-like and which con-
tain signal. A threshold level is determined
for each block based on the ensemble and
applied to remove noise using a separate
method from the hard or soft thresholding
methods shown earlier. Determining the
threshold requires solving an inverse prob-
lem for each scale, which tends to take sig-
nificant time.

In this article, we suggest a simpler
method in which the statistics of the noise
are estimated from a time window before or
after the signal and then used to estimate
the threshold function. Once the threshold
function is determined, nonlinear thresh-
olding of the entire signal becomes straight-

forward. Much of the signal processing literature starts from
the assumption of Gaussian noise. In this case, the threshold
function can be computed using the mean and standard
deviation of the absolute value of the wavelet transform at
each scale:

EQ-TARGET;temp:intralink-;df9;313;397β�a� � mean�jW�a; τ�j� � c st:dev:�jW�a; τ�j�; �9�

in which
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�t2 − t1�
Z

t2
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�jW�a; τ�j −mean�jW�a; τ�j��2dτ
�1

2

;

�11�
and c is a constant that controls the threshold. The limits t2 and
t1 represent the limits of the noise time lag window.

There are a number of ways to estimate the threshold
coefficient c contained in equation (9). If the wavelet coef-
ficients at a particular scale follow a normal distribution, then
setting c � 3 will yield a signal at the 99.7% confidence level
(Starck et al., 2010). Donoho and Johnstone (1994) suggest a
somewhat less stringent criterion called the “universal” thresh-
old that is related to the number of noise samples N at each
scale. The universal threshold is given as

EQ-TARGET;temp:intralink-;df12;313;93c �
�������������������
2 log10N

p
: �12�
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Figure 1. (a) Real and (b) imaginary parts of the Morlet wavelet.
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Figure 2. (a) Vertical-component data from station 5014 for a 2000 lbs Air Force Research Laboratory (AFRL) explosion located about
35 km to the northwest of the Incorporated Research Institutions for Seismology (IRIS) wavefields experiment (14 July 2016 at 14:26:00 UT;
lower panel). The explosion is evident as the higher frequency signal riding on the ambient background noise. The upper panel shows the
continuous wavelet transform (CWT) scalogram displaying the absolute value of wavelet coefficient amplitude as a function of scale and time.
The small plot in the upper left displays the average amplitude of noise within the 60 s time window before the explosion event. The threshold
amplitude computed using the empirical cumulative distribution function (ECDF) technique described in equation (14) is also shown.
(b) Denoising results using the hard threshold (top two panels) and soft threshold (bottom two panels) methods. The color version of this
figure is available only in the electronic edition.
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Normally, c from this relation is close to the value 3 for
practical problems.

Unfortunately, the assumption of Gaussian statistics for
the noise is rarely seen in seismic data. Using the noise time
window shown in Figure 2a, the excess kurtosis was calcu-
lated at each scale and compared to the Gaussian excess kur-
tosis estimator presented in Mousavi and Langston (2016a,
their equation 12). Figure 3 displays the “non-Gaussianity”
versus scale determined by

EQ-TARGET;temp:intralink-;df13;55;141

kurt
�������
0:9

p
������������
24=N

p ; �13�

in which N is the number of samples in the noise estimate
(here, 6001), 0.9 is for the 90% confidence level, and kurt

is the kurtosis. Values of non-Gaussianity between −1 and�1

represent Gaussian noise distributions. The kurtosis of a prob-
ability density function represents both the width of a possible
central peak and the behavior of outliers. A negative kurtosis
often means very short tails to the distribution, whereas pos-
itive kurtosis represents flat tails. The main idea in noise
removal is to include as much of the noise distribution as pos-
sible to avoid outliers that would give rise to false arrivals in
the denoised signal. Thus, for example, high positive kurtosis
could mean long flat tails to the distribution of the noise so that
assuming Gaussian statistics would let more noise through the
thresholding operation.

