Effects of mantle fluid content and structure on the seismicity of the New Madrid Seismic Zone

Arushi Saxena

Brown Bag Presentation

January 11, 2018

æ

Motivation

Epicenters of the earthquakes (> Mw2.0) in and around the New Madrid Seismic Zone (NMSZ) from May, 2002

to May, 2017.

・ロト ・聞ト ・ヨト ・ヨト

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Background

Previous Studies oo

source: Zhan et al., 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Previous Studies \circ

source: Cox and Arsdale, 2002

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Previous Studies

source: Biryol et al., 2016

ж

Objectives

source: Nyamwandha et al., 2016

Model the stress distribution in the NMSZ¹

¹Nyamwandha et al., 2016; Chen et al., 2016

²Cox and Arsdale, 1997; Cox and Arsdale, $2002 \rightarrow 400$

Objectives

source: Nyamwandha et al., 2016

- Model the stress distribution in the NMSZ¹
- Investigate the LAB beneath the ME ²using S wave receiver functions

¹Nyamwandha et al., 2016; Chen et al., 2016

Geodynamic Modelling

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Methodology

► Tomography from Nyamwandha et al., 2016 → Rheology Effective viscosity for linear Maxwell rheology:

$$\eta_{eff} = \dot{\varepsilon}^{\frac{1-n}{n}} f_{H_2O}^{\frac{-r}{n}} \left(A \exp(-H/RT) \right)^{-1/n}.$$
(1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Methodology

► Tomography from Nyamwandha et al., 2016 → Rheology Effective viscosity for linear Maxwell rheology:

$$\eta_{eff} = \dot{\varepsilon}^{\frac{1-n}{n}} f_{H_2O}^{\frac{-r}{n}} \left(A \exp(-H/RT) \right)^{-1/n}.$$
(1)

Methodology

► Tomography from Nyamwandha et al., 2016 → Rheology Effective viscosity for linear Maxwell rheology:

$$\eta_{eff} = \dot{\varepsilon}^{\frac{1-n}{n}} f_{H_2O}^{\frac{-r}{n}} \left(A \exp(-H/RT) \right)^{-1/n}.$$
(1)

 Use stress solution to compute differential stress distribution calculated for various setups

Case I: Temperature only oo

$$\frac{\partial V_{(p,s)}}{\partial T} = \frac{\partial V_{(p,s)}}{\partial T}_{anh} + \frac{\partial V_{(p,s)}}{\partial T}_{anel}$$
(2)

Anharmonic part is assumed const with depth:

$$\frac{\partial V_{p}}{\partial T}|_{anh} = \frac{1}{2V_{p}}\frac{\partial K}{\partial T} + \frac{2}{3V_{p}}\frac{\partial \mu}{\partial T} - \frac{1}{2}\frac{V_{p}}{\rho}\frac{\partial \rho}{\partial T} \qquad (3)$$

Anelastic effects approximated by Goes et al., 2000:

$$\frac{\partial V_{p}}{\partial T}|_{anel} = Q^{-1} \frac{aH}{2RT^{2}\tan(\pi a/2)}$$
(4)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Concentration

Case I: Temperature only \circ

of stress in the upper crust due to high temperature (weaker) mantle

Case I: Temperature only

Temperature anomalies converted from Vs and Vp

Figure: Temperature anomalies at various depths

Case II: Water content and temperature $\circ \circ \circ$

1.) We have the following relationship from Karato , 1998:

$$V(\omega, T, P, C) = V_o(T, P) \left[1 - \frac{1}{2} \cot\left(\frac{\pi\alpha}{2}\right) \left(\frac{A + BC_{OH}}{\omega}\right)^{\alpha} \right]$$
$$exp\left(-\alpha\beta\frac{T_m}{T}\right)$$

2.)
$$\partial V_s = \partial V_s^T + \partial V_s^{OH}$$

3.)

$$\partial C_{OH} = -\frac{\partial V_{OH}}{V_o(T,P)} \left(2\tan\frac{\pi\alpha}{2}\right) \frac{\omega}{\alpha B} \left(\frac{A}{\omega}\right)^{1-\alpha} \exp\left(\alpha\beta\frac{T_m}{T}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Case II: Water content and temperature oo

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Case II: Water content and temperature \circ

Figure: Depth slice at 10 km to show concentration of differential stress in model with fluid

Case II: Water content and temperature

Composition and temperature

Presence of opx reduces Vp more than Vs

 $\partial V_{s,p} = \frac{\partial V_{s,p}}{\partial T} \cdot \delta T(X) + \frac{\partial V_{s,p}}{\partial X_{opx}} \cdot \delta X_{opx}$ (5)

- Non-linear equation in composition
- Solve for δT and δX_{opx} simultaneously ³

³Iterative methods like N-R

Challenges

- Inversion of C_{OH} , T and X with P and S tomography is non-unique
- Depth of low velocity anomaly not resolved well to observe the fluid transport from the stagnant Laramide slab
- Model for fluid transport and presence of opx unclear
- Effects of compositional changes in rheology not well understood

Receiver Functions

S-wave Receiver Functions \circ

Figure: SRF for detection of LAB

source: Hansen et al., 2010 $\langle \Box \rangle \langle \Box \rangle$

э

(日)、

S-wave Receiver Functions

Figure: Synthetic seismogram (left) for the velocity model in the ME $\ensuremath{\mathsf{ME}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Methodology

$1. \ {\sf Rotate}$ the preprocessed event into ${\sf RTZ}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Methodology

- $1. \ {\sf Rotate}$ the preprocessed event into ${\sf RTZ}$
- 2. Bin events based on the azimuth for stacking
- 3. F-K analysis on P wave coda per station per bin

Methodology

- $1. \ \mbox{Rotate}$ the preprocessed event into \mbox{RTZ}
- 2. Bin events based on the azimuth for stacking
- 3. F-K analysis on P wave coda per station per bin
- 4. Generate SRF: deconvolve the source function (Z) from the corresponding radial (R) component

Methodology

- $1. \ \mbox{Rotate}$ the preprocessed event into \mbox{RTZ}
- 2. Bin events based on the azimuth for stacking
- 3. F-K analysis on P wave coda per station per bin
- 4. Generate SRF: deconvolve the source function (Z) from the corresponding radial (R) component
- 5. Improve S/N ratio using noise-removal techniques
- 6. Migrate to depth using Crust1.0 and iasp91 model

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data o

Figure: Possible ray paths for S to P converted waves for mantle S waves

Data

Station Locations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data

Station Locations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Challenges Anticipated

- Irregular LAB structure across ME due to gradual velocity decrease
- Implementation of denoising techniques

Thank you!

Questions/Suggestions?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?