At this point, it is important to emphasize that the statis-
tical nature of the noise in the time domain can become quite
different in the wavelet domain. Figure 4 shows a synthetic
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Figure 3. (a) Comparison of the mean amplitude of the noise used in Figure 2 with three different thresholding functions. The threshold
computed using the ECDF method is compared to Donoho’s universal threshold assuming Gaussian statistics and the max of ECDF−1a .
(c) Display of the non-Gaussianity versus scale for the noise using relation (13). The two horizontal lines delineate the narrow region for
which the ECDF is likely Gaussian. Most of the noise is distinctly non-Gaussian, justifying use of the ECDFmethod. Arrows point to portions of
the noise that are Gaussian-like (left arrow) and strongly non-Gaussian (right arrow). (b) The ECDF of the strongly non-Gaussian noise at log10
scale of 0.594. (d) The ECDF of the Gaussian-like noise for log10 scale of−0:855. The coefficient amplitude is shown on both (b) and (d) for the
P � 0:99 level.
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time series and resulting CWT. This random time series was
constructed using a Gaussian distribution for the excursions
with zero mean and a standard deviation of unity, creating
what is known as white noise in the Fourier domain. After
transformation into the scale-time domain, the distribution
of the absolute amplitude of the wavelet coefficients can
become distinctly non-Gaussian, as revealed by the kurtosis
test (Fig. 4). In effect, what is usually considered as a
Gaussian white noise process in the time domain becomes dis-
tinctly non-Gaussian in the scale-time domain, necessitating a

more careful look at the criteria used for
thresholding the CWT.

Because the distribution for real data is
often unpredictable, we take the approach
of empirically estimating the cumulative
distribution of noise in the time window
at each scale then calculating the 99%
confidence value for the distribution. The
empirical cumulative distribution function
(ECDFa) is determined by ordering the N
noise values and then assigning a probabil-
ity jump of 1=N when a value is attained,
starting with the smallest value. The thresh-
old function becomes

EQ-TARGET;temp:intralink-;df14;385;565β�a� � ECDF−1a �P � 0:99�; �14�

in which ECDF−1a is the inverse cumulative
distribution function or quantile function.
Figure 3 shows the comparison between
threshold functions assuming Gaussian sta-
tistics (equation 9) and non-Gaussian statis-
tics (equation 14). The result in which only
the maximum of the inverse ECDF is
chosen is also shown. Thresholds from dis-
tributions with negative kurtosis closely
track the maximum of each distribution, as
expected. Thresholds from distributions
with positive kurtosis are underestimated
by as much as half if Gaussian statistics
are assumed. Overall, there are significant
differences between the inverse ECDF and
inverse Gaussian threshold functions sug-
gesting that the ECDF method would lead
to better estimates of the threshold. Just
using the maximum of the inverse ECDF
would also be acceptable and certainly sim-
pler to implement.

An interesting aspect of these denois-
ing techniques is that they can be reversed:
signal can be extracted from the time series
leaving only noise. This could be useful in
removing earthquake signals from ground-
motion time series for ambient-noise
processing (e.g., Benson et al., 2007). For

the hard thresholding case, signal is removed using

EQ-TARGET;temp:intralink-;df15;313;184

~W�a; τ� �
�
0 if jW�a; τ�j ≥ β�a�
W a; τ� � otherwise

; �15�

and for soft thresholding
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Figure 4. (b) A synthetic random time series constructed using Gaussian statistics for
the random excursions assuming a mean of 0 and standard deviation of 1. The CWTof this
time series is shown in (a). Note that for high scale or long period, the scalogram shows
very smooth variation with time. Variation increases with decreasing scale. (c) The sta-
tistics of the absolute value of the wavelet coefficients for this realization of time-domain
Gaussian noise show distinctly non-Gaussian behavior over much of the range of CWT
scale. The color version of this figure is available only in the electronic edition.
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Hard thresholding leaves a “hole” in the CWT by zeroing out
all coefficients above the noise level, whereas soft thresholding
fills in the hole with an oscillatory version of the background
noise.

Nonlinear Thresholding Examples

We demonstrate each thresholding method first using the
synthetic seismogram example in Mousavi and Langston
(2016a, their fig. 3). Implementation of equation (14) for both
hard and soft thresholding is equally efficient and show proc-
essed seismograms that are comparable to the six-step block
thresholding procedure of that article (Fig. 5). The synthetic
seismogram comes from a wavenumber integration solution
(Zhu and Rivera, 2002) for a double-couple point source
in plane-layered structure appropriate for the central United
States. Observed seismic noise from a station in the New
Madrid Cooperative Seismic Network was added to the
synthetic. A noise time window 28 s in length was taken to
estimate the scale-dependent ECDFa and resulting threshold.
Although both hard and soft thresholding methods are suc-
cessful in removing most of the pre-event noise, soft thresh-
olding outperforms hard thresholding for removing postevent
noise above 10 s in scale. Even so, some of the P- and S-wave
signals are reduced by soft thresholding.

Figure 2 shows results using the ECDF method on the
local explosion waveform recorded by the IRIS wavefields
experiment. The time-domain signal is dominated by ambi-
ent background noise. A 60 s time window is used to esti-
mate the noise threshold function. Again, soft thresholding
outperforms hard thresholding, leaving fewer artifacts in the
pre-event and postevent time series.

The utility of soft thresholding and added scale-time band
rejection for improving event detection can be seen in Figure 6.
Here, an array composed of 81 vertical-component elements

Figure 6. An array of 81 stations were subset for a 2000 lbs
AFRL explosion that was detonated at 67 km from the IRIS wave-
fields experiment (14 July 2016, 15:12:00 UT). (a) A shot gather for
the 81 array elements after high-pass filtering with a 1 Hz zero-phase
Butterworth filter with four poles. Explosion P waves are discernable
through the fog of high-frequency noise. (b) The result after denois-
ing the original data using noise estimates from the first 60 s of record
at each array element separately with the P � 0:99 quantile value. In
addition, wavelet coefficients for scales greater than 1 s were zeroed
to remove obvious noise. The resulting shot gather is much clearer,
showing the explosion P waves and many other local microseisms
that occurred near the explosion in time.
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Figure 5. (a) The time series for the synthetic seismogram, synthetic with noise, band-pass filtered (1 Hz zero-phase Butterworth high-
pass filter with two poles), hard and soft threshold results using the ECDF method. (b) The corresponding CWT scalograms. These results are
comparable to results shown in figure 3 of Mousavi and Langston (2016a), who used a more complex denoising method. The color version of
this figure is available only in the electronic edition.
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of the IRIS experiment is constructed to act as a phased array
in determining phase velocity and azimuth for local explosion
seismic waves. An analysis of one data channel shows that
ambient noise is large for scales greater than 1 s or frequencies
less than 1 Hz. Application of a four-pole phaseless
Butterworth filter shows considerable noise, but the explosion
signal is evident. However, applying the ECDF denoising with
an additional scale-time block rejection for wavelet coefficients
at scales greater than 1 s clarifies both the explosion P waves
and additional waves from microseismic events under the
array.

Finally, we take the same explosion seismogram as shown
in Figure 2 and remove the signal using soft thresholding
(equation 16; Fig. 7). Clearly, this would have use in condi-
tioning ambient-noise data for obtaining Green’s functions
through correlation (e.g., Benson et al., 2007).

Scale-Time Windowing and Phase Decomposition

An interesting attribute of the scale-time plane of the
CWT of a signal is the ability to separate seismic phases. As
an example, Figure 8 shows an expanded version of the soft
thresholded denoised signal of Figure 2. The CWT scalogram
clearly delineates the three major seismic phases within the
seismogram. The P wavetrain and its coda are separate from
the first higher Rayleigh mode, which is also separate from the
fundamental Rayleigh mode. It becomes a simple matter to
separate these three wavetrains on the scale-time plane by cap-
turing the area of their phase energy through picking or by
some algorithm. Here, we draw a polyhedron around the fun-
damental-mode energy to window it from the rest of the

seismogram. The complex wavelet coeffi-
cients within the polyhedron are kept
and everything else discarded. Applying
the inverse CWT produces the isolated
fundamental-mode Rayleigh wave. The
fundamental mode can then be analyzed
for group and phase velocity to determine
structure information. For example, a
phased array of seismometers can be used
to analyze the fundamental mode after it
has been isolated through scale-time win-
dowing at each element of the array.
Clearly, this will be useful in increasing the
resolution of array methods for analysis of
local and regional seismic phases.

Discussion and Conclusions

The performance of wavelet denoising
of seismic data can look “too good to be
true,” in a sense, as shown in Figures 2
and 6. Pre-event noise may be almost
perfectly removed, particularly if the pre-
event noise is used in the noise estimate.
Seismologists are often interested in the

fidelity of seismic phase arrival times for travel-time studies
or preserving wave shape for waveform or correlation studies.
The accuracy of travel times is controlled largely by the energy
of signal at fine scales or high frequency. If the SNR is large at
fine scale, as it is in the explosion example shown here, then
nonlinear denoising is an ideal method for filtering the record
to obtain a travel-time estimate. However, if the event signal is
less than the background noise at fine scales, then it is very
likely that nonlinear thresholding will remove the signal along
with the noise. For cases in between in which the noise over-
laps with the signal on the time-scale plane (Fig. 5), nonlinear
thresholding will degrade the waveforms of small individual
phases.

A number of these issues were investigated by Mousavi
and Langston (2016a). The preservation of waveform
depended somewhat on the choice of the mother wavelet and
the level of the noise. However, removing moderate amounts
of noise from a synthetic three-component earthquake signal
showed that P- and S-wave particle motions were preserved
after noise removal. If there are regions on the time-scale plane
of the CWT that have high SNRs, then nonlinear thresholding
is very effective in removing the noise in adjacent areas and
exposing the signal. However, characteristics of the signal in
those low SNR regions will be lost in the processing.

As with any seismic data processing method, perfor-
mance depends on how well assumptions of the method agree
with the reality of the data. The key assumption is that the
noise sample used to estimate the thresholding parameter is
stationary throughout the time series. Changing noise sources
or other data problems, such as data dropouts or high-ampli-
tude transients, are not stationary by definition and will likely
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thresholding method. Same scheme as Figure 2. The color version of this figure is avail-
able only in the electronic edition.
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misrepresent the noise estimate. Although examining the
CWT scalogram may help in assessing these nonstationary
noise sources, effective denoising depends on an appropriate
choice of the noise time window and quality-controlled seis-
mic data.

The principal contribution of this article is proposing a
simplified method for determining the threshold function for
denoising or designaling seismic time series. Constructing
the ECDF from observed values of noise as a function of wave-
let scale, and assuming that the noise is stationary through the
time series, accounts for the non-Gaussian distribution of noise
amplitude. Using the 99% confidence level of the ECDF gives
a significantly better estimate of the threshold function than
assuming Gaussian statistics. In the case that the noise is
actually Gaussian, the method yields the correct result. The net
effect is to speed up computations for noise removal by two
orders of magnitude while yielding similar results compared to
those in Mousavi and Langston (2016a). Simplifying the
analysis also makes examining data for noise and signal more
intuitive.

Use of the CWT in seismic signal processing shows
great potential. Denoising allows for increasing event detec-
tion and designaling may be used for conditioning ambient
noise in correlation studies. Manipulation of the signal on the
scale-time plane potentially allows for high-resolution analy-
sis of discrete seismic phases and surface-wave modes within
the seismogram.

Data and Resources

Data used in this article can be obtained from the
Incorporated Research Institutions for Seismology (IRIS)
data center at https://ds.iris.edu/ds/nodes/dmc/ (last accessed
June 2019) and is described in Sweet et al. (2018). MATLAB
software used in processing the data in this article is available
from the author’s website at http://www.ceri.memphis.edu/
people/clangstn/ (last accessed July 2019). Seismic Analysis
Code (SAC) was used in this article (Goldstein et al., 2003)
and is gratefully acknowledged. The authors thank Associate
Editor Eric Chael and two anonymous reviewers for their sug-
gestions and comments that improved the article.
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